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Background: Volatile organic compounds (VOCs) are potential biomarkers for cancer detection in breath, but it is unclear if they
reflect specific mutations. To test this, we have compared human bronchial epithelial cell (HBEC) cell lines carrying the KRASV12

mutation, knockdown of TP53 or both with parental HBEC cells.

Methods: VOC from headspace above cultured cells were collected by passive sampling and analysed by thermal desorption gas
chromatography mass spectrometry (TD-GC–MS) or sensor array with discriminant factor analysis (DFA).

Results: In TD-GC–MS analysis, individual compounds had limited ability to discriminate between cell lines, but by applying DFA
analysis combinations of 20 VOCs successfully discriminated between all cell types (accuracies 80–100%, with leave-one-out cross
validation). Sensor array detection DFA demonstrated the ability to discriminate samples based on their cell type for all
comparisons with accuracies varying between 77% and 93%.

Conclusions: Our results demonstrate that minimal genetic changes in bronchial airway cells lead to detectable differences in
levels of specific VOCs identified by TD-GC–MS or of patterns of VOCs identified by sensor array output. From the clinical aspect,
these results suggest the possibility of breath analysis for detection of minimal genetic changes for earlier diagnosis or for genetic
typing of lung cancers.

Lung cancer development is associated with multiple genetic and
epigenetic alterations, involving both tumour suppressor genes (e.g.,
TP53) and specific oncogenes (e.g., KRAS), which affect cell
proliferation and apoptosis (Massion and Carbone, 2003). The
genetic lesions found in lung cancer are manifold, vary to some
extent with the histological sub-type and can impact both on the
therapeutic intervention chosen and on outcome (Osada and
Takahashi, 2002; The Clinical Lung Cancer Genome Project
(CLCGP) and Network Genomic Medicine (NGM), 2013). TP53
is a tumour suppressor gene, frequently subject to both inactivating
mutations and genetic loss in lung cancer (Takahashi et al, 1989);
TP53 protein binds to the DNA and is involved in cell cycle
regulation, induction of apoptosis and maintenance of genome
integrity (Vousden and Lu, 2002). TP53 was the most commonly
mutated gene in a recent genomic classification of lung cancer and
found in both small cell and non-small cell lung cancers (The
Clinical Lung Cancer Genome Project (CLCGP) and Network

Genomic Medicine (NGM), 2013). In the same study, KRAS had the
second highest mutation incidence (The Clinical Lung Cancer
Genome Project (CLCGP) and Network Genomic Medicine (NGM),
2013); being most common in adenocarcinoma and large cell lung
cancer. The human KRAS oncogene encodes a small guanosine
triphosphate (GTP)-binding protein, which is located on the inner
membrane and functions as a messenger for growth stimuli. Both
TP53 and KRAS mutation have been implicated in response of
patients to therapy. Expression of TP53 may predict good prognosis
from adjuvant chemotherapy in patients with NSCLC (Bennett et al,
1993; Coate et al, 2009) and mutation of TP53 is associated with
poor survival in EGFR-mutant cases (The Clinical Lung Cancer
Genome Project (CLCGP) and Network Genomic Medicine (NGM),
2013). Lung cancers carrying KRAS mutation show resistance to
tyrosine kinase inhibitors (Pao et al, 2005).

The most reliable method for the detection of lung cancer
genetic mutation is through DNA sequencing, which requires a
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good quality of tissue specimen available from biopsy (Fassina et al,
2009; Lim et al, 2009). However, this procedure is invasive, time
consuming, expensive, unsuitable for non-resectable tumours and
requires histopathological evaluation under the microscope
(Hamilton, 2012). Additionally, DNA sequencing may delay
therapy and may not be suitable for large-scale screening.
Nevertheless, it is clear that a better understanding of the
molecular pathogenesis of lung cancer through specific biomarkers
is needed in order to improve diagnosis and treatment and by that
to reduce mortality rate.

Recent work suggests that analysis of signatures based on
volatile organic compounds (VOCs) may lead to novel biomarkers
for lung cancer (Chen et al, 2007; Phillips et al, 2008; Dragonieri
et al, 2009; Amann et al, 2011; Mazzone et al, 2011; Hakim et al,
2012; Broza and Haick, 2013). Genetic alterations associated with
tumour growth may lead to VOC alterations in the microenviron-
ment of the cell, and thus in the breath of the patient. These VOCs
can be detected in a non-invasive manner, either in the headspace
of the blood, saliva or cancer tissue (i.e., the air above a sample
sealed in a container) or directly in the exhaled breath due to their
relatively high vapour pressure (40.1 mm Hg). The possibility of
using VOCs as surrogate markers for genetic sub-types of lung
cancer in situations where biopsies are unavailable for DNA
sequence analysis is intriguing, but requires greater insight into the
mechanism of mutation-driven VOC differences, if it is to be
applied in a rational manner.

