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Abstract: In previous studies on the secondary metabolites of the Taiwanese octocoral 

Isis hippuris, specimens have always been collected at Green Island. In the course of our 

studies on bioactive compounds from marine organisms, the acetone-solubles of the 

Taiwanese octocoral I. hippuris collected at Orchid Island have led to the isolation of  

five new polyoxygenated steroids: hipposterone M–O (1–3), hipposterol G (4) and 

hippuristeroketal A (5). The structures of these compounds were determined on the basis of 

their spectroscopic and physical data. The anti-HCMV (human cytomegalovirus) activity 

of 1–5 and their cytotoxicity against selected cell lines were evaluated. Compound 2 

exhibited inhibitory activity against HCMV, with an EC50 value of 6.0 μg/mL. 

Keywords: octocoral; Isis hippuris; anti-HCMV activity 
 

1. Introduction 

The octocoral Isis hippuris, distributed widely in the western Pacific, has yielded a number of 

polyoxygenated steroids, including hippuristanol type [1–9], gorgosterol type [10–14], hippuristerone 

type [3,14,15], and hippuristerol type [3,14–16]. Those of the first type were originally reported as 

cytotoxins and later rediscovered as selective inhibitors against the translation factor eIF4A [17,18]. 
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Some of the second types were reported to show cytotoxicity or a reversal of multidrug resistance 

activity [10]. The samples for previous studies on the secondary metabolites of Taiwanese octocoral  

I. hippuris were all collected at Green Island [5–7,12,14,15]. In our continued study of the bioactive 

metabolites from marine organism, the Taiwanese octocoral I. hippuris (Figure 1) collected at Orchid 

Island was selected for study since its acetone extract exhibited antiviral activity against HCMV. 

Bioactivity-guided fractionation resulted in the isolation of five polyoxygenated steroids: hipposterone 

M–O (1–3), hipposterol G (4), hippuristeroketal A (5) (Figure 2). We describe herein the isolation, 

structure elucidation, and biological activity of these compounds. 

Figure 1. Bamboo coral Isis hippuris. 

 

Figure 2. Structures of compounds 1–5. 
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2. Results and Discussion  

The molecular formula C33H52O8 was assigned to hipposterone M (1) on the basis of positive 

HRESIMS (found m/z 599.3556 [M + Na]+), implying eight degrees of unsaturation. Its IR spectrum 

revealed the absorptions for hydroxyl (νmax 3454 cm−1), ketone carbonyl (νmax 1717 cm−1), and ester 

carbonyl (νmax 1733 cm−1) groups. NMR data (Tables 1 and 2) of 1 indicated the presence of a ketone 

(δC 211.7), two ester cabonyls, two oxygenated sp3 methines, an oxygenated sp3 methylene, three 

oxygenated sp3 quaternary carbons, two secondary methyls, four tertiary methyls, six non-oxygenated 

sp3 methines, eight non-oxygenated sp3 methylenes, and two non-oxygenated sp3 quaternary carbons. 

NMR signals (Table 1) at δC 80.0 (qC) and 67.1 (qC) suggested the existence of a tetrasubstituted 

expoxy. The quaternary carbon at δC 85.5, which has HMBC correlation (Figure 3) with tertiary 

methyl signals at δH 1.56 (s) and 1.43 (s) (Table 2) disclosed the presence of –OC(CH3)2. By extensive 

analysis of 2D NMR spectra, including COSY, HSQC, NOESY (Figure 4) and HMBC, 1 was shown 

to be a derivative of hippuristerone A [15]. HMBC correlations (Figure 3) from H2-18 (δH 3.94 and 3.75) 

to C-12, C-13, C-14, and C-17 established 1 as 18-hydroxyhippuristerone A. The stereochemistry of 

the side chain moiety was determined by comparison of the 1H and 13C NMR spectral data with those 

of hippuristerone A. 

