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Background: Short-term and working memory (STM and WM) deficits have been
demonstrated in individuals with autism spectrum disorder (ASD) and may emerge
through atypical functional activity and connectivity of the frontoparietal network, which
exerts top-down control necessary for successful STM and WM processes. Little is
known regarding the spectral properties of the frontoparietal network during STM or WM
processes in ASD, although certain neural frequencies have been linked to specific neural
mechanisms.

Methods: We analysed magnetoencephalographic data from 39 control adults (26
males; 27.15 ± 5.91 years old) and 40 adults with ASD (26 males; 27.17 ± 6.27 years
old) during a 1-back condition (STM) of an n-back task, and from a subset of this sample
during a 2-back condition (WM). We performed seed-based connectivity analyses using
regions of the frontoparietal network. Interregional synchrony in theta, alpha, and beta
bands was assessed with the phase difference derivative and compared between groups
during periods of maintenance and recognition.

Results: During maintenance of newly presented vs. repeated stimuli, the two groups did
not differ significantly in theta, alpha, or beta phase synchrony for either condition. Adults
with ASD showed alpha-band synchrony in a network containing the right dorsolateral
prefrontal cortex, bilateral inferior parietal lobules (IPL), and precuneus in both 1- and 2-
back tasks, whereas controls demonstrated alpha-band synchrony in a sparser set of
regions, including the left insula and IPL, in only the 1-back task. During recognition of
repeated vs. newly presented stimuli, adults with ASD exhibited decreased theta-band
connectivity compared to controls in a network with hubs in the right inferior frontal gyrus
and left IPL in the 1-back condition. Whilst there were no group differences in connectivity
in the 2-back condition, adults with ASD showed no frontoparietal network recruitment
during recognition, whilst controls activated networks in the theta and beta bands.
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Conclusions:Our findings suggest that since adults with ASD performed well on the n-back
task, their appropriate, but effortful recruitment of alpha-band mechanisms in the
frontoparietal network to maintain items in STM and WM may compensate for atypical
modulation of this network in the theta band to recognise previously presented items in STM.
Keywords: autism, connectivity, working memory, theta, alpha, maintenance, recognition, MEG
INTRODUCTION

Adults with autism spectrum disorder (ASD) demonstrate
difficulties with a variety of executive functions (1–4), one of
which is working memory (WM), which refers to the ability to
hold and manipulate information in mind (5, 6). WM is related
to short-term memory (STM), which involves the mental storage
of information for a short period of time (7, 8), and which is also
impaired in adults with ASD (9–12). Given their link with each
other, and their influence on cognitive capabilities, such as
intelligence and academic achievement (13–18), understanding
the nuances and the extent of STM and WM impairments in
ASD is a crucial first step in improving cognitive outcomes in
this population. The current literature points to a more severe
deficit in ASD in visual, especially visuospatial, aspects of STM
and WM, rather than in verbal STM and WM (10, 19–23),
though people with ASD exhibit impairments in both modalities
(11, 24). Neuroimaging work has additionally shown that
individuals with ASD exhibit atypical neural activity and
connectivity during visual STM tasks (25–27) and in both
visual and verbal WM tasks (28–32).

Several functional neuroimaging studies of STM and WM
have demonstrated activation of a frontoparietal network (33–
39) consisting mainly of the dorsolateral prefrontal cortex
(dlPFC), which includes the superior and middle frontal gyri
(SFG and MFG), and of the inferior parietal lobule (IPL). The
frontoparietal network is thought to exercise cognitive control to
adapt to rapidly changing goals and demands (40–44) that
certainly occur in STM and WM tasks. The IPL has been
primarily associated with maintenance (45–51), which entails
the temporary storage of information in STM or WM, though
the dlPFC has also been implicated (46, 48, 52–56). The dlPFC is
additionally involved in recognition of previously presented or
repeated stimuli (57–60), a function which encompasses access
to or selection of relevant stimulus representations in STM or
WM, and it also plays a role in updating or manipulation of
information in WM. Much of the STM and WM literature in
ASD has utilised paradigms tapping both maintenance and
recognition processes; during such tasks, individuals with ASD
show differential activation of this frontoparietal network across
development, exhibiting increased activity in the dlPFC during
childhood (27, 61), but the opposite in adulthood (26, 31, 62).
Moreover, they show poor modulation of these frontoparietal
regions with increasing cognitive load (30, 63, 64).

More recent work has examined not only the activation of
regions in the frontoparietal network, but also how they
communicate or synchronise with each other and with other
brain areas. These connections are thought to be fundamental for
g 2
exerting top-down control on other areas and networks for
successful task performance (41, 42, 65–70). In the ASD
population, studies generally demonstrate that areas in the
frontoparietal network are less coupled with each other and
with other regions of the brain (26, 29, 31). This reduced
functional connectivity suggests impairments in integrating
information amongst brain areas during maintenance and
recognition, which may contribute to ASD symptomatology
(25, 32). These findings echo the current literature on
connectivity in ASD, which posits that individuals with ASD
show decreased long-range functional connectivity and altered
local connectivity across a range of contexts (71–76), suggesting
that a deficit in neural communication may account for the
cognitive difficulties observed in the ASD population.