Previous studies (Smith et al, 2003; Chen et al, 2007; Filipiak
et al, 2008; Sponring et al, 2009a; Barash et al, 2009; Sulé-Suso et al,
2009; Filipiak et al, 2010; Sponring et al, 2010; Peled et al, 2013)
have investigated the ability of different analytical methods or
nanoarrays to assign unique volatolomic fingerprints to cancer cell
lines by analysing the headspace VOCs. However, while comparing
multiple cancer cell lines may reflect the wide genetic diversity of
lung tumour samples, the same genetic diversity is a hindrance
when trying to make direct links to specific cancer-related
pathways. Moreover, cancer cell lines are, by their nature,
genetically unstable with high levels of aneuploidy (Ross et al,
2000). This provides the cells with some plasticity, but molecular
studies may suffer from genetic drift and thus it might be more
difficult to pin VOC patterns down to individual pathways.

A more tractable system to study the effect of specific cancer
driver mutations on volatile release is provided by human
bronchial epithelial cells (HBECs) that have been genetically
manipulated (Sato et al, 2006). HBECs, immortalised through
expression of telomerase and activation of CDK4, are genetically
stable compared with cancer cell lines, with minimal aneuploidy
(Ramirez et al, 2004). This provides a parental cell line in which the

effect of additional genetic lesions can be investigated. In the
derived cell line HBEC-3KT53, TP53 has been knocked down by
RNAi knockdown, whereas HBEC-3KTR cell line expresses mutant
KRASG12V (Sato et al, 2006). In a fourth cell line, HBEC-3KTR53,
both genetic alterations were induced by simultaneous transfection
(Sato et al, 2006). The three genetically altered HBEC cell lines and
the vector only control (HBEC-3KT) allow us to study the effect of
individual mutations on the VOC signature of lung cancer
precursors and potentially model the earliest stages of lung
tumorigenesis, as these lesions may be present in those at risk of
subsequently developing lung cancer. TP53 and KRAS mutations
are common mutations in lung cancer, sometimes occur together
and have been found early in the progression of lung tumorigenesis
(Massion and Carbone, 2003).

The unique volatolomic signature of the four different HBEC
cell lines has been studied by means of thermal desorption
combined with gas chromatography mass spectrometry (TD-GC–
MS) and artificial intelligence nanoarray (Figure 1). The TD-GC–
MS provides us with specific identification of the chemical
composition of the VOCs, while the nanoarray is able to
distinguish between the different HBEC cell lines based on the
collective response of their headspace without the need for specific
identification. These studies provide a proof-of-principle for the
detection of different VOC patterns in closely related cells with
minimal genetic alterations.

MATERIALS AND METHODS

Passive collection of headspace. All HBECs (both parental and
the derived HBECs) were cultured as monolayers with K-SFM (Life
Technologies, Gaithersburg, MD, USA) medium containing
50 mg ml� 1 bovine pituitary extract and 5 ng ml� 1 EGF (Life
Technologies). The parental HBEC-3KT cell line and three derived
HBEC cell lines have been kindly provided to us by Professor John
Minna and Professor Adi Gazdar.

For headspace sampling (Figure 1), two million cells were placed
into 10-cm diameter dishes; passive VOC sampling was performed
as previously described using a passive sampling badge (Ultra II,
SKC Limited, Blanford Forum, UK) filled with Tenax TA sorbent
(SKC Limited) placed in a 16-cm dish with the 10-cm culture
(Barash et al, 2009; Barash et al, 2012; Peled et al, 2013). Tenax
samples were collected following 3 days culture under standard
conditions (humidified, 37 1C, 5% CO2). Control headspaces
samples were also collected from plates containing only empty
medium treated with the same incubation conditions. Final cell
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Figure 1. In vitro studies of the unique volatolomic signatures of HBEC cell lines. (A) Open 10-cm cell culture plates with different HBEC cell lines
were grown in controlled temperature and humidification atmosphere in 16-cm plates for headspace sampling on Ultra II SKC badges filled with
Tenax TA. After the sorption process, headspace samples were transferred to TD-GC–MS (B) and artificial intelligence nanoarray (C) to analyse the
volatolomic signature of the studied genetic changes. Analysis of TD-GC–MS and artificial intelligence nanoarray has been conducted for multiple
comparisons (D).
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numbers were approximately 10 million per flask (no significant
differences found between cell lines). Cell density control
experiments were performed plating four-fold more and four-fold
fewer cells.