Hipposterone N (2) had a molecular formula of C31H50O7, as suggested by the NMR and HRESIMS 

data. Its IR spectrum also showed the absorptions for hydroxyl (νmax 3454 cm−1), ketone carbonyl  

(νmax 1715 cm−1), and ester carbonyl (νmax 1731 cm−1) groups. NMR data (Tables 1 and 2) of 2 

revealed the presence of a ketone (δC 211.7), an ester cabonyl, two oxygenated sp3 methines, an 

oxygenated sp3 methylene, three oxygenated sp3 quaternary carbons, two secondary methyls, four 

tertiary methyls, six non-oxygenated sp3 methines, eight non-oxygenated sp3 methylenes, and two  

non-oxygenated sp3 quaternary carbons. NMR data (Tables 1 and 2) (Figure 3) of 2 resembled those of 1 

except for a hydroxyl group replacing the tertiary acetoxyl in 1 [14]. HMBC correlations (Figure 3) 

from H3-26 (δH 1.24) and H3-27 (δH 1.21) to C-25 established 2 as a 25-deacetyl-18-hydroxy derivative 

of hippuristerone A. The stereochemistry of the side chain moiety was determined by comparison of 

the 1H and 13C NMR data with those of hippuristerones F, H, and I isolated from I. hippuris [16]. 

The positive HRESIMS of hipposterone O (3) established a molecular formula of C35H54O10. NMR 

data (Tables 1 and 2) of 3 showed the presence of a ketone (δC 211.5), three ester cabonyls, two 

oxygenated sp3 methines, two oxygenated sp3 methylene, three oxygenated sp3 quaternary carbons, 

two secondary methyls, three tertiary methyls, six non-oxygenated sp3 methines, eight non-oxygenated 

sp3 methylenes, and two non-oxygenated sp3 quaternary carbons. By comparison of NMR spectroscopic 

data (Tables 1 and 2) of 3 with those of hippuristerone J [14], the primary acetoxy group at C-21 was 

shift to C-18 on the basis of HMBC correlations (Figure 3) from H2-18 [δH 4.23 (1H, d, J = 11.6 Hz) 

and 4.30 (1H, d, J = 11.6 Hz)] to C-12, C-13, C-14, C-17, and carbonyl carbon of 18-OAc. The 

stereochemistry of the side chain moiety was determined by comparison of the 1H and 13C NMR 

spectral data with those of hippuristerones J and K previously isolated from I. hippuris [14]. 
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Table 1. 13C NMR data for compounds 1–5. 

C# 1, a δC, type 2, a δC, type 3, a δC, type 4, b δC, type 5, c δC, type 
1 38.3, CH2 38.3, CH2 38.2, CH2 36.7, CH2 35.6, CH2 
2 38.1, CH2 38.1, CH2 38.0, CH2 31.4, CH2 29.2, CH2 
3 211.7, qC 211.7, qC 211.5, qC 71.2, CH 100.7, qC 
4 44.5, CH2 44.5, CH2 44.5, CH2 38.0, CH2 36.2, CH2 
5 46.5, CH 46.5, CH 46.4, CH 44.7, CH 43.0, CH 
6 28.6, CH2 28.5, CH2 28.5, CH2 28.3, CH2 28.8, CH2 
7 31.7, CH2 31.7, CH2 31.5, CH2 31.9, CH2 32.7, CH2 
8 34.5, CH 34.4, CH 34.4, CH 34.5, CH 35.1, CH 
9 53.1, CH 53.6, CH 53.4, CH 54.0, CH 55.1, CH 
10 35.7, qC 35.7, qC 35.6, CH 35.5, qC 36.4, qC 
11 21.0, CH2 21.0, CH2 21.5, CH2 21.4, CH2 22.0, CH2 
12 30.6, CH2 31.0, CH2 32.4, CH2 32.2, CH2 33.3, CH2 
13 46.8, qC 46.7, qC 45.6, qC 45.6, qC 46.5, qC 
14 47.7, CH 48.7, CH 49.2, CH 48.7, CH 50.3, CH 
15 33.3, CH2 33.3, CH2 33.5, CH2 33.4, CH2 34.4, CH2 
16 70.0, CH 70.1, CH 70.3, CH 70.1, CH 71.1, CH 
17 80.0, qC 79.7, qC 77.2, qC 77.7,qC 78.6, qC 
18 61.9, CH2 61.9, CH2 63.5, CH2 63.5, CH2 64.3, CH2 
19 11.3, CH3 11.4, CH3 11.4, CH3 12.2, CH3 12.0, CH3 
20 67.1, qC 67.5, qC 66.7, qC 66.4, qC 67.3, qC 
21 16.1, CH3 15.9, CH3 16.1, CH3 16.2, CH3 17.1, CH3 
22 77.2, CH 77.2, CH 77.2, CH 77.2, CH 78.1, CH 
23 33.5, CH 32.9, CH 32.5, CH 33.6, CH 33.6, CH 
24 39.9, CH 41.7, CH 38.8, CH 40.1, CH 42.2, CH 
25 85.5, qC 73.7, qC 74.2, qC 85.6, qC 73.5, qC 
26 23.2, CH3 30.9, CH3 71.0, CH2 22.8, CH3 31.2, CH3 
27 25.1, CH3 25.8, CH3 20.3, CH3 25.1, CH3 25.9, CH3 
28 10.4, CH3 11.4, CH3 10.9, CH3 10.5, CH3 11.7, CH3 
29 11.9, CH3 12.1, CH3 12.3, CH3 11.9, CH3 12.6, CH3 