Although neural long-range synchrony, especially in the theta
and alpha frequency bands, has been linked to STM and WM
maintenance and recognition processes (39, 77–85), the specific
frequency band(s) in which these connectivity differences occur
in individuals with ASD have been less explored. To our
knowledge, only one study has demonstrated reduced alpha-
band connectivity in children with ASD during a WM task,
reflecting inefficient processing during recognition of repeated
stimuli that was associated with severity of their ASD symptoms
(32). Frequency-specific differences in STM- or WM-related
connectivity in adults with ASD and their relation to behaviour
have yet to be examined, even though these abilities can impact
adaptive behaviours in individuals with ASD (3, 86, 87).

Thus, the present study investigated whether adults with ASD
demonstrate connectivity differences when engaging STM and
WM processes, and if they are frequency-dependent. Adults with
and without ASD performed an n-back task, a classic paradigm
in which participants view a series of stimuli and are asked to
recall whether the current stimulus was also presented n trials
earlier (88). We measured and compared connectivity between
the control and ASD groups during maintenance and
recognition of novel visual stimuli for both 1-back and 2-back
versions of the task. The 1-back condition involves mainly STM
processes, as an individual is only required to maintain and
recognise the stimulus shown in the previous trial in mind. On
the other hand, the 2-back condition elicits WM processes, as
one must continuously monitor and update information stored
in and retrieved from memory. Due to their involvement in STM
(38, 39, 83, 84, 89–93) and WM mechanisms (77–79, 94–96) as
well as long-range interregional communication (97–99), we
specifically contrasted phase synchrony in the theta, alpha, and
beta frequency bands. We also focused on connections amongst
frontoparietal network regions and the rest of the brain, given its
known role in STM (37–39, 84) and WM (33, 36, 100, 101), and
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since prior work has demonstrated deficits in this network in
ASD (25, 27, 31). As individuals with ASD show deficits in tasks
involving STM and WM maintenance (11, 20), decreased brain
activity during STM recognition (27), and reduced connectivity
during WM recognition (32), we predicted that adults with ASD
would demonstrate decreased interregional connectivity during
both maintenance and recognition of novel stimuli in STM and
WM. We further hypothesised that these differences would
appear in the alpha band, in line with our previous findings in
children with ASD (32), and given its link with STM and WM
processes, especially maintenance (77, 85, 102–105).
MATERIALS AND METHODS

Participants
We recruited 92 adults aged 18–40 years, inclusive, for this study,
approved by the Research Ethics Board at the Hospital for Sick
Children. Individuals were included if they were not born
prematurely, had no MRI or MEG contraindications, and
demonstrated an IQ ≥ 70, measured using the full-scale, two-
subtest version of the Wechsler Abbreviated Scale of Intelligence
(WASI or WASI-II) (106, 107). Control adults were additionally
screened for any developmental, neurological, or psychological
disorders. Adults with ASD had a primary diagnosis of ASD by
an experienced clinician, which was confirmed by the Autism
Diagnostic Observation Schedule (ADOS-G or ADOS-2) (108,
109). All participants gave informed written consent before
taking part in the study.

Participants were excluded if they performed poorly on the task
(i.e., ≤50% accuracy on 1-back task or ≥50% false alarm rate), had a
lownumber of correct trials (<40 in each condition) after accounting
for artefacts, or poor data quality (e.g., poor head localization in the
MEG). We then matched participants in the ASD group with those
in the control group on age (within two years) and sex, and
subsequently excluded any control participants who could not be
matched. As participants tended to perform better on the 1-back
than the 2-back version of the task, and as we evaluated the 1- and 2-
back data separately, the final samples for these two analyses differed;
the sample for the 2-back analysis was a subset of that for the 1-back
analysis. For the 1-back task, 39 control adults (26 males; 27.15 ±
5.91 years old) and 40 adults with ASD (26males; 27.17 ± 6.27 years
old) met all inclusion and exclusion criteria. For the 2-back task, 29
control adults (19 males; 26.40 ± 5.79 years old) and 30 adults with
ASD (19males; 26.36 ± 6.26 years old) were included in the analyses.
Neither sample differed significantly in age, sex, or IQ, and mean
calibrated severity scores on the ADOS for both ASD samples were
around 7 (Table 1).

