
ORIGINAL RESEARCH
published: 24 September 2015

doi: 10.3389/fncom.2015.00117

Frontiers in Computational Neuroscience | www.frontiersin.org 1 September 2015 | Volume 9 | Article 117

Edited by:

Si Wu,

Beijing Normal University, China

Reviewed by:

Paolo Del Giudice,

Italian National Institute of Health, Italy

Tao Zhang,

Nankai University, China

*Correspondence:

Xin Tian,

Department of Biomedical

Engineering, School of Biomedical

Engineering and Technology, Tianjin

Medical University, 22# Qixiangtai

Road, Tianjin 300070, China

tianx@tmu.edu.cn

Received: 03 April 2015

Accepted: 07 September 2015

Published: 24 September 2015

Citation:

Zhang X, Yi H, Bai W and Tian X

(2015) Dynamic trajectory of multiple

single-unit activity during working

memory task in rats.

Front. Comput. Neurosci. 9:117.

doi: 10.3389/fncom.2015.00117

Dynamic trajectory of multiple
single-unit activity during working
memory task in rats
Xiaofan Zhang, Hu Yi, Wenwen Bai and Xin Tian*

Department of Biomedical Engineering, School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin,

China

Workingmemory plays an important role in complex cognitive tasks. A popular theoretical

view is that transient properties of neuronal dynamics underlie cognitive processing. The

question raised here as to how the transient dynamics evolve in working memory. To

address this issue, we investigated the multiple single-unit activity dynamics in rat medial

prefrontal cortex (mPFC) during a Y-maze working memory task. The approach worked

by reconstructing state space from delays of the original single-unit firing rate variables,

which were further analyzed using kernel principal component analysis (KPCA). Then the

neural trajectories were obtained to visualize the multiple single-unit activity. Furthermore,

the maximal Lyapunov exponent (MLE) was calculated to quantitatively evaluate the

neural trajectories during the working memory task. The results showed that the neuronal

activity produced stable and reproducible neural trajectories in the correct trials while

showed irregular trajectories in the incorrect trials, which may establish a link between

the neurocognitive process and behavioral performance in working memory. The MLEs

significantly increased during working memory in the correctly performed trials, indicating

an increased divergence of the neural trajectories. In the incorrect trials, the MLEs were

nearly zero and remained unchanged during the task. Taken together, the trial-specific

neural trajectory provides an effective way to track the instantaneous state of the neuronal

population during the working memory task and offers valuable insights into working

memory function. TheMLE describes the changes of neural dynamics in workingmemory

and may reflect different neuronal population states in working memory.

Keywords: rat, working memory, single unit activity, dynamic trajectory, maximal Lyapunov exponent

Introduction

Working memory refers to a cognitive system responsible for short-term mental storage and
manipulation operations (Baddeley, 1992). Working memory appears to play a fundamental role in
many high-level cognitive processes such as planning, reasoning, and decision-making. Prefrontal
cortex (PFC) has been regarded as a brain structure closely linked to working memory (Funahashi
and Kubota, 1994). Lesions or inactivation of the medial PFC (mPFC) in rodents lead to working
memory impairments (Taylor et al., 2003; Yoon et al., 2008; Yang et al., 2014). Working memory
can be modeled as dynamic patterns of neuronal population activity. Specifically, working memory
has been proposed that is based on either a continuous attractor (Itskov et al., 2011) or a set of
discrete attractors (Miller and Wang, 2006). In recent years, a popular theoretical view is that
transient states rather than classical attractor states may better describe dynamical neural systems
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underlying sensation, perception, and cognition (Rabinovich
et al., 2008; Buonomano and Maass, 2009). Transient states, as
a basis for stimulus-response processes in neural systems, have
been fruitfully applied in studies of the olfactory systems of locust
(Stopfer et al., 2003; Mazor and Laurent, 2005; Broome et al.,
2006) and zebrafish (Friedrich and Laurent, 2001), the visual
system of turtle (Du et al., 2005), the statocysts of marine mollusk
Clione (Levi et al., 2005). In these studies, neural trajectory, that
is, the succession of transient states during neural processing was
associated with different types of external stimuli, which serves
as a new model for understanding neural encoding and decoding
mechanisms in response to the external stimuli. Additionally,
in content of cognition, the transient dynamics was also widely
studied in the cognitive systems of motor planning (Shenoy et al.,
2011; Churchland et al., 2012) and decision making (Balaguer-
Ballester et al., 2011), which reveal important features of neural
computation in cortical areas.