TD-GC–MS VOC analysis. VOCs in the headspace were analysed
using a TD-GC–MS QP2010 instrument (Shimadzu Corporation,
Duisburg, Germany) with an SLB-5ms capillary column (with 5%
phenyl methyl siloxane; 30 m length; 0.25 mm internal diameter;
0.5mm thicknesses; from Sigma-Aldrich, Rehovot, Israel), com-
bined with a thermal desorption (TD) system (TD20; Shimadzu
Corporation). The following oven temperature profile was set: (a)
5 min at 35 1C; (b) increasing temperature until 180 1C at rate of
5 1C min� 1; (c) increasing temperature until 290 1C at rate of
13.5 1C min� 1; (d) 290 1C for 1 min. The GC–MS chromatograms
were analysed using the GC–MS post-run analysis program
(version 2.53; Shimadzu Corporation), and the compounds were
tentatively identified through spectral library match (Compounds
library of the National Institute of Standards and Technology,
Gaithersburg, MD, USA). Quantitation was performed using area-
under-curve values; subtracting relevant media-only headspace
controls values (collected during the same experiment conditions).

Statistical tests were performed using SAS JMP (version 8.0, SAS
Institute, Cary, NC, USA) for Wilcoxon/Kruskal–Wallis tests in
search for compounds expressing differential values. Discriminant
function analysis (DFA) was used as a supervised linear pattern
recognition algorithm for data classification, with leave-one-out
cross validation for accuracy confirmation. DFA aims to detect the
most significant canonical variable such that the variance between
the pre-defined classes is maximised, while the variance within
each class is minimised (Ionescu et al, 2002). This way, DFA also
serves as a heuristic to select the compounds (or signals) that most
contribute to the separation between the study-groups. The DFA
output variables (canonical variables, CVs) are obtained in
manually orthogonal dimensions; thus, DFA effectively reduces
the dimension of the experimental data. Furthermore, using the
optimal cut-off of a receiver operating characteristic (ROC) curve
based on CV1, the area under curve (ROC-AUC), sensitivities and
specificities were also estimated (SPSS vers20).

VOC identification and calibration. VOCs identification and
concentration were determined through external standards and
calibration curves. Glass TD-tubes (Sigma-Aldrich) filled with the
same tenax used for the headspace sampling were exposed to the
calibration gas for 3 min at flow rate of 100 ml min� 1, stimulating
B300 ml of passive headspace sampling. A commercial permea-
tion/diffusion tube dilution (PDTD) system (Umwelttechnik MCZ,
Bad Nauheim, Germany) was used to produce gaseous standards in
defined concentrations. As a carrier gas, we used purified dry
nitrogen (99.9999%) from a commercial nitrogen generator (N-30,
On Site Gas Systems, Newington, CT, USA). A constant gas flow of
200±1 cm3 min� 1 of purified nitrogen was mixed with a constant
mass flow of vaporised VOCs exiting the diffusion tube (Dynacal,
VICI Metronics, Poulsbo, WA, USA) placed inside the PDTD. The
mixture from the PDTD was further diluted with nitrogen to
achieve the desired concentration in the range from few p.p.b. to
few p.p.m. (typically two orders of magnitude). The VOC
concentration could be determined by manipulating the diffusion
tube diameter, the oven temperature and the vaporised VOC mass
flow rate. The concentrations of VOC in TD-GC–MS for analysis
of each cell line are given in Supplementary Table S1, along with
the partition coefficient. Partition coefficients were calculated from
the formula: lb:a¼ lO:W � lW:a � (aþ 0.3b)þ lW:a(cþ 0.7b) (Haick
et al, 2013) where lb:a is the partition coefficient blood:air, lO:W is
octanol:water partition coefficient and lW:a is Henry constant at
25 1C. The values for lb:a were either calculated from the formula
above or taken directly from published data (Mochalski et al, 2012;
Haick et al, 2013).

Artificial intelligence nanoarray analysis. Headspace VOCs were
further analysed using artificial intelligence nanoarray based on
cross-reactive chemiresistors. The main two types of chemiresistors
used in the nanoarray were gold nanoparticles (GNPs) and single-
wall carbon nanotubes (SWCNTs) each capped with a different
organic layer. The GNPs and the SWCNTs serve as the electron
transfer core, while the organic layer serves as the recognition
layer, allowing the adsorption of vast types of VOCs onto the
sensors and thus enhancing sensitivity and specificity for a
particular sensing application. Seventeen different sensors were
mounted onto a custom polytetrafluoroethylene circuit board,
which was then placed inside a stainless steel test chamber with a
volume of 100 cm3. Full information on the synthesis and
fabrication of the nanoarray is described in previous work
(Barash et al, 2009; Tisch and Haick, 2010; Barash et al, 2012).

