OPEN ## CONFERENCE PROCEEDINGS ACSMS2014 SUBJECT AREAS: NANOPARTICLES CATALYST SYNTHESIS ELECTROCATALYSIS Received 28 August 2014 Accepted 4 November 2014 Published 6 January 2015 Correspondence and requests for materials should be addressed to Y.Y. (bityanyiming@ 163.com); K.S. (bitkeningsun@163.com) or G.W. (Guoxiu. Wang@uts.edu.au) # Graphene- Co_3O_4 nanocomposite as electrocatalyst with high performance for oxygen evolution reaction Yufei Zhao^{1,2}, Shuangqiang Chen¹, Bing Sun¹, Dawei Su¹, Xiaodan Huang¹, Hao Liu¹, Yiming Yan², Kening Sun² & Guoxiu Wang¹ ¹Center for Clean Energy Technology, School of Chemistry and Forensic Science, Faculty of Science, University of Technology, Sydney, NSW 2007, Australia, ²Beijing Key Laboratory for Chemical Power Source and Green Catalysis, School of Chemical Engineering and Environment, Beijing Institute of Technology, Beijing, 100081, China. Graphene- $\mathrm{Co_3O_4}$ composite with a unique sandwich-architecture was successfully synthesized and applied as an efficient electrocatalyst for oxygen evolution reaction. Field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) analyses confirmed that $\mathrm{Co_3O_4}$ nanocrystals were homogeneously distributed on both sides of graphene nanosheets. The obtained composite shows enhanced catalytic activities in both alkaline and neutral electrolytes. The onset potential towards the oxygen evolution reaction is 0.406 V (vs. Ag/AgCl) in 1 M KOH solution, and 0.858 V (vs. Ag/AgCl) in neutral phosphate buffer solution (PBS), respectively. The current density of 10 mA/cm² has been achieved at the overpotential of 313 mV in 1 M KOH and 498 mV in PBS. The graphene- $\mathrm{Co_3O_4}$ composite also exhibited an excellent stability in both alkaline and neutral electrolytes. In particular, no obvious current density decay was observed after 10 hours testing in alkaline solution and the morphology of the material was well maintained, which could be ascribed to the synergistic effect of combining $\mathrm{Co_3O_4}$ and graphene. olar-driven electrochemical transformation of small molecules, such as water splitting and carbon dioxide reduction, is one of the most promising approaches for producing clean and sustainable energy^{1,2}. Photoelectrocatalytic or electrocatalytic water splitting is a process including water oxidation and reduction³⁻⁶. However, water splitting is mainly hindered by the oxygen evolution reaction (OER, 4H⁺/4e⁻), which has several steps and requires large overpotential⁷. Currently, some noble metals (ruthenium and iridium) and their compounds exhibit excellent activity towards OER with low overpotential and high current density^{8,9}. However, their application are hindered by the scarcity and high cost. Therefore, discovering efficient and inexpensive catalysts is critical to enhance the OER current density and reduce the overpotential. In the past few years, considerable efforts have been dedicated to utilizing the earth-abundant metal oxides such as cobalt oxide^{10–13} nickel oxide^{14–16} and manganese oxide^{17,18} materials, as electrocatalysts for OER. Among these catalysts, Co_3O_4 has attracted extensive attentions owing to its high activity and superior stability^{12,19–21}. For example, mesoporous Co_3O_4 has been reported as the OER catalyst with current densities of 27.2 mA/cm² at 1 V (vs. Ag/AgCl) and the crystalline Co_3O_4 showed a relatively small Tafel slope (49 mV/decade)^{19,20}. In addition, Co_3O_4 could also be utilized in photocatalytic system. Jiao *et al.