The common procedure to reveal neural trajectories involves
a two-stage process: the single neuron spike trains are first
smoothed over time and then a dimensionality reduction
technique is performed (Yu et al., 2009). However, a state space
constructed only from a few observations may not properly
represent the geometry of neural trajectories of the underlying
dynamical system. Therefore, Time delay embedding algorithm
is primarily applied to the original population data in this work.
To directly view the neural trajectory, methods that reduce
the dimensionality of the data are typically needed. Principal
components analysis (PCA) is one of the most commonly used
data reduction methods in neuroscience. This method extracts
orthogonal factors that best explain the variation in the data.
Then a low dimensional space was constructed with a subset
of the highest-variance components. In our work, kernel PCA
(KPCA, a non-linear PCA) instead of PCA is used to project
the delayed population data into a low dimensional state space.
The main reason is that KPCA can take full advantage of the
non-linear correlation between population vectors and effectively
extract the non-linear features of the neuronal population activity
(Lee et al., 2004). Generally, entropy (Caldirola et al., 2004) and
complexity(Tononi et al., 1994) have been widely applied to
describe the brain activity. In this work, the Lyapunov exponent
is introduced to evaluate the dynamic characteristics of the neural
trajectories. The method of Lyapunov exponents serves as a
useful tool to quantify the exponential divergence or convergence
of initially close nearby trajectories (Brown et al., 1991). It is
common to refer to the largest one as the maximal Lyapunov
exponent (MLE), which yields the greatest insight into the
dynamics of the considered system. The MLE has proven its
efficiency for the characterization of the EEGs during epileptic
seizures (Chaovalitwongse et al., 2005; Nair et al., 2009) and
schizophrenia (Kim et al., 2000).

In our work, we investigated the transient dynamics of
the neuronal population activity in working memory. We
simultaneously recorded the mPFC neurons with multiple-
electrodes when rats performing a Y-maze working memory task.
To gain insight into the spatio-temporal patterns of the neuronal
population activity that represent working memory, time delay
embedding theorems, and kernel principal components analysis

(KPCA) were applied to multiple single-unit spike trains to
reconstruct the neural trajectories in state space. The MLE
was then selected to characterize the features of these neural
trajectories in both correct and incorrect trials. The present study
makes an attempt to reveal the underlying transient dynamics
of working memory and the relationship with the behavioral
performance of the animals.

Materials and Methods

Ethics Statement
Behavioral training and physiological experiments were
conducted in accordance with the Care and Use of Laboratory
Animals and approved by the Tianjin Medical University Animal
Care and Use Committee.

Apparatus and Working Memory Task
Male Sprague-Dawley rats weighing 300–350 g were placed on
a reverse light cycle upon arrival and given ad libitum access
to water with food restriction (2 h a day to retain at least 85%
of normal body weight) for two consecutive days. Then the rats
were familiarized with a Y-maze for two days. After habituation,
the rats received daily training sessions (10 trials per day) on a
working memory (delayed alternation) task. The Y maze consists
of three gray, opaque plastic arms (length × width × height:
75 × 14.5 × 15 cm), at a 120◦ angle from each other. One arm is
designated as the “start” arm and the other two arms are assigned
to be the “goal” arms (Figure 1). The working memory task was
described as follows (Goldman et al., 1971). At the beginning of a
trial, the rat was placed on the end of the start arm (arm A). Each
trial included two phases: a sample phase and a choice phase.
In the sample phase, the rat could get some food in the crib as
a reward when it arrived at the end of the goal arm (arm B or
arm C). Then the rat returned to the start arm to make a free
choice after a 5 s delay. In this choice phase, the rat received a
food reward only if it entered the arm not visited in the sample
phase. Consecutive visit to the same goal arm was defined as
an error. Between trials, the arms were wiped with alcohol to
remove potential olfactory cues. The occurrence of behavioral
events indicating the rat turned into the goal arm was marked
by an infrared sensor in the Y-maze and the corresponding time
stamp was defined as the reference point.