The headspace samples were heated at 270 1C for 10 min in a
750-ml stainless steel manually TD device to release the headspace
VOCs. Pulses of the headspace sample from the TD chamber were
then delivered by a gas sampling system into the test chamber
containing the array of cross-reactive nanomaterial-based sensors
(Barash et al, 2012; Peled et al, 2013). The test chamber was
evacuated between exposures to release the VOCs that the sensors
adsorbed with full recovery. An Agilent Multifunction switch
34980 was used to measure the resistance of all the sensors
simultaneously as a function of time. Each headspace sample has
been recorded for one cycle, which included 5 min of the sensors’
baseline response in vacuum, followed by 5 min of VOC exposure,
ending with another 5 min in vacuum. Each sensor in the array
responded to all of the headspace VOCs. The collective responses
from the reservoir of sensors was then analysed using the statistical
pattern recognition algorithm DFA (as above).

RESULTS

The volatolomic signature of TP53 and KRAS genetic alteration in
human bronchial epithelial cell lines was studied in two steps. The
first step was to analyse the cell line headspace and to identify
specific VOCs associated with minimal genetic changes using a
common analytical method, that is, TD-GC–MS. This TD-GC–MS
analysis aimed to detect differences in individual VOC between the
different HBEC cell lines and define discriminating compounds.
The second step was to perform the same comparisons on
independent samples using artificial intelligence nanoarray
technology.

VOC quantification. Analysis of the cell headspace by TD-GC–
MS identified 51 common compounds that formed a data set for
multiple binary comparisons based on TD-GC–MS quantitation
(area-under-curve values) relative to media-only intra-experiment
controls (Supplementary Tables S1 and S2). Using a nonparametric
Wilcoxon/Kruskal–Wallis test to identify differential levels (pair-
wise analysis between cell lines; between 12 and 40 independent
cell line measurements per comparison, Table 1) at P-value of
o0.05, four compounds were significantly different in at least one
binary comparison (Table 1, Supplementary Table S1). The
compounds are: 2-methylpropene; benzaldehyde; tridecane and
1,2,3-trimethylbenzene. For the binary comparison discriminating
KRAS mutation HBEC-3KTR cells from the parental HBEC-3KT
cells and for the binary comparison of the 2 KRAS-mutated cells
(HBEC-3KTR and HBEC-3KTR53) compared with cells with no
KRAS mutation (HBEC-3KT and HBEC-3KT53), no single
compound was found to be significantly different. However, 2-
methylpropene was found at higher concentrations in HBEC-
3KT53 cells as compared with HBEC-3KTR53 cells, possibly
indicating that the genetic background of a cell influences the VOC
differences that occur with further mutation (i.e., KRAS mutation).
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Single compounds were able to discriminate between each
comparison involving loss of TP53 (Table 1). Where discrimina-
tion was possible with single compounds, optimum cut-offs from
ROC analysis gave accuracies of 77–87% (Table 1) and quantities
were significantly different between cells based on mutation status
(Wilcoxon P-values 0.0066–0.049).

Concentrations of VOCs identified in TD-GC–MS analysis are
available in Supplementary Information (Supplementary Table S1)
together with their partition coefficients, which can be used to
estimate the concentration of the VOCs in blood and breath, as
explained in the paper of Haick et al (2013). Based on this
principle, discriminatory VOCs detected here would be expected to
be detectable in breath samples.

VOC discriminant analysis. Performing discriminant factor
analysis (DFA) on the set of 51 compounds, we identified 16
compounds in addition to the four above (Table 1) that in different
combinations provided discrimination of between 72.5% and 100%
accuracy with leave-one-out cross-validation between the different
genetic alterations (Figure 2). Another way to look at the same data
is by ROC analysis of DFA 1st canonical variable (CV1) values and
comparison of CV1 values themselves. This resulted in ROC-area-
under-curve (ROC-AUC) values of 0.87–1.0 and defining an
optimum cut-off by ROC gave good sensitivities (70–100%) and
specificities (75–92%), equivalent to accuracies of 83–100%. DFA
CV1 values were significantly different between cells based on
mutation status for all comparisons (Wilcoxon P-values 0.00005–
0.01, Table 1, Figure 2).

When applying the DFA model for all four cell lines (Table 1,
Figure 2) ROC curves gave an ROC-AUC value of 0.88 (95% CI
0.74–1.0, P¼ 0.0002) for discrimination of all mutated cell lines
(HBEC-3KTR, HBEC-3KT53 and HBEC-3KTR53) vs the parental
HBEC-3KT cell line. In addition, the accuracy when applying
leave-one-out DFA analysis was 80%, compared with 71% for the
one compound (benzaldehyde) that was found to be significantly
different (Table 1, Figure 2). It was also possible to discriminate
cells with KRAS mutation (HBEC-3KTR and HBEC-3KTR53)
compared with those without KRAS mutation (HBEC-3KT and
HBEC-3KT53), irrespective of TP53 status (Table 1). Similarly,

TP53 downregulation could be discriminated irrespective of KRAS
status (Table 1, Figure 2).