* reported the photocatalytic properties of the mesoporous Co_3O_4 combined with the $[Ru(bpy)_3]^{2+}$ with a high turnover frequency (TOF) of \sim 2.2 \times 10⁻³ s⁻¹ per Co atom²². However, the strong causticity of alkaline solution and the intrinsically low conductivity of Co_3O_4 have impeded the further development of Co_3O_4 as OER catalyst. Combining Co_3O_4 nanoparticles with conductive substrates can efficiently enhance the conductivity of the catalyst and significantly affect its catalytic activity and stability. Carbon materials, such as carbon nanotube (CNT), graphene (G) and mesoporous carbon, have been widely employed as the supporting substrates owing to their high conductivity and large specific surface area^{23–26}. Recently, Dai's group synthesized Co_3O_4 nanocrystals supported on graphene by hydrothermal reaction and demonstrated high electrocatalytic performance²⁷. Zhao and coworkers reported OER catalysts of Co_3O_4 nanoparticle/graphene composites, fabricated by the layer-by-layer assembly²⁸. Co_3O_4/CNT (single-walled or multi-walled) materials were also prepared as high performance catalysts towards oxygen evolution^{29,30}. Herein, we report a simple method to prepare a unique sandwich-architectured catalyst composed of graphene and Co_3O_4 (G- Co_3O_4). Ultrafine Co_3O_4 particles uniformly anchor onto both sides of graphene sheets. The unique sandwich-architecture leads to large amount loading of the active $\mathrm{Co_3O_4}$ nanocrystals and enhances electron transfer kinetics between the materials. Therefore, the catalytic activity and stability of the catalyst have been substantially promoted. G- $\mathrm{Co_3O_4}$ composite catalyst shows low overpotentials of 313 mV and 498 mV to achieve the current density of 10 mA/cm² in the alkaline and neutral conditions, respectively. Furthermore, there is no obvious current density decay after the stability test. #### Results Synthesis of $G\text{-}Co_3O_4$ nanocomposite. The synthesis of the sandwich-architectured composite is illustrated in Fig. 1. Cobalt (II) acetate was added into the xylene and oleic acid mixed solution. The oleic acid in the mixture acted as a capping agent in order to control the particle growth and prevent colloidal particles from aggregation. Then, the as-prepared GO solution was introduced into the above solution under vigorous stirring. Co^{II} cations attached on both sides of the GO nanosheets by electrostatic interaction³¹. During the following refluxing process and the reducing process by adding NaBH₄, Co nanoparticles were loaded on the surface of rGO nanosheets. The final product of $G\text{-}Co_3O_4$ with unique sandwich-architecture was obtained after calcination. The characterization of the G-Co₃O₄ composite. The morphology of the precursor obtained after filtration and calcination in argon atmosphere was characterized by scanning electron microscopy (SEM, see Supplementary Fig. S1 online), which highly maintained the layer structure of graphene oxide. The morphology of the synthesized G-Co₃O₄ composite was investigated by SEM. The low magnification image in Fig. 2a clearly shows that the obtained G-Co₃O₄ composite still displayed layer structure, which is similar to the pristine graphene (see Supplementary Fig. S2a online). The high magnification in the inset of Fig. 2a shows two layers of Co₃O₄ particles homogeneously distributed. From the layer structure and the homogeneous distribution of the Co₃O₄ particles, we infer that the Co₃O₄ particles attached on both sides of the graphene nanosheets, which could form a unique sandwich-architecture. However, it is difficult to clearly find graphene because of the low content (8.8 wt.%, see Supplementary Fig. S3 online). The transmission electron microscopy (TEM) image in Fig. 2b further demonstrates the homogeneous distribution of Co₃O₄ nanoparticles on graphene substrate. High resolution TEM (HRTEM) in Fig. 2c clearly confirmed the sandwich-architecture. The graphene was definitely imbedded between the parallel layers of Co₃O₄ particles even after a strong sonication, suggesting a relatively strong interaction between graphene and Co₃O₄ particles. The graphene nanosheets acted as a binder to link neighboring Co₃O₄ particles together and also increased the conductivity of the composite. They can further prevent the aggregation of the Co₃O₄ nanoparticles during thermal treatment. We also synthesized pristine Co₃O₄ through similar process without adding graphene oxide. The SEM image (see Supplementary Fig. S2b