Letter to the Editor

Clinical Chemistry

Ann Lab Med 2015;35:263-265 http://dx.doi.org/10.3343/alm.2015.35.2.263 ISSN 2234-3806 eISSN 2234-3814

ANNALS OF LABORATORY MEDICINE

Efficacy of the Measurement of 25-Hydroxyvitamin D₂ and D₃ Levels by Using PerkinElmer Liquid Chromatography-Tandem Mass Spectrometry Vitamin D Kit Compared With DiaSorin Radioimmunoassay Kit and Elecsys Vitamin D Total Assay

Ho-Seok Kwak, M.S.¹, Hee-Jung Chung, M.D.¹, Dong-Hee Cho, M.D.¹, Mi-Hyun Park, M.T.¹, Eun-Suk Ku, M.T.¹, Eun Jung Park, M.D.², and Han Jin Oh, M.D.²

Departments of Laboratory Medicine¹ and Family Medicine², Cheil General Hospital & Women's Healthcare Center, Catholic Kwandong University College of Medicine, Seoul, Korea

Vitamin D_2 (ergocalciferol) and D_3 (cholecalciferol) can be procured from exogenous sources. These are then metabolized to 25-hydroxyvitamin D (250HD₂ and 250HD₃) in the liver. Measuring the levels of both 250HD₂ and 250HD₃ is imperative in assessing clinical nutritional status [1]. Vitamin D_2 or D_3 is provided as a vitamin D supplement in many countries.

Serum 250HD levels can be measured by competitive binding assay, RIA, automated immunoassay, HPLC, and by the recently developed liquid chromatography-tandem mass spectrometry (LC-MS/MS) technique. LC-MS/MS is considered as the "gold standard" for the detection and quantification of 250HD₂ and 250HD₃. The MS/MS Vitamin D kit from PerkinElmer (PerkinElmer, Waltham, MA, USA) is a commercial reagent kit, intended for the quantitative determination of 250HD₂ and 250HD₃. The MS/MS Vitamin D kit protocol was compared with the following assays: RIA from DiaSorin (DiaSorin, Stillwater, MN, USA) and automated electro-chemiluminescence immunoassay (ECLIA) from Roche (Roche Diagnostics GmbH, Mannheim, Ger-

Received: April 17, 2014 Revision received: August 12, 2014 Accepted: December 16, 2014

Corresponding author: Hee-Jung Chung Department of Laboratory Medicine, Cheil General Hospital & Women's Healthcare Center, 17 Seoaero 1 gil, Jung-gu, Seoul 100-380, Korea Tel: +82-2-2000-7290, Fax: +82-2-2000-7780 E-mail: vivid.hee@gmail.com many).

After receiving approval by the Ethics Review Board of the Cheil General Hospital and Women's Healthcare Centre (Seoul, Korea), consecutive samples (n=50) sent for routine 250HD analysis were used. The MS/MS Vitamin D kit was used along with the MS/MS Vitamin D Derivatization Box (PerkinElmer) on an LC-MS/MS system that included ACQUITY TQD tandem mass spectrometer (Waters, Milford, MA, USA). The MS/MS Vitamin D kit was compared with 250HD 125I-based RIA kit and Elecsys Vitamin D Total assay. The MS/MS Vitamin D kit, RIA kit, and Elecsys Vitamin D Total assay were run according to the manufacturers' specifications. All three assays were compared by linear regression and Bland-Altman plot. The correlation between the methods was compared by using Pearson's correlation coefficient. Agreement in the assessment of the vitamin D status between methods was evaluated by using Cohen's kappa [2]. Statistical analysis was performed by SPSS software (version 18.0.0, SPSS Inc. Chicago, IL, USA).

© The Korean Society for Laboratory Medicine.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. Precision of the LC-MS/MS method was evaluated by inter-assay CV (n=20) of quality control materials supplied by the manufacturer. At the three levels of 250HD₂, CV was <4.0%. At the three levels of 250HD₃, CV was <5.3%. Inter-assay CV for RIA and ECLIA were <13.0% and <9.8%, respectively.