Two interesting compounds are 2-methylpentane and 2,2,3-
trimethylpentane (Table 1, Supplementary Table S1), which differ
only in two methyl groups and were found to be totally depleted in
two out of the four cell lines. 2-methylpentane was not found in the
parental HBEC-3KT cell line and in cells expressing mutant
KRASG12V; 2,2,3-trimethylpentane, on the other hand, was totally
depleted in cells in which TP53 has been knocked down (HBEC-
3KTR53 and HBEC-3KT53).

Artificial intelligence nanoarray. Artificial intelligence nanoarray
experiments have been conducted in two phases. In the first phase,
we compared the headspace signature of 15 samples from non-
mutated cells (HBEC-3KT) with 12 samples from cells that express
mutant KRASG12V (HBEC-3KTR). The samples were randomly
selected for analysis in the nanoarray experiment. All 17 sensors in
the array gave a response when exposed to the headspace samples.
The signals obtained from the nanoarray response were processed
and analysed by DFA to determine the features which were best
able to separate the two previously defined sets of samples (based
on KRAS mutation status). DFA identified three features that were
able to discriminate between mutant and non-mutant cells with
100% sensitivity and specificity at the optimum cut-point
(Supplementary Figure S1a). In order to address the ability of
the discriminant variable to predict the RAS mutant status of cell
lines based on a pre-determined DFA CV1 cut-off, data were
reanalysed by randomly selecting a training set (50% of the
samples, used to produce the DFA plot based on the selected
features) and a test set (the remaining samples). When transposing
the test sample data onto the DFA CV1 values (Supplementary
Figure S1b) their RAS mutant status could be predicted. In this
instance, all of the test samples had their mutation status correctly
predicted by DFA leading to an accuracy of 100%. Random label
shuffling validation was also performed (Supplementary Figure
S1c), demonstrating that discrimination was related to mutation
status and not an arbitrary ability of DFA analysis to categorise
samples.

Having demonstrated the ability of the nanoarray detection to
discriminate cell headspace based on the presence of a single

Table 1. One compound and discriminant factor analysis model for gas chromatography mass spectrometry data

One compound model Discriminant factor analysis model

Cell lines n Comparison Compound

Accuracy
(receiver
operating

characteristic)
Wilcoxon
P-value Compound

Accuracy
(leave-

one-out)
Wilcoxon
P-value

3KT vs 3KTR 28 � /þ KRAS None Octanalþ 1-methylethyl benzeneþ
2-phenoxyethanolþ 1-butanol

91% o0.0001

3KT53 vs 3KTR53 12 � /þKRAS 2-Methylpropene 86% 0.0374 2,2,4-Trimethylpentaneþ 2-methylpropene 92% 0.004

3KT and 3KT53 vs
3K TR and 3KTR53

40 � /þKRAS None 2,4-Dimethylheptaneþ cyclohexanoneþ
decanalþ 2-methylpropene

86% o0.0001

3KT vs 3KT53 18 � /þTP53 Benzaldehyde 82% 0.0312 2-Methyloctaneþ acetone 83% 0.001

3KTR vs 3KTR53 22 � /þTP53 Tridecane 79% 0.0325 Ethanolþ acetoneþ 2-methylpropene 100% 0.0004

3KT and 3KTR vs
3KT53 and 3KTR53

40 � /þTP53 Benzaldehyde 77% 0.0066 Benzaldehydeþ tetradecaneþ
2-methylpropeneþ2,2,4-trimethylpentane

83% o0.0001

3KT vs 3KTR53 18 � /þKRAS
and TP53

Benzaldehyde 82% 0.0312 Ethanolþ 2-methylpropene 94% 0.0007

3KTR vs 3KT53 22 KRAS vs
TP53

1,2,4-Trimethylbenzene 87% 0.027 Decaneþ tridecane 86% 0.01

3KT vs 3KTR and
3KT53 and 3KTR53

40 Any mutation Benzaldehyde 71% 0.0417 Ethanolþ 2-hydroxy
benzaldehydeþbenzaldehydeþdecanal

80% 0.0002
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mutation, we extended the studies to provide an independent
validation of KRAS mutation detection and extend detection to
other mutations (and combinations of mutations). Examples of
CV1 differences are shown for each comparison in Figure 3.
Nanoarray detection followed by DFA analysis proved to have
significant specificity and sensitivity for: KRAS mutation (with or
without additional TP53 knockdown); TP53 knockdown (with or
without additional KRAS mutation); or combinations of mutations
(Figure 3, Table 2). For example, we performed DFA analysis of all
mutant cell lines (HBEC-3KTR, HBEC-3KT53, HBEC-3KTR53)
against the parent line (HBEC-3KT) and identified four features
that together gave an accuracy of 83% (in leave-one-out cross-
validation analysis) (Table 2, Supplementary Table S4, Figure 3).
The associated ROC curve gave an ROC-AUC of 0.87 (95% CI
0.75–0.99), P¼ 0.0002; using the optimal cut-off the sensitivity was
70%, specificity 92% and accuracy 82%.