After reaching the performance criterion (at least 80% correct
out of the total trials in two consecutive days), the rat received a
chronic implant surgery under aseptic conditions. The rat was
anesthetized with sodium pentobarbital (40mg/kg) and a 16-
channel micro-electrode array (nickel-chromium, <1 M�) was
implanted into the mPFC (see Bai et al., 2012) for an in-depth
description of the surgical procedures). The array contained 2 ×
8 electrodes (2 × 0.3mm2 in area, 33 µm in diameter, inter-
electrode space of 200 µm, made in house). According to the
rat brain stereotaxic coordinates, the microelectrode array was
implanted into the PL cortex of the mPFC (2.5–4.5mm anterior
to bregma, 0.2–1.0mm lateral to midline, 2.5–3.5mm deep from
cortical surface). After the surgery, the rats were allowed to
recover for 7 days.
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FIGURE 1 | Diagram of rat working memory task on a Y-maze. The Y-maze apparatus have three identical plastic arms (same length) at a 120◦ angle from each

other. A removable guillotine door is placed at the entrance and food pellets are placed in the food cribs at the end of the goal arms (Arm B and C). In the sample

phase, the rat is placed at the start arm (Arm A). When the guillotine door is opened, the rat is free to enter either one of the goal arms to get a food reward. In the

choice phase, the rat is rewarded for entering the arm that was not visited in the sample phase. The black solid line shows possible correct path, red dashed line

shows possible incorrect path. The moments that the rat enters into the goal arm are detected by the infrared detector and marked by a red triangle (defined as the

reference point).

After recovery, multi-channel neuronal activity was recorded
in vivo with a Cerebus Acquisition System (Cyberkinetics, USA)
when the rats performing the task. The whole time course of
the working memory task was captured by EthoVision XT video
tracking system (Noldus, USA).

Data Preprocessing
The recordings were sampled at 30 kHz, filtered from 250–
7500Hz and stored off-line with time stamps in the Neural
Signal Processor. Spikes were detected using a preset voltage
threshold. Then spike sorting was performed using Offline
Sorter (Plexon Inc, USA) to separate out the single-unit
activity. Single neurons with a very low baseline firing
rate (<30 spikes/min) or a signal-to noise of <3.0 were
discarded.

Neural Trajectories Reconstruction
The spike trains were first convolved with Gaussian kernels to
obtain the instantaneous firing rates (bandwidth: 200ms). For
a single trial, the smoothed firing rates of the simultaneously
recorded neurons can be defined as population vectors,
embedded within a multidimensional state space:

X =
[

x1(t), x2(t), · · · , xN(t)
]T

(1)

where N is the number of neurons. Thus, a single point
(e.g., the current firing rates of all recorded neurons) in
this space represented the whole state of the recorded
neuronal population at a given time. Over the course of
the working memory task, these points formed a neural
trajectory through state space, beginning, and ending at a
point or a number of points that represented baseline activity.

Then, time delay embedding algorithm was primarily applied
to the original population vectors. The method is that the
dimensionality of the state space can be expanded by adding
time-lagged vectors of the original data as new variables
to the space. The delayed vector can be constructed as
follow:

Y =
[

xi(t), xi−τ (t), · · · , xi−(m−1)τ (t)
]T

, i = 1, 2, · · · ,N (2)

where m refers to the embedding dimension and τ refers to
the time lag. The false nearest neighbor method was used to
determine the minimal sufficient embedding dimension (Kennel
et al., 1992). The optimal time lag can be estimated with the help
of the time delayed mutual information (Fraser and Swinney,
1986).

Sequentially, KPCA was used to project the delayed
population vector into a low dimensional state space (Schölkopf
et al., 1998). The principal components (PCs) were acquired and
organized in descending order of their variance. Then, the neural
trajectory was constructed by the PCs, with each dimension
representing the individual PCs.

Quantitative Description of Neural Trajectory
For a n-dimensional dynamical system, it has n Lyapunov
exponents λi(i = 1, 2, · · · , n), which describe the divergence
or convergence of nearby trajectories traced out during system
evolution in the state space. The system is defined to be chaotic
if at least one of the Lyapunov exponents is positive and the
initially close points will diverge to any arbitrary separation. The
first Lyapunov exponent was termed as maximum Lyapunov
exponent (MLE). In this study, the MLE was calculated byWolf ’s
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algorithm (Wolf et al., 1985). The MLE can be presented as:

MLE =
1

tM − t0

M
∑

k=1

log2
L′(tk)

L(tk−1)
(3)

where L(tk−1) is the Euclidean distance at the time point tk−1 of
two nearby trajectories and at the next time point tk. The distance
between the same two trajectories can evolve to length L′(tk).M is
the number of local MLE estimations computed within the time
period T of the data segment, where T = tM − t0.