Experimental Design
Questionnaires
To obtain a standardised measure of WM, we asked participants
and their informants (e.g., partner or parent) to complete the
Behavior Rating Inventory of Executive Function, Adult Version
(BRIEF-A) (110). This questionnaire assesses difficulties with a
variety of executive functions that an individual may experience
Frontiers in Psychiatry | www.frontiersin.org 3
in everyday life. It provides t scores reflecting the degree of
impairment on a particular executive function scale, as well as
composite scores. We used t scores on the WM scale of the
BRIEF-A, with higher scores denoting more severe deficits in
WM. Participants also filled out the Social Responsiveness Scale,
Second Edition (SRS-2) (111). The Total t score was taken to
gauge ASD symptom severity.

N-Back MEG Task
Participants performed a visual n-back task with two loads, 1-
and 2-back (Figure 1A), to elicit STM and WM processes. This
task was used in our previous work examining differences in
brain activation and functional connectivity between children
with and without ASD (27, 32). Our task protocol was similar;
stimuli consisted of novel colourful abstract images presented
serially for 200 ms each on a black background. During the
interstimulus interval, participants saw a white fixation cross for
a random duration between 1,050–1,300 ms. Participants pressed
a button if the most recently presented stimulus matched that
shown n trials previously.

The two loads of the n-back task were run in separate blocks. The
l-back load scenario consisted of 285 trials: 190 unique images were
presented, and 95 of these were shown again on the subsequent trial.
The 2-back load segment of the task contained 330 trials: 220 distinct
images were shown, of which 110 were repeated two trials later.
Stimuli in the 1- and 2-back loads did not overlap. We refer to trials
in which stimuli are presented for the first time as “New,” and those
in which they are shown again as “Repeat.”

All participants first practised both blocks of the task and
were given feedback outside of the MEG scanner to ensure they
understood the task requirements. Individuals viewed the task on
a rear projection screen 80 cm away from the MEG dewar.
Presentation 18.1 software (Neurobehavioral Systems Inc.,
https://www.neurobs.com/presentation) was used to display the
task, as well as record participant responses.

Neuroimaging Data Aquisition
A 151-channel CTF MEG system (Coquitlam, British Columbia,
Canada) recorded MEG data at a 600 Hz sampling rate from
participants during the task. Adults lay supine with their head in
TABLE 1 | Demographics for 1-back and 2-back samples.

Control ASD t or X2 p

Mean (SD) or Count Mean (SD) or Count

1-back N = 39 N = 40
Age 27.15 (5.91) 27.17 (6.27) 0.02 0.99
Sex 26 M, 13 F 26 M, 14 F 2.43×10-31 1
IQ 114.34 (11.36) 111.79 (14.37) 0.86 0.39
ADOS CSS — 6.89 (2.25) — —

2-back N = 29 N = 30
Age 26.40 (5.79) 26.36 (6.26) 0.03 0.98
Sex 19 M, 10 F 19 M, 11 F 6.01×10-31 1
IQ 115.45 (11.98) 113.48 (13.04) 0.60 0.55
ADOS CSS — 7.00 (2.09) — —
Sept
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the MEG dewar. Head position was tracked continuously through
three fiducial coils on the nasion and left and right pre-auricular
points. To reduce noise in the data, an anti-aliasing low-pass filter
at 150 Hz and a third order spatial gradient were applied.

A 12-channel head coil in a 3T MRI scanner (MAGNETOM,
Siemens AG, Erlangen, Germany) recorded T1-weightedMRI data
from participants. A sagittal 3D MPRAGE sequence (TR/TE =
2,300/2.96 ms, FA = 9°, FOV = 192×240×256 mm, voxel size =
1.0 mm isotropic) was utilised. Participants were scanned with
radio-opaque markers at the MEG fiducial points to allow for
coregistration of functional MEG data with structural MRI data.

Statistical Analysis
Behavioural Data
WM capability in everyday life was compared between adults
with and without ASD in the 1- and 2-back samples by
examining whether there were group (control vs. ASD) or rater
Frontiers in Psychiatry | www.frontiersin.org 4
(self vs. informant) effects, as well as an interaction between the
two, on the WM scale of the BRIEF-A. Performance on the n-
back task was contrasted between groups by assessing the effect
of group (control vs. ASD) on accuracy and median response
time (RT) for the 1- and 2-back loads independently. Accuracy
was assessed using d-prime (d′); hits were correct Repeat trials,
and false alarms were incorrect New trials.

We used linear mixed effects models to investigate the effects
on BRIEF-A data and t tests for the task performance measures.
Analyses were carried out separately for the 1-back and 2-back
samples in R 3.5.0 (R Core Team, https://www.r-project.org/).
Significant results are reported for p < 0.05.