Analysing the four cell lines together (e.g., HBEC-3KT and
HBEC-3KT53 (no KRAS mutation) vs HBEC-3KTR and HBEC-
3KTR53 (with KRAS mutation)) gave us greater sample numbers
(potentially giving greater statistical power), but also allowed us to
address the accuracy of sensor detection for one genetic alteration
(KRAS) in the presence (or absence) of a second (TP53 depletion).

Comparison of multiple DFA models. DFA models were built
using the same data, but specifying different numbers of
discriminatory features (limiting to four to avoid over-fitting).
While including more features in the DFA model improved
accuracy (Supplementary Table S3), it was sometimes possible to
achieve very good discrimination with a single sensor feature as
was obtained for the second phase. For example, different features
of the same single sensor (S12) had 85% accuracy in discriminating

3KTR from 3KT (DRmid) and 82% accuracy for 3KT vs 3KTR53
(DRpeak).

For any one comparison, equally good discrimination accuracy
was achieved by several different sets of features (representative
examples are given in Table 2 and Supplementary Table S3).
Where DFA was performed with both three and four sensor
features (Supplementary Table S4, Supplementary Figure S3), there
was a significant correlation between CV1 values, despite sensor
features being mutually exclusive. This seems to indicate that there
is some inherent redundancy in the sensor arrays, which might be
utilised to provide added robustness. It is unclear if this is due to
the same VOC being detected by different sensors, or multiple
VOCs associated with mutation.

Validation of the sensor array results. In addition to demon-
strating discrimination on the basis of mutation status, we wanted
to test the strength of the sensor arrays when facing confounding
factors. One feature of the second phase of experiments was that
we performed sampling of pairs of cell lines within the same
incubator with the same batch of media, whereas in the first phase
the HBEC-3KT and HBEC-3KTR cells were sampled on different
days. The greater sensitivity and specificity seen in the first phase
may therefore partly reflect additional differences in either the
environment or batches of media between experiments. Conversely
the lower accuracy seen, for comparisons made between cells
grown at the same time, might reflect some admixture of
headspace between culture vessels (cells having been grown in
culture plates that permit some diffusion, Figure 1); however, no
evidence of this was seen for media-only controls included in some
experiments. Media controls (media without cells incubated with
passively samples within the same experiment) did not partition
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Figure 2. DFA plot of CV values (y axis) that were calculated from the multidimensional data output obtained from the VOCs detected in the
headspace of the cells by TD-GC–MS. A–C represent the CV values of the parental HBEC-3KT vs each of the mutated cell lines. D and E represent
the comparison between the mutated cell line HBEC-3KTR vs the mutated cell lines HBEC-3KT53 and HBEC-3KTR53, respectively. F represents
the comparison between cells carrying the TP53 knockdown but that differ in their KRAS mutation status. G–I represent the CV plots of all cell lines
differing by KRAS mutation status (G), by TP53 status (H) or any mutation vs the parental non-mutated HBEC-3KT cell line (I). Each dot in the figure
represents one sample.
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consistently with the cell line grown in the same experiment (data
not shown).

In order to investigate the contribution to experimental variation
made by different experiments, we compared multiple batches of
samples produced on different days by DFA (Supplementary Figure
S2a). The DFA analysis produced a CV1 that discriminated between
the two different cell lines, but provided no discrimination for
experiment number. Similarly, control experiments indicated that
incubator position and experiment date were not confounding
factors in this DFA discrimination.

Within the time frame of our experiments, there are some
minor differences in cell density by the end of the experiment

between cell lines, but these are not statistically significant (mean
cell number at end of 3-day incubation is 10 million when
starting with two million). By varying the starting number of
cells four-fold up or down, it was shown that cell density can
have some effect on VOC signature, in that DFA analysis of
sensor array data was able to discriminate on the basis of cell
numbers (Supplementary Figure S2b). However, this did not
prevent us from discriminating on the basis of mutation
(Supplementary Figure S2c). For this reason, while the majority
of samples used using standardised cell numbers (two million
cells), we did not exclude data starting with four-fold more or
four-fold less.
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Figure 3. DFA plot of CV values (y axis) that were calculated from the multidimensional data output obtained from the responses of the
nanoarray to the VOCs in the headspace samples. Panels as described for Figure 2.

Table 2. Discriminant factor analysis and receiver operating characteristic analysis values of artificial intelligence nanoarray results, 2nd cohort.