online) shows the particle size of pristine Co₃O₄ is much bigger than that in G-Co₃O₄ composite. Furthermore, as shown in Figure 2d, the lattice fringes in HRTEM image and the selected area electron diffraction (SAED) pattern further confirmed the formation of crystalline Co₃O₄. The crystal structure of the obtained $G\text{-}Co_3O_4$ composite and pristine Co_3O_4 nanoparticles was determined by X-ray diffraction (XRD) method as shown in Fig. 3a. The prominent peaks at 31.2, 37.1, 45.1, 59.7, 65.6° of $G\text{-}Co_3O_4$ and pristine Co_3O_4 can be indexed to face-centered cubic phase (Fd3m, JCPDS card No. 76-1802). The broad diffraction peak appeared at around 24.8° in the $G\text{-}Co_3O_4$ Figure 1 | A schematic illustration for preparing G-Co₃O₄ nanocomposite with a sandwich-architecture. Figure 2 | Microscope observation of the $G-Co_3O_4$ composite. (a) Low and high magnification SEM images of $G-Co_3O_4$. (b) Low magnification TEM image of $G-Co_3O_4$. (c) High resolution TEM (HRTEM) image of $G-Co_3O_4$, showing a sandwich-like microstructure. (d) HRTEM image of $G-Co_3O_4$ nanocrystals and SAED pattern of $G-Co_3O_4$. composite is attributed to the (002) direction of graphene. Raman spectra of the $G\text{-}Co_3O_4$ composite and pristine Co_3O_4 are shown in Fig. 3b. Two peaks at ca. 470 and 671 cm $^{-1}$ can be assigned to Co_3O_4 . Moreover, $G\text{-}Co_3O_4$ also displays another two obvious peaks at 1327 and 1584 cm $^{-1}$, which can be indexed to the peaks of graphene 32,33 . The XRD and Raman spectra further confirm the successful synthesis of $G\text{-}Co_3O_4$ composite catalyst. Electrochemical performance of the OER catalyst. The water oxidation catalytic activities of the as-synthesized nanocomposite were first investigated in alkaline solution (0.1 or 1 M KOH) in a standard three-electrode setup. During the electrochemical test, the working electrode was continuously rotating at 1600 rpm to remove the generated oxygen bubbles. Linear sweep voltammetry (LSV) curves of G-Co₃O₄ catalysts are shown in Fig. 4a. Ruthenium nanocrystal functionalized carbon black catalysts (30% Ru loaded on carbon black, Ru/C) was also tested for comparison. G-Co₃O₄ catalyst exhibits significantly higher anodic current and lower onset potential than that of the Ru/C catalysts, in both 0.1 and 1 M KOH solutions (Fig. 4a). In 1 M KOH solution, G-Co₃O₄ catalyst shows a sharp onset potential at 0.406 V (vs. Ag/AgCl, following the method described by Chen et al.)³⁴, and achieves the current density of j =10 mA/cm² at the overpotential of 313 mV, which is much better than that of the Co₃O₄/SWNTs (593 mV) and mesoporous Co₃O₄ catalysts (525 mV) in the same alkaline solution, and even comparable to the best performance of G/Co₃O₄ catalysts (310 mV)^{20,27,29}. In 0.1 M KOH, G-Co₃O₄ catalyst also exhibits a lower onset catalytic potential (0.446 V vs. Ag/AgCl) and higher current density (achieved a current density of $j = 10 \text{ mA/cm}^2$ at the overpotential of 359 mV) than those of the Ru/C catalyst. Based on the mass content of the $\mathrm{Co_3O_4}$ in the composite calculated from the TGA test and assuming that all deposited materials were involved in the electrochemical reaction, the lower limits for turnover frequency (TOF) can be derived from the catalytic current. Figure 3 | The characterization of the $G\text{-}Co_3O_4$ composite. (a) XRD patterns of Co_3O_4 and $G\text{-}Co_3O_4$ composite. (b) Raman spectra of Co_3O_4 and $G\text{-}Co_3O_4$ composite catalyst. Figure 4 | Electrochemical performance. (a) Polarization curves of G-Co₃O₄ and Ru/C catalysts on GC electrodes in 0.1 and 1 M KOH. (b) The Tafel curves of G-Co₃O₄ in 0.1 and 1 M KOH. (c, d) Chronoamperometric responses (percentage of current retained versus operation time) of G-Co₃O₄ and Ru/C catalysts in 1 M and 0.1 M KOH electrolytes. We calculated a high TOF of 0.45 s⁻¹ referring to per Co atom for GCo₃O₄ catalyst at the overpotential of 350 mV in 1 M KOH and 0.194 s⁻¹ at the overpotential of 400 mV in 0.1 M