Statistical Analysis
In this work, we described 40 correct trials and 32 incorrect
trials from four rats, with 10 correct trials and eight incorrect
trials from each rat. All the data are expressed as mean ±

SEM. The paired t-test was performed to test the significant
differences of neural trajectories during working memory and
under resting state. Besides, the independent-samples t-test was
used to evaluate the significant differences of neural trajectories
between the correct and incorrect trials. For all comparisons, the
statistical significance levels were set at different levels: ∗P < 0.05,
∗∗P < 0.01, ∗∗∗P < 0.001.

Results

Neuronal Population Activity during Working
Memory Task
Spike trains of single neurons were obtained (Figure 2A) from 40
correct trials (four rats, 10 correct trials for each rat). The time
course of the working memory task was 3.5 ± 0.21, 3 ± 0.19,
3.3 ± 0.15, 3.7 ± 0.23 s (mean ± SEM) for rat 1, rat 2, rat 3, and
rat 4, respectively. Besides, for each rat, the resting-state activity
was taken during the inter-trial intervals. A typical example
shows the changes in neuronal population activity during the
working memory task (Figure 2). The neuronal population firing
increased rapidly prior to the reference point and decayed down
to baseline level after the reference point (Figure 2B). Then
the spike trains were transformed into smooth, continuous-
time firing rates with a 200-ms Gaussian kernel. The neuronal
population activity profile was shown in Figure 2C. The neuronal
population firing rates increased, peaked around 500ms prior to
the reference point and then declined to baseline.

Dynamic Trajectories of Working Memory in
State Space
The minimum embedding dimension m = 3 and the optimal
time delay τ = 200ms were chosen for time-delay embedding.
The cumulative variance explained by the first three PCs is

FIGURE 2 | Single-unit activity from four example correct trials during the working memory task. (A) Spike detection and sorting from the recordings. The

raw data was filtered (250–7500Hz) and multi-unit spikes were detected using a preset threshold. Then, single-unit spike trains were isolated from the multi-unit

spikes. (B) Raster plots of neuronal activity during the working memory task for 4 rats. For each rat, one correct trial was shown. Each row plotted the response of an

individual neuron. Time 0 represented the reference point, marked by the red triangle. (C) Mean firing rates of neuronal population during the working memory task.

Data from (B) were used, with 10 correct trials for each rat. Shaded areas indicated the SEM. Time 0 represents the reference point, marked by the red triangle.
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above 70% (79 ± 2, 78 ± 4, 74 ± 1, and 86 ± 2% for the
four rats, mean ± SEM) (Figure 3A). As the first three PCs
capture the most of the variance, it is appropriate to transform
the original data to a low dimensional space defined by the first

three PCs to reveal the transient dynamics as neural trajectory.
The individual trajectories and averaged trajectory during the
working memory task were shown in Figures 3B,C. Each point
along the trajectory represented the instantaneous neuronal

FIGURE 3 | Visualization of neural trajectories representing multiple single-unit activity over time. (A) Scree plot of the principal components (PCs) obtained

from the smoothed firing rate. The PCs were calculated over 10 correct trials for each rat via KPCA. Time slice points calculated from neuronal spike activity of four

rats, projected onto state space using the first three PCs. The minimum embedding dimension m = 3 and the optimal time delay τ = 200ms were applied for

time-delay embedding. (B) Shown were 10 individual-trial neural trajectories for each rat. Gray arrows indicated the direction of evolution of neural trajectories during

working memory. (C) Trajectory averaged over 10 trials for each rat.

FIGURE 4 | Evolution of the maximal Lyapunov exponent (MLE) of neural trajectories during the working memory task. (A) Changes of the MLEs during

the working memory task in the correct trials (averaged over 10 trials for each rat). (B) MLEs in working memory and resting state. The MLEs in working memory state

were significantly higher than those in resting state (averaged over 40 correct trials from four rats, ***P < 0.001).
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FIGURE 5 | Neural dynamics of the multiple single-unit activity in the incorrect trials. (A) Neural trajectories of the multiple single-unit activity in the incorrect

trials (eight incorrect trials from rat 1 were analyzed). (B) Changes of the MLEs during the working memory task in the correct and incorrect trials. The reference point

was marked by a red triangle. (C) Comparison of the MLEs between the correct and incorrect trials. The peak of the MLEs in the correct trials was significantly higher

than those in the incorrect ones (***P < 0.001).

FIGURE 6 | The comparison of MLEs of dynamic trajectories for 20

correct right-turn trials and for 20 left-turn trials. There was no significant

difference for the two correct cases (P > 0.05).

population activity during working memory. It can be seen quite
clearly from the Figure 3B that the trajectories were quite similar
on the correct trials across correct trials for four rats. Besides,
the trajectories for correct right-turn trials and left-turn trials
evolved in a similar way. This suggested that the trajectories
contain specific information dependent on neuronal activity
during working memory. In this view, a neuronal sequence of
activity may be activated during working memory task. The
neuronal activity may exhibit different dynamics over time and
formed a trajectory in state space.