OAc 20.9, CH3 20.9, CH3 21.2, CH3 21.2, CH3 21.1, CH3 
 171.6, qC 171.6, qC 171.1, qC 171.0, qC 170.6, qC 
 22.6, CH3  21.1, CH3 21.0, CH3 20.9, CH3 
 169.8, qC  171.3, qC 171.2, qC 171.4, qC 
   21.1, CH3 22.7, CH3  
   170.8, qC 169.9, qC  

OMe     47.6, CH3 
     47.5, CH3 

a Spectra were measured in CDCl3 (100 MHz); b Spectra were measured in CDCl3 (125 MHz);  
c Spectra were measured in C6D6 (125 MHz). 
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Table 2. 1H NMR data for compounds 1–5. 

H# 1, δH (J in Hz) a 2, δH (J in Hz) a 3, δH (J in Hz) a 4, δH (J in Hz) b 5, δH (J in Hz) c 

1 α: 1.39 m α: 1.35 m α: 1.32 m α: 1.02 m α: 1.33 m 
 β: 2.02 m β: 2.00 m β: 1.97 m β: 1.69 m β: 1.06 m 

2 α: 2.32 m α: 2.31 m α: 2.31 m α: 1.82 m α: 1.86 m 
 β: 2.38 m β: 2.39 m β: 2.37 m β: 1.41 m β: 1.41 m 

3    3.60 m  
4 α: 2.12 dd ovl α: 2.09 dd ovl α: 2.12 dd ovl α: 1.58 m α: 1.86 dd (13.6, 3.6)
 β: 2.28 t (13.6) β: 2.27 t (13.6) β: 2.26 t (13.6) β: 1.29 m β: 1.41 dd ovl 

5 1.56 m 1.54 m 1.55 m 1.54 m 1.34 m 
6 1.38 m 1.38 m 1.39 m 1.34 m 1.08 m 
7 1.79 m 1.78 m 1.82 m 1.78 m 1.54 m 
 0.93 m 0.92 m 0.95 m 0.91 m 0.67 m 

8 1.58 m 1.58 m 1.72 m 1.67 m 1.45 m 
9 0.85 m 0.74 m 0.81 m 0.75 m 0.70 m 

11 α: 1.66 m α: 1.65 m α: 1.63 m α: 1.60 m α: 1.48 m 
 β: 1.48 m β: 1.44 m β: 1.33 m β: 1.23 m β: 1.23 m 

12 α: 1.28 m α 1.28 m α: 1.34 m α: 1.38 m α: 1.44 m 
 β: 2.44 m β: 2.44 m β: 2.16 m β: 2.17 m β: 2.28 m 

14 1.36 m 1.18 m 1.23 m 1.31 m 1.28 m 
15 α: 2.23 m α: 2.24 m α: 2.21 m α: 2.21 m α: 2.22 m 

 β: 1.44 m β: 1.46 m β: 1.48 m β: 1.46 m β: 1.59 m 
16 4.10 t (7.2) 4.13 t (7.6) 4.06 t (7.6) 4.04 dd (8.0, 7.5) 4.38 t (7.5) 
18 3.75 t (10.4) 3.74 t (11.2) 4.23 d (11.6) 4.27 d (11.5) 4.55 d (11.5) 

 3.94 d (11.6) 3.94 dd (11.6, 2.4) 4.30 d (11.6) 4.20 d (11.5) 4.49 d (11.5) 
19 1.02 s 1.02 s 1.02 s 0.82 s 0.64 s 
21 1.64 s 1.66 s 1.60 s 1.59 s 1.84 s 
22 4.62 d (10.8) 4.60 d (10.8) 4.66 d (10.8) 4.67 d (11.0) 5.04 d (10.5) 
23 2.28 m 2.47 m 2.50 m 2.29 m 2.43 m 
24 1.97 q (8.0) 1.47 q (6.8) 1.64 q (6.8) 1.92 q (7.0) 1.55 q (7.5) 
26 1.56 s 1.24 s 3.89 d (11.6) 1.56 s 0.88 s 