A comparison of LC-MS/MS with ECLIA yielded the following regression equation: ECLIA= $1.1325 \times LC-MS/MS+0.52$. The corresponding equation for RIA was: RIA= $1.0546 \times LC-MS/MS-0.8733$. In comparison with LC-MS/MS, the ECLIA demonstrated an R² value of 0.8741 (Fig. 1A), with an average bias of +8.4 ng/ mL (15.4%) (Fig. 1C), and the RIA demonstrated an R² value of 0.8976 (Fig. 1B), with an average bias of +0.6 ng/mL (1.9%) (Fig. 1D). This trend was also demonstrated in previous reports, with ECLIA showing positive bias compared with LC-MS/MS [2, 3]. The distribution of results for 250HD₂ and 250HD₃ is shown

in Fig. 2. The 250HD₃ levels showed no significant difference (Fig. 2A), while the 250HD₂ levels were biased towards the lower end (Fig. 2B). Compared to LC-MS/MS, having a cutoff of 20 ng/ mL (insufficiency vs. normal), 4% (1/25) of the samples were misclassified as normal with RIA and 12% (3/25) of the samples were misclassified as normal with ECLIA. Relatively, agreement of RIA was better (kappa = 0.96) than that of ECLIA (kappa = 0.88). RIA and ECLIA, which are currently employed in clinical laboratories for total 250HD concentration measurement, showed an acceptable correlation with LC-MS/MS in the analytical range.

The MS/MS Vitamin D kit allows for the quantitative determination of the most clinically relevant metabolite forms of vitamin D (250HD₂ and 250HD₃). The 250HD levels determined by MS/MS Vitamin D kit were in overall agreement with the levels determined by DiaSorin RIA and Roche ECLIA.

Fig. 1. Comparison between immunometric assays and LC-MS/MS (PerkinElmer MS/MS Vitamin D kit) for 25-hydroxyvitamin D quantification: (A, B) Linear regression between LC-MS/MS and ECLIA (Elecsys Vitamin D total assay), and LC-MS/MS and RIA (DiaSorin RIA kit), respectively. (C, D) Bland-Altman plot between LC-MS/MS and ECLIA, and LC-MS/MS and RIA, respectively. Open circles represent samples containing relatively low concentrations of 25-hydroxyvitamin D₂ (<1 ng/mL), and black circles represent samples containing relatively high concentrations of 25-hydroxyvitamin D₂ (\geq 1 ng/mL).

Abbreviations: ECLIA, electrochemiluminescence immunoassay; LC-MS/MS, liquid chromatography-tandem mass spectrometry.

Kwak H-S, et al. MS/MS vitamin D kit compared with RIA and ECLIA

Fig. 2. Distribution for 25-hydroxyvitamin D_3 (250HD₃) (A) and 25-hydroxyvitamin D_2 (250HD₂) (B). Results were obtained by analyzing serum samples provided by 50 volunteers.

Author's Disclosures of Potential Conflicts of Interest

No potential conflicts of interest relevant to this article were reported.

Acknowledgments

The PerkinElmer Company (Waltham, MA, USA) provided all the reagents for this study.

REFERENCES

- Saenger AK, Laha TJ, Bremner DE, Sadrzadeh SM. Quantification of serum 25-hydroxyvitamin D2 and D3 using HPLC-tandem mass spectrometry and examination of reference intervals for diagnosis of vitamin deficiency. Am J Clin Pathol 2006;125:914-20.
- Moon HW, Cho JH, Hur M, Song J, Oh GY, Park CM, et al. Comparison of four current 25-hydroxyvitamin D assays. Clin Biochem 2012;45: 326-30.
- Chen Y, Kinney L, Božović A, Smith H, Tarr H, Diamandis EP, et al. Performance evaluation of Siemens ADVIA Centaur and Roche MODULAR Analytics E170 Total 25-OH Vitamin D assays. Clin Biochem 2012;45: 1485-90.