Maximal Lyapunov Exponent of Neural Trajectory
To quantify these qualitative observations from a dynamics
perspective, we calculated the MLE for four rats. The whole
time course of the working memory task and resting state were
divided into non-overlapping 500ms time bins, respectively.
The MLEs during the working memory task were calculated
in each time bin, combining the individual trajectories with
the averaged trajectory. The results were shown in Figure 4.
The MLEs changed consistently across the four rats, increased
obviously and peaked prior to the reference point, and followed
by a steady decline (Figure 4A). Then, we compared the neuronal
activity at working memory state (time duration: pre-0.5 s and
post-0.5 s the peak of the MLEs) with that at the resting-state (40
correct trials from four rats, mean± SEM, Figure 4B). TheMLEs

during working memory were significantly higher than those in
the resting-state (2.3970 ± 0.1394 vs. 0.0051 ± 0.0003, ∗∗∗P <

0.001).
To test whether the trajectory pattern and MLE were

significant relative to working memory dynamics. We
constructed the trajectories and calculated the corresponding
MLE for incorrect trials. Neural trajectories over eight incorrect
trials (from rat 1) were shown in Figure 5A. Accordingly, the
changes of the MLEs in the incorrect trials were shown in
Figure 5B. The neural trajectories during the same duration
(duration: the time bin corresponding to the peak of the MLEs)
in the correct and incorrect trials were further compared
(Figure 5C). The peak of the MLEs in the correct trials was
significantly higher than those in the incorrect trials (2.4860 ±

0.2882 vs. 0.1486 ± 0.1095, ∗∗∗P < 0.001). Furthermore, the
question arises here, whether the dynamics of trajectories have
any difference for correct right-turn trials and left-turn trials? To
answer the above question, we calculated theMLE as a qualitative
description for trajectory dynamics, the MLEs were compared
for the above two conditions, the results were shown in Figure 6,
there was no significant difference (2.5092± 0.3739 vs. 2.4786±
0.3683, P > 0.05).

From the results mentioned above, it was suggested that the
action potentials encode the information in working memory,
and the trajectory pattern decode the performance of working
memory.

Discussion

This study explored the neural trajectories of the neuronal
population activity in working memory. We combined the state
space reconstruction methods with KPCA algorithm to extract
the neural trajectory and employed the MLE to characterize
this transient property of neuronal population activity. The
conclusions of this work are as follows: the stable and transient
nature of the neural population was presented in the state space
corresponding to the correct trials during the working memory
task; the MLEs increased and peaked before the rats arrived at
the choice point and then declined to baseline in the correct trials,
reflecting the dynamical feature of the neural trajectories.
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Previous study has established the direct links between neural
transient activity and sensory or environmental representations
with the aid of neural trajectories. Stopfer et al. (2003) found
that odor identity and intensity could be determined by the
neural trajectories reconstructed from the firing pattern of a
population of antennal lobe projection neurons in the locust.
In this work, the neural trajectories are reproducible and
robust across different correct trials (Figure 3B). Trajectories
were highly variable on incorrect trials (Figure 5A). Among all
the trials, we can easily recognize the incorrect ones, whose
neural trajectories appeared different from those in the correct
trials.

With the assistance of MLE, the dynamical changes of
the neural trajectories were revealed. The neuronal population
activity may dynamically evolve on different intrinsic states,
considering the significant variation of the MLEs during the
working memory task. Balaguer-Ballester et al. (2011) revealed
the several dynamic states associated with decision making
task. The different states toward which the neuronal population
activity evolves corresponding to different cognitively defined
task stages, such as training phases, delay phases relate to working
memory load, choices the rat makes, and rewards it receives.

In summary, we investigated the transient dynamics of
neuronal population in working memory. The neural trajectory
provides concise descriptions of working memory function and
can be used for neural decoding of the performance of working
memory. Transient dynamics may therefore be a common
framework for working memory, as were demonstrated in
neural functions related to memory such as motor planning
(Churchland et al., 2012), decision making (Harvey et al.,
2012). Besides, the MLE may offer an effective way to
describe the characteristics of neural dynamics during working
memory. Furthermore, these findings may provide a support for
investigating the neural dynamics of working memory in the
disease model of rats or mice.
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