MEG Data
Preprocessing
MEG data preprocessing and analyses were done using the
FieldTrip toolbox (112) in MATLAB 2017b (The MathWorks,
A

B

FIGURE 1 | The n-back task. (A) Participants’ performance on two loads of this task — 1-back (top row) and 2-back (bottom row) — were tested in separate
blocks. They were instructed to press a button as quickly as possible when they recognised that a stimulus had been repeated one or two trials earlier. Images were
presented for 200 ms, and the interstimulus interval varied between 1,050–1,300 ms. (B) A schematic of the time windows used to analyse working memory
maintenance and recognition processes, with the 1-back load as an example.
September 2020 | Volume 11 | Article 551808
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www.mathworks.com/products/matlab/). Data were epoched
from −1,500–2,000 ms, relative to stimulus onset. Signals were
then filtered from 1–150 Hz with a fourth-order Butterworth
bandpass filter, with 60 and 120 Hz notch filters. Artefacts from
physiological sources (e.g., eyes and heart) were detected and
removed with independent component analysis. Trials in which
the signal was >2,000 fT or head movement was >5 mm were
excluded. Of the remaining trials, only correct New and Repeat
trials were used for further analyses.

Forward models based on the single-shell method (113) were
created from each participant’s T1-weighted MRI data. Inverse
models were constructed using the forward model and
constrained to the centroids of the 90 regions of the Automated
Anatomic Labeling (AAL) atlas (114). Activity at each centroid
was taken to represent that respective AAL region. Time series
at these sources were estimated using a linearly constrained
minimum variance beamformer (115). The covariance matrix
was computed on the MEG signal from −400–800 ms, to
which 5% regularisation was applied. The neural activity
index was calculated to ensure attenuation of centre-of-head
noise biases.

Connectivity
As our task involved strong visual and motor responses, we
performed seed-based analyses to focus on connectivity between
core regions of the frontoparietal network and the rest of the
brain to assess phase synchrony directly related to maintenance
and recognition of novel visual stimuli. Therefore, we examined
the connections amongst six bilateral regions of interest (ROIs)
from the AAL atlas, as well as their links to the other AAL
regions (except Heschl’s gyrus and olfactory cortex, as their roles
in audition and olfaction are not involved in our task). Our ROIs
were chosen based on meta-analyses of n-back studies (33, 35,
36). They consisted of the superior frontal gyri [SFG; (-19, 35, 42)
and (20, 31, 44)], medial superior frontal gyri [mSFG; (-6, 49, 31)
and (8, 51, 30)], middle frontal gyri [MFG; (-34, 33, 35) and (37,
33, 34)], inferior frontal gyri [IFG; (-47, 30, 14) and (49, 30, 14)],
insulae [(-36, 7, 3) and (38, 6, 2)], and inferior parietal lobules
[IPL; (-44, -46, 47) and (45, -46, 50)].

Connectivity between each pair of sources was quantified
using the phase difference derivative (PDD) (116). Source-
estimated data were filtered into our frequency bands of
interest with Hamming-windowed FIR bandpass filters at the
following passbands: 4–7 Hz (theta), 8–14 Hz (alpha), and 15–30
Hz (beta). The lower and upper stopband frequencies for each
filter were at 0.6 and 1.9 times the lower and upper frequency
cutoffs of each passband, respectively. To reduce detection of
spurious connections due to signal leakage, filtered data were
subsequently orthogonalized. The instantaneous phase for each
source timeseries in each frequency band was obtained with the
Hilbert transform. PDD values were calculated at each time point
from −400–800 ms using the method outlined by Tewarie and
colleagues (117).

Interregional neural communication during maintenance and
recognition of novel visual stimuli was determined by
considering phase synchrony values in two time windows:
400–800 ms, after the onset of a New stimulus, and 0–400 ms,
Frontiers in Psychiatry | www.frontiersin.org 5
following the presentation of a Repeat stimulus, respectively
(Figure 1B). These windows were established based on average
median RTs in both groups, which ranged from ~425–525 ms,
across both loads (see Results section). Regarding recognition, we
examined a window from 0–400 ms, post-Repeat stimulus onset
and just before the lower end of the average median RT, as it
would encompass processing related to successful recognition
during correct Repeat trials. We compared phase synchrony in
this window to that in a similar window of 0–400 ms, post-New
stimulus onset (Repeat > New, 0–400 ms, poststimulus onset), as
New trials act as a control condition that involves the first
occurrence of the stimulus. To investigate maintenance, we
evaluated a window from 400–800 ms, post-New stimulus
onset, to prevent capturing any perceptual, encoding, and/or
identification functions that may occur during early visual
processing. Furthermore, we chose this interval to avoid
overlap with our recognition analysis and the baseline window.
We contrasted connectivity in this time window in New trials
with connectivity in an equivalent window of 400–800 ms, post-
Repeat stimulus onset in Repeat trials (New > Repeat, 400–800
ms, poststimulus onset). Mean connectivity at all pairwise
connections for each participant and each condition in these
comparisons was obtained by standardising PDD values in these
windows by the baseline period, –400–0 ms, then averaging the
resultant z scores over the entire time window of interest.