Accuracy Receiver operating characteristic analysis Wilcoxon

Cell lines n Comparison
Leave-

one-out
Leave-

third-out Sensitivity Specificity

Area under curve
(95% confidence

interval) P-value

3KT vs 3KTR 27 � /þKRAS 93% 89% 100% 92% 0.96 (0.88–1) 0.00005

3KT53 vs 3KTR53 20 � /þKRAS 90% 83% 90% 90% 0.88 (0.72–1) 0.004

3KT and 3KT53 vs 3KTR
and 3KTR53

47 � /þKRAS 81% 81% 80% 86% 0.83 (0.7–0.95) 0.0001

3KT vs 3KT53 22 � /þ TP53 77% 64% 80% 75% 0.76 (0.55–0.97) 0.04

3KTR vs 3KTR53 25 � /þ TP53 88% 79% 100% 80% 0.88 (0.74–1) 0.002

3KT and 3KTR vs 3KT53
and 3KTR53

47 � /þ TP53 81% 64% 85% 81% 0.82 (0.69–0.96) 0.0002

3KT vs 3KTR53 22 � /þKRAS and TP53 91% 77% 90% 92% 0.88 (0.69–1) 0.003

3KTR vs 3KT53 25 KRAS vs TP53 92% 84% 93% 90% 0.94 (0.84–1) 0.0003

3KT vs 3KTR and 3KT53
and 3KTR53

47 Any mutation 83% 86% 70% 92% 0.87 (0.75–0.99) 0.0002
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DISCUSSION

In principle, TD-GC–MS results show that there are detectable
VOC differences between cell lines with minimal genetic
differences. For example, benzaldehyde was found to be a
significant compound in the volatolomic signature of both KRAS
and TP53. Benzaldehyde was previously found to be decreased in
NSCLC adenocarcinoma compared with SCLC and was also found
in decreased levels in cell lines with squamous cell carcinoma
histology as compared with adenocarcinomas (Barash et al, 2012;
Peled et al, 2013). A suggested explanation of the decrease in
benzaldehyde concentration is the upregulation of aldehyde
dehydrogenase in lung cancer cells (Barash et al, 2012), which
uses aldehydes as substrates. In a different study, we found
benzaldehyde as a major factor in the headspace signatures of cell
lines carrying EGFR and EML4-ALK mutation and also in lung
cancer cell lines without EGFR, KRAS or EML4-ALK mutation. On
cell lines having KRAS mutation, benzaldehyde was found to be
totally depleted. In this study, benzaldehyde was found at lower
concentrations in cells carrying KRAS mutation, TP53 knockdown
or both alterations as compared with the parental HBEC-3KT cells.

The VOCs contributing to DFA discrimination are from the
families of alkanes, methylated alkanes and alkenes, benzene
derivatives, ketones, aldehydes and alcohols. These types of
compounds were found and discussed in previous studies. Levels
of VOCs as detailed in Supplementary Table S1 are in the range of
few p.p.b. to tens of p.p.b. for alkanes (straight and methylated) and
for alkenes. Levels of ketones and alcohols are in the range of
hundreds of p.p.b. to few p.p.m. These values are similar to what was
previously published by different groups (Filipiak et al, 2008; Filipiak
et al, 2010). As seen in Supplementary Table S1, aldehydes levels
were decreased (except for decanal) in all mutated cells as compared
with parental HBEC-3KT. This may be due to upregulation of
aldehyde dehydrogenase in cancer cells as explained previously.

A VOC detected here in association with TP53 downregulation
(being depleted in cells with wild-type TP53), 2-methylpentane has
previously been detected in NCI-H2087 cells (Sponring et al,
2009b), a lung adenocarcinoma cell line with mutated TP53. This
may imply a possible biochemical pathway that involves alkane
methylation in the TP53 downregulation in carcinogenesis, but far
more studies are needed in order to achieve any conclusion.
Another VOC being totally depleted in lung cancer cell lines
associated with TP53 downregulation is 2,2,3-trimethylpentane.
This compound was found also in the paper of Sponring et al
(2009b) (2,3,3-trimethylpentane) but showed no significant
increase or decrease as compared with medium control. This
may be due to the difference in one methyl group, but further
investigation is needed in order to achieve a conclusive argument.

The expected concentration of discriminant VOCs in the breath
can be estimated using the partition coefficient and concentration
of the VOCs in the cells headspace, as explained in the paper of
Haick et al (2013). VOCs levels found here are calculated to be
detectable in breath and were partly found in previous studies of
breath analysis, this supports the idea that in the future, this might
be utilised as a way to analyse genetic mutations through breath
analysis. An example of such compound is 4-methyloctane, that
was found to be increased in all mutated cell lines and was also
found to be significantly increased in the breath of lung cancer
patients as compared with healthy controls (Phillips et al, 2003)
and in CALU-1 and NCI-H2087 lung cancer cell lines (Filipiak
et al, 2008; Sponring et al, 2009b). However, in order to confirm
the calculated breath concentration of the studied VOCs, further
empirical studies must be conducted in order to account for the
number of tumour cells, as compared with the number of healthy
cells in lung cancer tissue, and for other tissue that contribute to
the breath volatolome.