KOH, which are higher than those of previous reports about Co based materials (Co₃O₄, 0.08 s⁻¹ at overpotential of 507 mV in 1 M KOH and mesoporous Co₃O₄, 3.16×10^{-3} s⁻¹ at 400 mV in 0.1 M KOH)^{10,20}. Tafel plot is applied to evaluate the efficiency of the catalytic reaction in alkaline solutions (0.1 and 1 M KOH), which is derived from the polarization curves using the Tafel equation $\eta = b \log(j/j_0)$, where η is the overpotential, b is the Tafel slope, j is the current density, and j_0 is the exchange current density. The G-Co₃O₄ catalyst exhibits Tafel slopes of b = 56 mV/decade in 1 M KOH and b = 67 mV/decade in 0.1 M KOH (Fig. 4b), which are lower than previously reported G/Co₃O₄ (67 mV/decade in 1 M KOH) and graphene/NiCo₂O₄ hybrid paper (156 mV/decade in 0.1 M KOH)^{27,35}. The observed Tafel slope value suggests the favorable OER kinetics over G-Co₃O₄ catalyst and also the good chemical and electronic coupling between the Co₃O₄ nanoparticles and graphene nanosheets. The G-Co₃O₄ catalyst also exhibits good stability in the alkaline solutions, which is another important factor for energy conversion systems. In 1 M KOH solution, the G-Co₃O₄ electrode shows excellent durability with no obvious activity decay compared with the initial value, while the Ru/C catalyst electrode degrades by 25.8% of the initial value (Fig. 4c). A similar trend is also observed in 0.1 M KOH (Fig. 4d). The result of repeating potential cycling for 1000 cycles also confirmed the good stability of the material. After cycling test, the polarization curve of the $G\text{-}\mathrm{Co}_3\mathrm{O}_4$ modified electrode was almost the same as the initial one (see Supplementary Fig. S4 online). Furthermore, no obvious morphology change is observed in the SEM image of $G\text{-}\mathrm{Co}_3\mathrm{O}_4$ after long-term stability testing (see Supplementary Fig. S5 online), suggesting that $G\text{-}\mathrm{Co}_3\mathrm{O}_4$ catalyst can tolerate long-term corrosion and possess robust mechanical properties. The G-Co₃O₄ composite has shown high catalytic activity and good stability towards OER in alkaline solution. On the other hand, the enhanced catalytic activities in neutral solution are more desirable owing to the benign nature and weak causticity. The catalytic activity of Co₃O₄ towards OER is sensitive to a low pH value, especially for the neutral solution according to the previous investigation³⁶. Therefore, it is necessary to evaluate the electrochemical performance of G-Co₃O₄ catalyst in neutral solution. The G-Co₃O₄ electrode with the same mass loading was tested in 0.1 M phosphate buffer solution (PBS) at pH 7. The LSV curve of G-Co₃O₄ catalyst and the corresponding Tafel plot obtained in the neutral solution are presented in Fig. 5a. In the neutral condition, G-Co₃O₄ catalyst shows an onset potential at 0.858 V (vs. Ag/AgCl) and achieves a current density of $j = 10 \text{ mA/cm}^2$ at the overpotential of 498 mV, which exhibit better performance than those of the previous report (810 mV)²⁹. Moreover, G-Co₃O₄ catalyst exhibits a little smaller Tafel plot of 98 mV/decade compared to others (104 mV/ decade or 110 mV/decade)^{29,37}. The decreased Tafel slope value can Figure 5 | Electrochemical performance of G-Co₃O₄ composite OER catalyst. (a) LSV and Tafel slope of G-Co₃O₄ in neutral solution, (b) OER stability test of G-Co₃O₄, the initial and 1000th polarization curves in neutral solution. be ascribed to the synergistic coupling and the fast charge transport of the materials. Furthermore, the stability of $G\text{-}Co_3O_4$ is assessed by repeated potential cycling for 1000 cycles, as shown in Fig. 5b. Only a slight decay of the activity (<10%) was observed referred to the polarization curves after the long-term test. #### **Discussion** The excellent electrochemical performance of G-Co₃O₄ catalyst suggests its promising application towards OER both in alkaline and neutral solution. The high activity and excellent durability of G-Co₃O₄ towards OER are mainly attributed to the unique