Statistical comparisons of within-group connectivity during
maintenance and recognition were conducted as described above
for both adults with and without ASD. We then tested
for statistically significant group differences in each of these
scenarios (e.g., Control vs. ASD, New > Repeat for maintenance;
Control vs. ASD, Repeat > New for recognition). All within- and
between-group comparisons were performed for the 1- and 2-
back samples separately. For both types of contrasts, we
performed cluster-based permutation testing, as implemented
in the Network-Based Statistic toolbox (118), to find networks
demonstrating significant differences between conditions and
groups. Essentially, the Network-Based Statistic approach
begins by performing t tests at each connection and applying a
threshold, which we chose to be t = 2.641 (1-back) or t = 2.665
(2-back), which are equivalent to p < 0.005 in their respective
samples. The robustness of the largest contiguous network
formed from the suprathreshold connections was assessed with
permutation testing. A null distribution of maximal network size
was obtained by rearranging group labels over 5,000
permutations. This procedure allowed for the calculation of a
family-wise error-corrected p value (pFWE) of the observed
network. Networks were considered significant at pFWE < 0.05.
We used BrainNet Viewer (119) and code provided by Koelewijn
and colleagues (120) to visualise these networks.

Brain-Behaviour Relations
We explored whether mean network connectivity in any of our
group comparisons was associated with WM abilities as
measured by the BRIEF-A, task performance (accuracy and
median RT), and with ASD symptom severity. Thus, for any
networks that differed significantly between groups, we
performed regressions of each the BRIEF-A WM scale scores,
September 2020 | Volume 11 | Article 551808
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d′, median RT, and SRS-2 Total scores on mean PDD values in
those networks. We report any significant main effects of mean
connectivity and/or its interaction with group for p < 0.05.
RESULTS

Behaviour
On the WM subscale of the BRIEF-A, adults with ASD
demonstrated significantly more WM difficulties than controls
(Figure 2) in both the 1-back (F(1,43) = 25.56, p < 0.0001, d =
0.65) and 2-back (F(1,38) = 22.18, p < 0.0001, d = 0.64) samples.
Adults with ASD, compared to their informants, generally rated
themselves higher on the WM scale (1-back: F(1,43) = 19.38, p =
0.0001, d = 0.34; 2-back: F(1,38) = 14.06, p = 0.0006, d = 0.32),
indicating a greater number of difficulties with WM.

On the n-back task, there were no group differences in
accuracy (1-back: t(76.93) = 0.77, p = 0.44, d = 0.17; 2-back: t
(55.30) = 0.51, p = 0.61, d = 0.13) in the 1- or 2-back loads
(Figure 3A). The two groups also had similar median RTs in the
1-back load (t(76.97) = 1.51, p = 0.13, d = 0.34), but their
differences in median RT during the 2-back load approached
significance (t(54.71) = 1.93, p = 0.058, d = 0.50), such that adults
with ASD had slightly longer median RTs than controls
(Figure 3B).

Neuroimaging
Maintenance
For the 1-back task, during the maintenance window, both
control adults (pFWE = 0.048) and adults with ASD (pFWE =
0.001) recruited aspects of the frontoparietal network selectively
in the alpha band. In the control group, the network hub with the
most (four) connections was the left IPL, which mainly
communicated with other left hemisphere regions, such as the
left insula (Figure 4A). The right IPL and IFG were also involved
in this network, though they were each only connected to two
Frontiers in Psychiatry | www.frontiersin.org 6
other regions. In the ASD group, both the right SFG and MFG
were the main hubs with five connections each, linking the right
dlPFC with the right IPL and with several left posterior regions,
including the left IPL and precuneus (Figure 4B). In this
network, the right IFG also showed synchrony with the right
IPL and precuneus.
FIGURE 2 | T scores on the working memory (WM) scale of the BRIEF-A for the 1-back (left panel) and 2-back (right panel) samples. There were significant main
effects of both group and rater on WM scores. ***p < 0.001.
A

B

FIGURE 3 | Accuracy (A) and median RT (B) on the two loads of the n-back
task: 1-back (left panel) and 2-back (right panel). Adults with autism spectrum
disorder (ASD) showed a trend of having longer median RTs than control
adults on the 2-back task (p = 0.058). Analyses of all other task performance
measures did not reveal any significant group differences.
September 2020 | Volume 11 | Article 551808
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For the 2-back load, adults with ASD continued to show
increased alpha-band connectivity during New versus Repeat
trials (pFWE = 0.002) in a right dlPFC-left posterior network
linking the right SFG hub with the left IPL and precuneus
(Figure 4B). Control adults did not exhibit greater engagement
of any networks in any frequency band for New compared to
Repeat trials for this load. There were no significant group
differences in the maintenance interval for either load.