   4.04 d (11.6)   
27 1.43 s 1.21 s 1.18 s 1.46 s 0.78 s 
28 0.90 d (8.0) 0.90 d (6.8) 0.88 d (6.8) 0.91 d (7.0) 0.65 d (7.5) 
29 0.88 d (6.4) 0.86 d (6.4) 0.88 d (6.8) 0.87 d (7.0) 0.80 d (7.0) 

OAc 2.14 s, 1.99 s 2.14 s 2.07 s, 2.13 s, 2.13 s 2.06 s, 2.00 s, 2.13 s 1.76 s, 1.69 s 
OMe     3.12 s, 3.02s 

OH-16 3.36 s 3.43 s 3.27 br s 3.19 br s 3.83 br s 
OH-18 2.44 d ovl 3.46 d ovl    

a Spectra were measured in CDCl3 (400 MHz); b Spectra were measured in CDCl3 (500 MHz); c Spectra were 

measured in C6D6 (500 MHz). 
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Figure 3. COSY and HMBC correlations of compounds 1–5. 

 

Figure 4. NOESY correlations of compounds 1 and 4. 

 

Hipposterol G (4) was isolated as a white powder, and its molecular formula, C35H56O9, was 

determined by HRESIMS. Its IR spectrum revealed the functionalities of hydroxyl (νmax 3471 cm−1) 

and ester carbonyl (νmax 1734 cm−1). NMR data (Tables 1 and 2) of 4 indicated the presence of three 

ester cabonyls, three oxygenated sp3 methines, an oxygenated sp3 methylene, three oxygenated sp3 

quaternary carbons, two secondary methyls, four tertiary methyls, six non-oxygenated sp3 methines, 

eight non-oxygenated sp3 methylenes, and two non-oxygenated sp3 quaternary carbons. NMR data 

(Tables 1 and 2) of 4 were similar to those of hippuristerone G [16] with the absence of the ketone 

carbon signal at δC 211.6 ppm and the presence of signal at δH 3.60 ppm NOE correlation H-3/H-5  

OH

O

OH

OO

O

O
H

OH

O

OH

OO

O

OO

O

O

O

O

OH

OO

HO

O

O

O

O

OH

O

OH

O

O
O

O
O

: 1H−1H COSY correlations
: HMBC correlations

O

O

OH

OO

O

O
H

O

1 2 3

4 5



Mar. Drugs 2011, 9 

 

 

1835

and chemical shift values for C-1–C-7 nuclei. This is in agreement with the results reported for  

5α-cholestan-3β-ol, which allowed us to propose a β orientation of OH group at C-3 (Figure 4). The 

stereochemistry of the side chain moiety was determined by comparison of the 1H and 13C NMR 

spectral data with those of hippuristerone A. 

The molecular formula of hippuristeroketal A (5) was found to be C35H58O9, as deduced from 

HRESIMS data. Its IR spectrum revealed the absorptions for hydroxyl (νmax 3471 cm−1) and ester carbonyl 

(νmax 1731 cm−1) groups. NMR data (Tables 1 and 2) of 5 indicated the presence of a ketal (δC 100.7), 

two ester cabonyls, two oxygenated sp3 methines, an oxygenated sp3 methylene, three oxygenated sp3 

quaternary carbons, two secondary methyls, four tertiary methyls, six non-oxygenated sp3 methines, 

eight non-oxygenated sp3 methylenes, and two non-oxygenated sp3 quaternary carbons. By comparison 

of the NMR spectroscopic data (Tables 1 and 2) of 5 resembled those of hippuristerone F [14] with the 

absence of ketone carbon at δC 211.6 and the presence of two methoxyl signals [δH 3.12 (3H, s), 3.02 

(3H, s) and δC 47.6 (CH3), 47.5 (CH3)] in the molecule. The HMBC correlations (Figure 3) of the 

methoxyl protons with C-3 [δC 100.7 (qC)], suggesting that C-3 was substituted by two methoxy 

groups. The stereochemistry of the side chain moiety was determined by comparison of the 1H and 
13C NMR spectral data with those of hippuristerones F, H, and I previously isolated from I. hippuris [16]. 