sandwicharchitecture of the materials. A series of controlled experiments, shown in Fig. 6, have demonstrated that the obtained G-Co₃O₄ catalyst displayed better OER activity than those of the simple physical mixture of Co₃O₄ and graphene (G+Co₃O₄), pure Co₃O₄ and graphene in 1 M and 0.1 M KOH conditions. The activity order is $G-Co_3O_4 > G+Co_3O_4 > pure Co_3O_4 > graphene$. The strong interaction of Co₃O₄ nanoparticles with graphene nanosheets and the unique sandwich-architecture have strong effect on the catalytic property of the composite. Simple physical mixing cannot create effective interfacial contacts between the Co₃O₄ nanoparticles and graphene nanosheets. This was also confirmed by the electrochemical impedance spectroscopy (see Supplementary Fig. S6 online). The Nyquist plots showed that the OER charge resistance of the G-Co₃O₄ catalyst is the smallest among the other samples $(G+Co_3O_4, Co_3O_4)$. Figure 6 | Electrochemical performance. Polarization curves of $G-Co_3O_4$, $G+Co_3O_4$, the pristine Co_3O_4 and graphene in (a) 1 M and (b) 0.1 M KOH solutions. This further illustrates that the strong chemical coupling and good interaction between the Co_3O_4 and graphene can significantly improve the electron transport and reaction kinetics during the OER. In order to further investigate the high performance of $\text{G-Co}_3\text{O}_4$, the effective surface areas were estimated, which was determined by electrochemical capacitance measurements from static cyclic voltammetry (see Supplementary Fig. S7 online)^{38,39}. The capacitance for $\text{G-Co}_3\text{O}_4$ composite is 12.4 mF/cm², which is much higher than $\text{G+Co}_3\text{O}_4$ (2.8 mF/cm²). Therefore, the high performance could be also associated with the high electroactive surface area. The observed enhanced activity of the $G\text{-}Co_3O_4$ catalyst indicates that the sandwich-architecture is favorable for the oxygen evolution, in which the graphene nanosheets provide large specific surface area and good conductivity. This specific structure also leads to large amount loading and much small particle size of the Co_3O_4 anchored on both sides of the graphene sheets, which provides much more electroactive surface area for the oxygen evolution. In addition, the unique and intimate contact between the graphene and Co_3O_4 afforded by one-step facile mechanism contributes to the superior catalytic activity. In conclusion, sandwich-architectured $G\text{-}Co_3O_4$ composite was successfully synthesized exhibiting good interaction between Co_3O_4 nanoparticles and graphene nanosheets. $G\text{-}Co_3O_4$ catalyst exhibits enhanced catalytic performances with high catalytic activities, good stability and favorable reaction kinetics in both the alkaline and neutral solutions, as catalyst for water oxidation. The enhanced catalytic performance demonstrates large electroactive surface area, fast electron transfer rate and superior electrical and chemical coupling of the composite. The unique morphology and excellent electrochemical performance of $G\text{-}Co_3O_4$ catalyst render this material a promising noble metal free catalyst towards the oxygen evolution reaction. #### **Methods** Materials synthesis. Graphene oxide (GO) was prepared by the oxidation and exfoliation of the graphite according to the previously reported procedure 40,41 Sandwich-like G-Co₃O₄ was synthesized via an oleic acid assisted method followed by thermal treatment⁴². In a typical synthesis process, 0.68 g oleic acid was mixed with 40 mL dry xylene under vigorous magnetic stirring. Then, 0.5 g cobalt acetate tetrahydrate (Co(AC)2, Aldrich) was introduced into the mixture and sonicated for 1 min. After that, the mixture was mixed with 40 ml GO solution (2 mg ml⁻¹) by vigorous stirring and reacted in a pre-heated oil bath under refluxing for 4 h at 105°C. Then, 10 ml (5 mg/ml) NaBH₄ was added to the reaction mixture and kept stirring for another 10 min. The precipitation was collected by filtration and annealed at 300°C for 3 h in argon