Recognition
Recognition processes in the 1-back load were associated with a
trend (pFWE = 0.056) increase in theta-band network
connectivity in control adults for Repeat relative to New trials.
Frontiers in Psychiatry | www.frontiersin.org 7
This network was sparse, consisting mainly of a few connections
(two each) amongst the left MFG, right IFG, bilateral IPL, and
precuneus (Figure 5). Adults with ASD did not show any
differential connectivity for Repeat versus New trials in any
frequency band. When comparing the two groups, adults with
ASD exhibited significantly decreased theta-band connectivity
compared to control adults (pFWE = 0.046) in a network of
regions in which the right IFG and left IPL were major hubs
(Figure 6).

Within-group analyses for the 2-back load during recognition
revealed organisation of networks in the theta (pFWE = 0.0084) and
A

B

FIGURE 4 | Networks showing increased connectivity during maintenance of
novel visual stimuli (New versus Repeat trials, 400–800 ms, poststimulus
onset) during the 1-back and 2-back loads (left) and mean connectivity of
these networks between −400–800 ms (right). Node size is scaled by number
of connections. Connectivity values are given as z scores. (A) Control adults
showed recruitment of a network in the alpha band in the 1-back load
(pFWE = 0.048), but not in the 2-back load. (B) Adults with autism spectrum
disorder (ASD) displayed greater connectivity in a network in the alpha band
similar between the 1-back (pFWE = 0.001) and 2-back (pFWE = 0.002)
samples.
FIGURE 5 | Networks showing increased connectivity during recognition of
repeated visual stimuli (Repeat versus New trials, 0–400 ms, poststimulus
onset) for the 1-back and 2-back loads in the control group (left) and mean
connectivity of these networks between −400–800 ms (right). Node size is
scaled by number of connections. Connectivity values are given as z scores.
In the 1-back load, control adults recruited a theta-band network, but it was
only significant at a trend level (pFWE = 0.056). In the 2-back load, they
exhibited greater connectivity in networks in the theta (pFWE = 0.0084) and
beta (pFWE = 0.015) bands. Adults with autism spectrum disorder (ASD) did
not show differential connectivity during recognition.
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beta (pFWE = 0.015) bands in the control group (Figure 5). The
theta-band network primarily involved coordination between the
mSFG and temporal regions, for example the right fusiform gyrus.
The beta-band network displayed a different topography, with the
right IFG having the highest (five) number of connections, followed
by the right MFG and left insula (three each). Although adults with
ASD in this sample also did not show any differential connectivity
for this analysis in any frequency band, no significant group
differences were found for the 2-back load.

Brain-Behaviour Relations
Mean connectivity in the theta-band network that differed between
groups was not associated with any of our behavioural or clinical
measures, nor was its interaction with group (all ps > 0.05).
Frontiers in Psychiatry | www.frontiersin.org 8
DISCUSSION

Our study illustrates the complex distinctions in STM and WM
processing between adults with and without ASD on both the
behavioural and neural level. In our sample, adults with ASD
performed equally as well as control adults on our visual n-back
task, although there was a tendency for adults with ASD to have
longer RTs in the 2-back block, during WM processing. This
pattern was also observed by Lever and colleagues (121), who
similarly demonstrated that despite being as accurate as controls
on an n-back task, adults with ASD took significantly longer to
respond. Slower RTs may be indicative of slower processing
speed, which has also been reported in ASD ((122–127); but see
(128, 129)). Whilst it may not affect performance on simple
A B

C

FIGURE 6 | Theta-band connectivity in adults with autism spectrum disorder (ASD) compared to controls during recognition of novel visual stimuli (Repeat versus
New trials, 0–400 ms, poststimulus onset) in the 1-back load. (A) Adults with ASD showed significantly reduced (pFWE = 0.046) theta-band connectivity in a network
with hubs in the right IFG and left IPL. Node size is scaled by number of connections. (B) Mean connectivity in this network between −400–800 ms in the control
(top) and ASD (bottom) groups. Connectivity values are given as z scores. (C) Network connectivity represented as a circle plot. Nodes are colour-coded in the
following manner, from top to bottom: medial frontal structures (red), frontal areas (orange), parietal regions (turquoise), temporal areas (blue), medial parietal
structures (dark blue), occipital areas (purple).
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experimental STM or WM tasks, this trend towards longer
responses or processing could have more noticeable effects in
complex, everyday behaviours. Since deficits in processing speed
and WM have been found in individuals with ASD (19, 86, 130–
132), further work is needed to clarify the link between
processing speed and WM abilities in ASD, especially as our
ASD group reported WM difficulties on the BRIEF-A. Our
neuroimaging analyses examined the underlying neural
differences in the frontoparietal network responsible for
maintenance and recognition of novel visual stimuli that may
contribute to these impairments.