As the artificial intelligence nanoarray used is based on the
physiochemical response to the collective VOC signal (or
volatolomic signature), it is unable to discriminate which VOCs
contribute to a discriminatory signal. However, it has previously
been shown to provide a more accurate identification when
multiple signals (features) are integrated into a single DFA CV1
value (Brereton, 1990; Ionescu et al, 2002). The inherent
integration of multiple signals, that is a feature of both the
nanoarrays themselves and the DFA technique, is likely a
significant part of the reason for their better performance
compared with TD-GC–MS, although that the sorbent material
and TD-GC–MS technique employed may limit the range of VOC
detected is also a factor. In the present study, nanoarray
comparisons together with pattern recognition methods (i.e.,
DFA) demonstrated the ability to discriminate metabolic differ-
ences due to individual mutations in the presence of different
genetic backgrounds based on volatolomic signature. While the
greater accuracy and potential ease of use provided by sensor
array-based techniques may prove a distinct advantage in the
clinical setting, current research still benefits form VOC identifica-
tion provided by TD-GC–MS and analogous techniques, as VOCs
identified can be compared between studies and linked to
metabolic processes. It is likely that the VOCs identified by TD-
GC–MS and those discriminatory on sensor arrays significantly
overlap, as has been demonstrated previously using synthetic
mixtures of discriminatory VOC identified in lung cancer breath,
including 4-methyloctane detected here (Peng et al, 2009).

The presented results of this study may, in the future, lead to the
development of nanomaterial-based device for the detection of the
genetic mutation profile from the headspace of a lung cancer tissue
specimen obtained through biopsy, or from patients’ breath. This
could help guiding doctors in making medical decisions more rapidly
than current molecular genetic approaches. However, it should be
noted that the biochemical origin of most VOC in breath is not fully
elucidated and it is possible that other organs and microbiota will
also make a contribution. Although the presence of specific cancer
driver mutations (RAS and TP53) apparently has an influence on the
volatolomic profile of cells lines, it is unclear if that is a direct effect of
these cancer signalling pathways, or accounted for by additional
genetic alterations underlying the variations in metabolic phenotype.
It might therefore be possible for different genetic alterations to
converge on the same metabolic pathway, giving similar VOC
signatures or confounding the detection of either mutation; this may
partly explain the lower accuracy seen when detecting RAS mutation
across multiple cancer-derived cell lines harbouring additional
mutations (Peled et al, 2013).

The HBECs used in this study, despite being immortalised
(through addition of CDK4 and TERT) and having up to two
additional cancer-related mutations (KRAS activation and knock-
down of TP53) are not malignant when introduced into mouse model
systems (Sato et al, 2006). Hence they represent early, pre-cancerous
stages of lung cancer progression. This raises the possibility that it
may be possible to detect earlier stages of lung tumours, or pre-
cancerous conditions, and identify those at higher risk of developing
cancer for recruitment into screening programmes.

The genetic alterations utilised in the study affect two of the
most frequently in mutated genes in lung cancer (Massion and
Carbone, 2003; The Clinical Lung Cancer Genome Project
(CLCGP) and Network Genomic Medicine (NGM), 2013;
Weinstein et al, 2013). While KRAS mutations are most prevalent
in NSCLC of adenocarcinoma histology, TP53 mutation (usually
resulting in loss of function as mimicked by the depletion in the
HBEC-3KT53 and HBEC-3KTR53 cells) is common across
multiple histological types; for example, in The Cancer Genome
Atlas (Weinstein et al, 2013) KRAS mutations: 28% adenocarci-
noma and 1% squamous cell carcinoma, TP53 mutations: 53%
adenocarcinoma and 79% squamous cell carcinoma. This would
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support the possibility of using the discriminatory features
identified here within devices for lung cancer detection, but it is
likely that other genetic alterations, the physical features of the
tumour and patient characteristics would modify the volatolomic
signature, meaning the VOCs identified herein might not be
discriminatory for all cancers with these mutations. However, that
multiple mutations can be independently discriminated in cancer-
derived cell lines by the same techniques has previously been
demonstrated (Peled et al, 2013), showing that the presence of
other mutations does not preclude determination of VOC
signatures for a specific mutation. It remains to be elucidated if
those discriminant signals that best detect lung cancer in the
screening or diagnostic setting (which by definition should detect
all cancer sub-types) can be measured at the same time as those
that have the power to determine the molecular sub-type, but in
principle this could be achieved by incorporation of the
appropriate nanoarrays into a single device.

The advantages of cost, scale and implementation in community
medicine, which are potentially available with nanoscale sensor
devices, mean that along with other risk assessment tools (Cassidy
et al, 2008) breath sensors may be a first-line tool to identify those
who will benefit from more regular lung cancer screening. Both the
ability to correlate breath VOC signatures with genetic changes in
tumours and the sensitivity required for earlier diagnosis require
significant further empirical evidence.
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