atmosphere. The final product was obtained after annealing at 400°C for another 2 h in air. The pristine Co₃O₄ was synthesized by similar method without the addition of GO solution. The comparision sample of ruthenium nanocrystals supported on carbon black (Ru/C) was synthesized by using hydrophilic and hydrophobic tri-block copolymer F127 as a soft template, followed by low temperature heat treatment43. Structural characterization. The morphology of the obtained materials was characterized by field emission scanning electron microscopy (FESEM, Zeiss Supra 55VP) and transmission electron microscopy (TEM, Model JEM-2011, JEOL). X-ray diffraction (XRD) patterns were collected on Siemens D5000 diffractometer using Cu K α radiation with a scanning step of 0.02° per second. Raman spectra were recorded with an inVia Renishaw Raman spectrometer system (HR Micro Raman spectrometer, Horiba JOBIN YVON US/HR800 UV) equipped with a 632.8 nm wavelength laser. Thermal gravimetric analysis (TGA) of G-Co $_3$ O $_4$ composite was performed using a TGA/differential thermal analysis (DTA) analyzer (TA Instruments, SDT 2960 module, New Castle, DE, USA) at a heating rate of 10° C min $^{-1}$ in air from room temperature to 700° C. Electrochemical measurements. Electrocatalytic activity measurements were carried out on an electrochemical workstation (CHI 660E) in a three-electrode glass cell system. A glass carbon (GC) electrode coated with as-prepared materials was used as the working electrode. A platinum wire was used as the counter electrode (CE). The potential was recorded using an Ag/AgCl (1 M KCl) reference electrode, which was converted to the reversible hydrogen electrode (RHE) according to Nernst equation $E_{RHE} = E_{Ag/AgCl} + 0.059 \times pH + 0.2224$. The working electrode was prepared as follows: 4 mg sample was dispersed in 1 ml of 1:1 v/v water/isopropanol by ultrasonication. Then 80 μ l Nafion (5 wt%) was added to the solution to obtain a homogeneous ink. The catalyst ink (10 μ l) was loaded onto the GC electrode with a diameter of 5 mm. LSV was conducted in KOH solution (0.1 M, 1 M) and phosphate buffer solution (PBS, 0.1 M) at a scan rate of 2 mV s⁻¹. The polarization curves were all corrected by 95% iR compensation and our typical electrochemical cell had R_u = \sim 8 Ω in 1 M KOH, $R_u = \sim$ 20 Ω in 0.1 M KOH and $R_u = \sim$ 26 Ω in 0.1 M PBS. TOFs were calculated according to the equation of TOF = $n_{O2}/n_{Co} = (Q/4F)/n_{Co}$ (F is the faraday constant, 96485 C/mol). Stability was carried out for 10 h at 0.50 V (vs. Ag/AgCl) in 1 M KOH and 0.60 V (vs. Ag/AgCl) in 0.1 M KOH solution. Electrical impedance spectroscopy (EIS) was recorded under the following condition: ac voltage amplitude 5 mV, frequency ranges from 106 to 0.1 Hz, and open circuit. Cyclic voltammograms (CV) of G-Co $_3$ O $_4$ and G+Co $_3$ O $_4$ measured in 1 M KOH solution in a potential window (-0.16 V to -0.08 V (vs. Ag/AgCl)) without faradaic processes with scan rates of 10, 30, 50, 70, 90 mV/s. - Haussener, S., Hu, S., Xiang, C. X., Weber, A. Z. & Lewis, N. S. Simulations of the irradiation and temperature dependence of the efficiency of tandem photoelectrochemical water-splitting systems. *Energy. Environ. Sci.* 6, 3605–3618 (2013). - Kondratenko, E. V., Mul, G., Baltrusaitis, J., Larrazabal, G. O. & Perez-Ramirez, J. Status and perspectives of CO₂ conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes. *Energy. Environ. Sci.* 6, 3112–3135 (2013) - Zhang, Z. H. et al. Carbon-Layer-Protected Cuprous Oxide Nanowire Arrays for Efficient Water Reduction. Acs Nano 7, 1709–1717 (2013). - Zhao, Y. F., Zhang, Y. X., Yang, Z. Y., Yan, Y. M. & Sun, K. N. Synthesis of MoS₂ and MoO₂ for their applications in H-2 generation and lithium ion batteries: a review. Sci. Technol. Adv. Mater. 14, 12pp (2013). - Voiry, D. et al. Enhanced catalytic activity in strained chemically exfoliated WS₂ nanosheets for hydrogen evolution. Nat. Mater. 12, 850–855 (2013). - Li, Y. G., Hasin, P. & Wu, Y. Y. Ni_xCo_{3-x}O₄ Nanowire Arrays for Electrocatalytic Oxygen Evolution. Adv. Mater. 