Maintenance
During maintenance of novel visual stimuli, we observed that
whilst adults with and without ASD did not differ significantly
from each other, they exhibited distinct topologies and sizes of
the networks they recruited. During the 1-back task, the alpha-
band network recruited by controls was fairly left-lateralized, as
the left IPL and left insula showed the most connections. The IPL
is an integral part of the frontoparietal network involved in n-
back tasks (33, 35, 36), and it may serve to maintain stimulus
information in STM and WM (37, 45–48, 133–136), as well as
shift attention to specific items in WM (137, 138). Although the
IPL is more commonly associated with spatial STM and WM
(e.g., (49, 139–145)), there is evidence that it similarly
participates in object or image identity STM and WM (33, 36,
37, 50, 146–149). The insula has also been associated with object
STM capacity (150), but its principal function is in recruiting the
frontoparietal network when attentional and executive resources
are needed (151–153) through its functional connections with
the dlPFC (154, 155).

In comparison, adults with ASD demonstrated greater alpha-
band interregional synchrony for New versus Repeat trials
during the 1- and 2-back loads. The networks recruited in both
loads were similar; they had a right frontal-to-left parietal
configuration and included the right dlPFC, bilateral IPLs, and
precuneus. The dlPFC is a key region in STM and WM
processing, employing top-down control to maintain, monitor
or update, and manipulate task-relevant information in mind
(52, 53, 56, 156–159), by focusing attention to target stimulus
representations in the IPL (54, 101, 160, 161). The precuneus
mediates several higher-order cognitive functions (162–164),
and given its connections with the IPL, it is likely involved in
visuospatial processing (165–167) and visual recall (168–170) in
this task. The particular involvement of the precuneus in the
ASD group may reflect greater mental engagement, as our
previous work showed that children with ASD activated the
precuneus more with heavier cognitive load (27). Whilst we did
not detect any significant group differences, the recruitment of
additional STM and WM regions— the dlPFC and precuneus—
in ASD group compared to controls, as well as of several other
brain regions, may reflect effortful maintenance processes in
ASD adults.

The particular arrangement of this right frontal, left posterior
network not only mirrors previous work finding atypical
functional lateralization in ASD during a WM task (31), but
also suggests that maintenance of novel visual information is
Frontiers in Psychiatry | www.frontiersin.org 9
challenging for adults with ASD. In control adults, increasing
task load has been associated with bilateral activation of the IPL
(171, 172) and dlPFC (34, 173, 174), with a few demonstrating
stronger effects in right dlPFC (175–177). Greater dlPFC-IPL
(frontoparietal) connectivity has also been linked to higher task
load (77, 178). Therefore, the strong involvement of the right
dlPFC and its connection to the left IPL in the ASD group in both
the 1- and 2-back loads indicates that holding visual stimuli in
mind is mentally taxing for adults with ASD. In both groups,
however, brain regions synchronised selectively in the alpha
band, which has been implicated in STM and WM
maintenance (77, 84, 85, 91, 103, 105, 179). Thus, our findings
demonstrate that adults with ASD utilise appropriate neural
mechanisms to successfully maintain novel visual stimuli in
STM and WM, but it may be effortful for them.

Recognition
During recognition of repeated visual stimuli, adults with ASD
exhibited no differential connectivity between Repeat and New
trials for either the 1- or 2-back load. Hence, when contrasted
with the control group, they showed significantly decreased
theta-band synchrony compared to controls during the 1-back
load in a network with hubs in the right IFG and left IPL. The
ventrolateral PFC, which includes the IFG, is thought to work
with the IPL for active retrieval of information (53). Specifically,
the right IFG plays a major role in inhibition (180–184) and
potentially preventing proactive interference during WM (137,
185–187), whereas the IPL, in addition to storing stimulus
representations, may be responsible for retrieval (146). Since
the selection of relevant information in STM during recognition
may not only involve enhancement of target stimulus
representations, but also suppression of irrelevant ones, and
given evidence that individuals with ASD experience deficits in
interference control ((188–190); but see (191, 192)), the reduced
involvement of the IFG and IPL during recognition may reflect a
potential breakdown in regulating interference from other
stimuli in STM. This possible deficit in inhibiting task-
irrelevant stimuli is further corroborated by the fact that these
differences occurred in the theta band, as interregional theta-
band connectivity is thought to mediate long-range neural
communication, top-down control, and integration of distant
regions (99, 193–195), especially during retrieval (196).

A similar effect was not found when contrasting the two
groups in the 2-back task, which may be attributable to the
slightly smaller sample size and therefore less power due to a
greater variation in response in this condition. Importantly, the
control group showed recruitment of theta-band networks for
both loads (and additionally a beta-band network in the 2-back
load), whereas the ASD group showed no greater connectivity in
either load for Repeat compared to New trials. As the pattern of
within-group results was similar across loads, a comparable but
subthreshold trend may exist in the 2-back condition.