Compound 5 was not an artifact because 1H NMR signals for the dimethylketal were observed before 

MeOH treatment. 

Metabolites 1–5 were not cytotoxic against P-388 (mouse lymphocytic leukemia), HT-29 (human 

colon adenocarcinoma) tumor cells, and human embryonic lung (HEL) cells with IC50 values greater 

than 50 μg/mL. The anti-HCMV activity and cytotoxicity against of selected cell lines of 1–5 were 

evaluated. Compound 2 exhibited inhibitory activity against HCMV, with an EC50 values of 6.0 μg/mL.  

3. Experimental Section 

3.1. General Experimental Procedures 

Optical rotations were determined with a JASCO P1020 digital polarimeter. Ultraviolet (UV) and 

infrared (IR) spectra were obtained on JASCO V-650 and JASCO FT/IR-4100 spectrophotometers, 

respectively. NMR spectra were recorded on a Varian MR 400 NMR spectrometer at 400 MHz for 
1H and 100 MHz for 13C or on a Varian Unity INOVA 500 FT-NMR spectrometer at 500 MHz for 
1H and 125 MHz for 13C, respectively. 1H NMR chemical shifts are expressed in δ (ppm) referring to 

the solvent peaks δH 7.27 and 7.15 for CDCl3 and C6D6, respectively, and coupling constants are 

expressed in Hz. 13C NMR chemical shifts are expressed in δ (ppm) referring to the solvent peaks 

δC 77.0 and 128.0 for CDCl3 and C6D6, respectively. ESI-MS were recorded by ESI FT-MS on a 

Bruker APEX II mass spectrometer. Silica gel 60 (Merck, Germany, 230–400 mesh) and LiChroprep 

RP-18 (Merck, 40–63 μm) were used for column chromatography. Precoated silica gel plates (Merck, 

Kieselgel 60 F254, 0.25 mm) and precoated RP-18 F254s plates (Merck) were used for thin-layer 
chromatography (TLC) analysis. High-performance liquid chromatography (HPLC) was carried out 

using a Hitachi L-7100 pump equipped with a Hitachi L-7400 UV detector at 220 nm together with a 

semi-preparative reversed-phase column (Merck, Hibar LiChrospher RP-18e, 5 μm, 250 × 25 mm). 
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3.2. Biological Material 

The octocoral I. hippuris was collected by hand using scuba at Orchid Island, 70 km off the 

southeastern coast of Taiwan, in August 2008 at a depth of 9 m and stored in a freezer until extraction. 

The voucher specimen (LY-19) was identified by Prof. Chang-Feng Dai, National Taiwan University 

and deposited at the Department of Marine Biotechnology and Resources, National Sun Yat-sen 

University, Taiwan. 

3.3. Extraction and Isolation 

A specimen of octocoral I. hippuris (4.0 kg, wet weight) was minced and exhaustively extracted 

with acetone (3 × 3 L) at room temperature. The combined acetone extracts was then partitioned 

between H2O and EtOAc. The resulting EtOAc extract (25.6 g) was subjected to gravity silica gel 60 

column chromatography (Si 60 CC) using n-hexane–EtOAc and EtOAc–MeOH of increasing polarity, 

to give 44 fractions. Fraction 28 (0.86 g), eluted with n-hexane–EtOAc (1:6), was further subjected to 

Si 60 CC (n-hexane–EtOAc, 5:3) to give 4 subfractions. A subfraction 28-2 (105 mg) was separated by a 

RP-18 flash column (MeOH–H2O, 75:25 to 100:0) to give four fractions. In turn, a subfraction 28-2-2, 

eluted with MeOH–H2O (80:20), was further purified by RP-18 HPLC (MeOH–H2O–MeCN, 80:20:5) 

to affford 1 (3.0 mg) and 4 (0.5 mg). Similarly, the subfraction 28-3 (112 mg) was further subjected to 

a RP-18 flash column (MeOH–H2O, 75:25 to 100:0) to give five subfractions. A subfraction 28-3-2 

(112 mg), eluted with MeOH–H2O (70:30), was further purified by RP-18 HPLC (MeOH–H2O–MeCN, 

75:25:5) to obtain 1 (0.2 mg) and 4 (0.3 mg). Likewise, the subfraction 28-3-3, eluted with MeOH–H2O 

(80:20), was purified by RP-18 HPLC (MeOH–H2O–MeCN, 75:25:5) to give 5 (1.2 mg). Fraction 29 

(0.41 g), eluted with n-hexane–EtOAc (1:7), was subjected to Si 60 CC (n-hexane–EtOAc, 8:2 to 2:8) 

to give four subfractions. A subfraction 29-3 (309 mg), eluted with n-hexane–EtOAc (2:7), was further 

fractionated by a RP-18 flash column (MeOH–H2O, 60:40 to 100:0) to give four subfractions.  