22, 1926-+ (2010). - 7. Meyer, T. J. Catalysis The art of splitting water. Nature 451, 778-779 (2008). - Fillol, J. L. et al. Efficient water oxidation catalysts based on readily available iron coordination complexes. Nat. Chem. 3, 807–813 (2011). - Lewis, N. S. & Nocera, D. G. Powering the planet: Chemical challenges in solar energy utilization. *Proc. Natl. Acad. Sci.* 103, 15729–15735 (2006). - Chou, N. H., Ross, P. N., Bell, A. T. & Tilley, T. D. Comparison of Cobalt-based Nanoparticles as Electrocatalysts for Water Oxidation. *Chemsuschem* 4, 1566–1569 (2011). - Zou, X. X. et al. Efficient oxygen evolution reaction catalyzed by low-density Nidoped Co₃O₄ nanomaterials derived from metal-embedded graphitic C₃N₄. Chem. Comm. 49, 7522–7524 (2013). - 12. Wang, D. D., Chen, X., Evans, D. G. & Yang, W. S. Well-dispersed Co₃O₄/Co₂MnO₄ nanocomposites as a synergistic bifunctional catalyst for oxygen reduction and oxygen evolution reactions. *Nanoscale* 5, 5312–5315 (2013). - Lu, B. A., Cao, D. X., Wang, P., Wang, G. L. & Gao, Y. Y. Oxygen evolution reaction on Ni-substituted Co₃O₄ nanowire array electrodes. *Int. J. Hydrogen Energy* 36, 72–78 (2011). - Dinca, M., Surendranath, Y. & Nocera, D. G. Nickel-borate oxygen-evolving catalyst that functions under benign conditions. *Proc. Natl. Acad. Sci.* 107, 10337–10341 (2010). - Zhou, W. J. et al. Ni₃S₂ nanorods/Ni foam composite electrode with low overpotential for electrocatalytic oxygen evolution. Energy. Environ. Sci. 6, 2921–2924 (2013). - Gong, M. et al. An Advanced Ni-Fe Layered Double Hydroxide Electrocatalyst for Water Oxidation. J. Am. Chem. Soc. 135, 8452–8455 (2013). - Jiao, F. & Frei, H. Nanostructured cobalt and manganese oxide clusters as efficient water oxidation catalysts. *Energy. Environ. Sci.* 3, 1018–1027 (2010). - Zaharieva, I. et al. Synthetic manganese-calcium oxides mimic the wateroxidizing complex of photosynthesis functionally and structurally. Energy. Environ. Sci. 4, 2400–2408 (2011). - Koza, J. A., He, Z., Miller, A. S. & Switzer, J. A. Electrodeposition of Crystalline Co₃O₄-A Catalyst for the Oxygen Evolution Reaction. *Chem. Mater.* 24, 3567–3573 (2012). - Tuysuz, H., Hwang, Y. J., Khan, S. B., Asiri, A. M. & Yang, P. D. Mesoporous Co₃O₄ as an electrocatalyst for water oxidation. *Nano. Res.* 6, 47–54 (2013). - Esswein, A. J., McMurdo, M. J., Ross, P. N., Bell, A. T. & Tilley, T. D. Size-Dependent Activity of Co₃O₄ Nanoparticle Anodes for Alkaline Water Electrolysis. *J. Phys. Chem. C* 113, 15068–15072 (2009). - Rosen, J., Hutchings, G. S. & Jiao, F. Ordered Mesoporous Cobalt Oxide as Highly Efficient Oxygen Evolution Catalyst. J. Am. Chem. Soc. 135, 4516–4521 (2013). - Mu, Y. Y., Liang, H. P., Hu, J. S., Jiang, L. & Wan, L. J. Controllable Pt nanoparticle deposition on carbon nanotubes as an anode catalyst for direct methanol fuel cells. J. Phys. Chem. B 109, 22212–22216 (2005). - Liu, Q., Jin, J. T. & Zhang, J. Y. NiCo₂S₄@graphene as a Bifunctional Electrocatalyst for Oxygen Reduction and Evolution Reactions. ACS Appl. Mater. Interfaces 5, 5002–5008 (2013). - Liang, Y. Y. et al. Covalent Hybrid of Spinel Manganese-Cobalt Oxide and Graphene as Advanced Oxygen Reduction Electrocatalysts. J. Am. Chem. Soc. 134, 3517–3523 (2012). - Bian, X. J. et al. Nanocomposite of MoS₂ on ordered mesoporous carbon nanospheres: A highly active catalyst for electrochemical hydrogen evolution. Electrochem. Commun. 22, 128–132 (2012). - Liang, Y. Y. et al. Co₃O₄ nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 10, 780–786 (2011). - Suryanto, B. H. R., Lu, X. Y. & Zhao, C. Layer-by-layer assembly of transparent amorphous Co₃O₄ nanoparticles/graphene composite electrodes for sustained oxygen evolution reaction. *J. Mater. Chem. A* 1, 12726–12731 (2013). - 29. Wu, J. et al. Co_3O_4 nanocrystals on single-walled carbon nanotubes as a highly efficient oxygen-evolving catalyst. Nano. Res. 5, 521–530 (2012). - Lu, X. Y. & Zhao, C. Highly efficient and robust oxygen evolution catalysts achieved by anchoring nanocrystalline cobalt oxides onto mildly oxidized multiwalled carbon nanotubes. J. Mater. Chem. A 1, 12053–12059 (2013). - Yang, P. D., Zhao, D. Y., Margolese, D. I., Chmelka, B. F. & Stucky, G. D. Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks. *Nature* 396, 152–155 (1998). - Gao, M. R. et al. Nitrogen-Doped Graphene Supported CoSe₂ Nanobelt Composite Catalyst for Efficient Water Oxidation. Acs Nano 8, 3970–3978 (2014). - Duan, J. J. et al. Mesoporous hybrid material composed of Mn₃O₄ nanoparticles on nitrogen-doped graphene for highly efficient oxygen reduction reaction. Chem. Comm. 49, 7705–7707 (2013). - Chen, W. F. et al. Hydrogen-Evolution Catalysts Based on Non-Noble Metal Nickel-Molybdenum Nitride Nanosheets. Angew. Chem. Int. Ed. 51, 6131–6135 (2012). - 35. Chen, S. & Qiao, S. Z. Hierarchically Porous Nitrogen-Doped Graphene-Ni Co_2O_4 Hybrid Paper as an Advanced Electrocatalytic Water-Splitting Material. *Acs Nano* 7, 10190–10196 (2013). - Minguzzi, A., Fan, F. R. F., Vertova, A., Rondinini, S. & Bard, A. J. Dynamic potential-pH diagrams application to electrocatalysts for water oxidation. *Chem. Sci.* 3, 217–229 (2012). - 37. Nakagawa, T., Beasley, C. A. & Murray, R. W. Efficient Electro-Oxidation of Water near Its Reversible Potential by a Mesoporous ${\rm IrO_x}$ Nanoparticle Film. J. Phys. Chem. C 113, 12958–12961 (2009). - 38. Kong, D. S., Wang, H. T., Lu, Z. Y. & Cui, Y. CoSe₂ Nanoparticles Grown on Carbon Fiber Paper: An Efficient and Stable Electrocatalyst for Hydrogen Evolution Reaction. J. Am. Chem. Soc. 136, 4897-4900 (2014). - 39. McCrory, C. C. L., Jung, S. H., Peters, J. C. & Jaramillo, T. F. Benchmarking Heterogeneous Electrocatalysts for the Oxygen Evolution Reaction. J. Am. Chem. Soc. 135, 16977-16987 (2013). - 40. Yang, X. W., Zhu, J. W., Qiu, L. & Li, D. Bioinspired Effective Prevention of Restacking in Multilayered Graphene Films: Towards the Next Generation of High-Performance Supercapacitors. Adv. Mater. 23, 2833-+ (2011). - 41. Hummers, W. S. & Offeman, R. E. Preparation of Graphitic Oxide. J. Am. Chem. Soc. 80, 1339-1339 (1958). - 42. Lu, Y., Lu, X. M., Mayers, B. T., Herricks, T. & Xia, Y. N. Synthesis and characterization of magnetic Co nanoparticles: A comparison study of three different capping surfactants. J. Solid State Chem. 181, 1530-1538 (2008). - 43. Sun, B., Munroe, P. & Wang, G. X. Ruthenium nanocrystals as cathode catalysts for lithium-oxygen batteries with a superior performance. Sci. Rep. 3, 2247; DOI:10.1038/srep02247 (2013). #### **Acknowledgments** This project is financially supported by the Australian Research Council (ARC) through the ARC Discovery project (DP1093855), ARC Future Fellowship project (FT110100800), the National Natural Science Foundation of China (Grant nos. 21175012, 21006015 and 21070623), Ministry of Science and Technology (2012DFR40240) and partially supported from the China Scholarship Council (CSC, No. 201306030039). #### Author contributions G.W. designed the experiments, co-wrote the manuscript. Y.Z. performed the major part of experiments, organized the data, and wrote the manuscript. D.S. contributed to the TEM experiments and discussion. S.C., B.S., X.H., K.S., Y.Y. and H.L. involved in discussion. All authors read and approved the final manuscript. #### Additional information Supplementary information accompanies this paper at http://www.nature.com/ scientificreports Competing financial interests: The authors declare no competing financial interests. How to cite this article: Zhao, Y. et al. Graphene-Co₃O₄ nanocomposite as electrocatalyst with high performance for oxygen evolution reaction. Sci. Rep. 5, 7629; DOI:10.1038/ srep07629 (2015). This work is licensed under a Creative Commons Attribution-NonCommercial-Share Alike 4 Obstantation 111 and 11 Share Alike 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder in order to reproduce the material. To view a copy of this license, visit http:// creativecommons.org/licenses/by-nc-sa/4.0/