Taking into account that decreased connectivity has been
observed in fMRI in ASD during other n-back tasks (25, 29, 31),
our findings in the 1-back condition substantiate reports of long-
range underconnectivity in ASD (72, 74, 197–199). The
specificity of this difference to the theta band is also in line
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with prior work emphasising the role of theta oscillations in STM
(39, 82, 84) and recognition/retrieval (196, 200–202). This result
is in contrast to our previous work (32), where we found that
these differences occurred in the alpha band during recognition
of repeated visual stimuli in a WM task. However, there are some
key distinctions between these two studies. First, the present
work observed that connectivity in the frontoparietal network
was only significantly reduced in the ASD relative to control
group in the theta band during the 1-back condition, whilst we
previously reported decreased alpha-band synchrony in a
frontotemporal network in individuals with ASD during the 2-
back condition (32). Therefore, it is unclear from our prior work
whether frontoparietal network connectivity also differed
between individuals with and without ASD in the 2-back
condition in either the theta or alpha bands, and whether
frontotemporal network connectivity was affected in the
current study. Second, our earlier study assessed children with
ASD, whereas here we included only adults with ASD; thus, part
of this discrepancy may be attributable to maturational
processes. As both theta and alpha bands have been associated
with STM and WM functions (77, 82–85, 95, 196, 203–205), it
may be that connectivity related to recognition strengthens in the
alpha band but weakens in the theta band over development in
ASD. Whilst global network efficiency in the theta and alpha
bands increases with age (206), these longitudinal changes in
frequency-specific, long-range neural connectivity have not been
characterised in ASD, neither has the frontoparietal network or
any other networks related to STM or WM explicitly. Future
work into the developmental trajectory of the spectral
component of the frontoparietal network and its relation to
STM and WM in ASD will be necessary to clarify these distinct
findings in children and adults with ASD.

Another important consideration is that mean connectivity in
the theta-band network that differed between groups in the 1-
back load was not correlated with our behavioural measures.
However, as our analyses probed very specific STM (1-back) and
WM (2-back) mechanisms, it may be challenging to relate these
fine neural differences to overall task performance and more
complex behaviours drawing on WM abilities in everyday life.
Therefore, it will be valuable for prospective work to evaluate
whether these findings persist in more ecologically valid tasks of
STM and WM.

Conclusion
Our neuroimaging study revealed unique aspects of STM and
WMmaintenance and recognition processes in adults with ASD.
We demonstrated that whilst adults with ASD appropriately
employ alpha-band oscillatory mechanisms to facilitate
maintenance of novel visual stimuli in STM and WM, the
distinct topology and extent of the recruited networks suggest
that these functions are effortful for individuals with ASD. The
strong engagement of maintenance processes may offset the
observed atypicalities in theta-band connectivity in the ASD
group during recognition of previously presented visual stimuli,
at least in scenarios tapping STM. Given the spatial and spectral
specificity of our findings, we propose that alpha-band
connectivity between the dlPFC and IPL in the frontoparietal
Frontiers in Psychiatry | www.frontiersin.org 10
network enhances the neural representations of target stimuli
during maintenance, thereby countering potentially stronger
interference effects that occur during recognition due to
reduced theta-band synchrony of the IFG and IPL with other
regions of the brain.

We are the only study to date to use MEG to detail these
maintenance and recognition processes and their spectral
properties in the frontoparietal network in ASD. Thus,
additional work is needed to independently validate our
findings and interpretations in other investigations of STM and
WM functions, especially as the distinct connectivity patterns in
the control and ASD groups whilst maintaining novel visual
stimuli in STM and WM showed only qualitative differences. It
would be important to examine maintenance and recognition in
other STM and WM tasks that more clearly separate these
processes, as in higher loads of n-back tasks, participants are
required to maintain stimuli from previous trials in WM, even
after recognising a repeated stimulus. This constraint may
explain why we did not observe differential connectivity in the
control group during the maintenance window of the 2-back
load when comparing phase synchrony during New and Repeat
trials, and perhaps why we did not find any significant group
differences in networks recruited for maintenance of novel visual
stimuli. Furthermore, since our paradigm only included 1- and
2-back loads, we were unable to robustly assess whether adults
with and without ASD show discrepancies in network
recruitment with increasing cognitive load. As previous work
has suggested that individuals with ASD do not show load-
dependent modulation of activity in the frontoparietal network
(26, 30, 63, 207), the effect of load on network connectivity in
ASD is an important consideration. Finally, future work should
explore STM- and WM-related connectivity patterns in broader
samples of individuals with ASD, as our study included mainly
higher-functioning adults with ASD who were able to perform
well on our n-back task (though who still reported difficulties
with WM in everyday life), and since there may be considerable
heterogeneity in network recruitment in the ASD population,
which may account for the lack of differential connectivity at the
group level during recognition in our ASD sample. Our findings
demonstrate, however, atypical frontoparietal network
connectivity in adults with ASD when engaging in recognition
of repeated visual stimuli, especially in STM, and further research
will be essential to uncovering the nuances of these discrepancies.
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