A subfraction 29-3-2, eluted with MeOH–H2O (75:25), was further purified by RP-18 HPLC  

(MeOH–H2O, 70:30) to afford 3 (1.0 mg), 2 (1.2 mg), and 1 (0.2 mg). 

Hipposterone M (1): White amorphous powder; [α]D
25 −8 (c 0.1, CHCl3); IR (neat) νmax 3454, 

2954, 2922, 1733, 1717, 1558, 1456, 1374, 1238, 1152, 1019 cm−1; 1H NMR (CDCl3, 400 MHz) and 
13C NMR (CDCl3, 100 MHz) data in Tables 1 and 2; HRESIMS m/z 599.3556 [M + Na]+ (calcd for 

C33H52O8Na, 599.3560). 

Hipposterone N (2): White amorphous powder; [α]D
25 −11 (c 0.1, CHCl3); IR (neat) νmax 3463, 

2970, 2933, 1731, 1715, 1374, 1244, 1021, 735 cm−1; 1H NMR (CDCl3, 400 MHz) and 13C NMR 

(CDCl3, 100 MHz) data in Tables 1 and 2; HRESIMS m/z 557.3452 [M + Na]+ (calcd for  

C31H50O7Na, 557.3454). 

Hipposterone O (3): White amorphous powder; [α]D
25 −5 (c 0.1, CHCl3); IR (neat) νmax 3471, 2974, 

2939, 1731, 1449, 1373, 1247, 1023, 739 cm−1; 1H NMR (CDCl3, 400 MHz) and 13C NMR  

(CDCl3, 100 MHz) data in Tables 1 and 2; HRESIMS m/z 657.3616 [M + Na]+ (calcd for  

C35H54O10Na, 657.3614). 
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Hipposterol G (4): White amorphous powder; [α]D
25 +5 (c 0.1, CHCl3); IR (neat) νmax 3471, 2928, 

2860, 1734, 1454, 1371, 1244, 1023, 736 cm−1; 1H NMR (CDCl3, 500 MHz) and 13C NMR  

(CDCl3, 125 MHz) data in Tables 1 and 2; HRESIMS m/z 643.3819 [M + Na]+ (calcd for  

C35H56O9Na, 643.3822). 

Hppuristeroketal A (5): White amorphous powder; [α]D
25 +21 (c 0.1, CHCl3); IR (neat) νmax 3471, 

2974, 1731, 1373, 1248, 1041, 739 cm−1; 1H NMR (C6D6, 500 MHz) and 13C NMR (CDCl3, 125 MHz) 

data in Tables 1 and 2; HRESIMS m/z 645.3975 [M + Na]+ (calcd for C35H58O9Na, 645.3978). 

3.4. Cytotoxicity Assay 

Cytotoxicity was determined on P-388 (mouse lymphocytic leukemia), HT-29 (human colon 

adenocarcinoma), and A-549 (human lung epithelial carcinoma) tumor cells using a modification of 

the MTT colorimetric method according to a previously described procedure [19,20]. The provision of 

the P-388 cell line was supported by J.M. Pezzuto, formerly of the Department of Medicinal Chemistry 

and Pharmacognosy, University of Illinois at Chicago. HT-29 and A-549 cell lines were purchased 

from the American Type Culture Collection.  

3.5. Anti-HCMV Assay 

To determine the effects of natural products upon HCMV cytopathic effect (CPE), confluent human 

embryonic lung (HEL) cells grown in 24-well plates were incubated for 1 h in the presence or absence 

of various concentrations of tested natural products. Then, cells were infected with HCMV at an input 

of 1000 pfu (plaque forming units) per well of 24-well dish. Antiviral activity was expressed as  

IC50 (50% inhibitory concentration), or compound concentration required to reduce virus induced CPE 

by 50% after 7 days as compared with the untreated control. To monitor the cell growth upon treating 

with natural products, an MTT-colorimetric assay was employed [21]. 
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