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Abstract: Indoor autonomous navigation refers to the perception and exploration abilities of mobile
agents in unknown indoor environments with the help of various sensors. It is the basic and one
of the most important functions of mobile agents. In spite of the high performance of the single-
sensor navigation method, multi-sensor fusion methods still potentially improve the perception
and navigation abilities of mobile agents. This work summarizes the multi-sensor fusion methods
for mobile agents’ navigation by: (1) analyzing and comparing the advantages and disadvantages
of a single sensor in the task of navigation; (2) introducing the mainstream technologies of multi-
sensor fusion methods, including various combinations of sensors and several widely recognized
multi-modal sensor datasets. Finally, we discuss the possible technique trends of multi-sensor fusion
methods, especially its technique challenges in practical navigation environments.

Keywords: mobile agent; multi-sensor fusion; multi-modal dataset; SLAM (simultaneous localization
and mapping)

1. Introduction

As early as the 1960s, there were science fiction films and TV works depicting the
autonomous navigation of mobile agents: intelligent robots that are able to travel freely
in indoors such as in offices, factories, shopping malls, and hospitals and help people in
work, production, play, and study. In these scenarios, autonomous navigation ability is the
basic and one of the most important functions of mobile agents.

Autonomous indoor navigation of mobile agents refers to the abilities of autonomous
localization and map construction in dynamic scenes [1]. This technology is based on the
collection, analysis, and perception of environmental information, and carries out real-
time localization and route planning by constructing a map. Using the data acquired by
sensors to perceive the environment is the key technique related to mobile agent navigation.
Historically, various sensors have been adopted for mobile agent navigation, such as
cameras [2], light detection and ranging (LiDAR) [3], inertial measurement units (IMU) [4],
ultra-wide band (UWB) [5], Wi-Fi [6], Bluetooth [7], ZigBee [8], infrared [9], ultrasonic [10],
etc. According to the different principles and usages of these sensors, some scholars
divided autonomous navigation into two categories: single-sensor navigation methods
and multi-sensor fusion navigation methods [11].

In the single sensor navigation methods, the agents decide their own navigation states
in the environment depending on a single sensor [12], among which cameras and LiDAR
are widely used. A single sensor has specific advantages and limitations in navigation:
for example, the visual sensor has the advantages of low price and various mature al-
gorithms provided by researchers. However, the vision perception accuracies are easily
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influenced by the environments’ changes in illumination [13]. Correspondingly, LIDAR
data have the advantage of high frequency. However, LiDAR data’s resolution usually
requires improvement and the content information is not intuitively presented in it [13].
Compared to single-sensor agent navigation, multi-sensor fusion methods improve the
localization accuracy and robustness in the task of navigation by collecting and fusing the
environmental information from different types of sensors [11]. In recent years, research
on multi-sensor fusion methods for agent navigation has become an important trend.

The goal of this paper is not to present a complete summary of mobile agents’ naviga-
tion, but to focus on the discussions of multiple sensors’ fusion methods in mobile agents’
indoor navigation. In spite of several recent publications on related work [14,15], this work
is obviously different from them, in that we focus on the multi-sensor fusion methods
rather than a discussion of positioning [14], mapping, and way finding [15]. Namely,
we focus on the discussion of sensors’ functionalities and the fusion methods of them in
navigation rather than pure algorithms or the navigation task.

According to the event where and when fusions were processed, fusion could happen
at the data (feature) level, model level, and decision level, respectively [16]. According to
the calculation method, the fusion can be divided into rule-based and statistic (machine
learning)-based fusion [17]. Considering the relativity of different channels, some literature
divided their relationships into three categories: complementary, mutual exclusion, and
redundancy [18]. In this work, considering the fact that the sensors play key roles in
the perception and decision making in navigation, we divide the multi-sensor fusion
models into two types: one dominant sensor combined with assisting sensors [19], and
multiple sensors assisting each other without a dominant sensor [20]. We believe that this
strategy benefits the outline of each sensor, and helps to learn sensors’ advantages and
disadvantages in the fusion procedure. To this end, we focus on the fusion methods of
different possible sensors in navigation, including traditional classical fusion methods, but
also the new methods introduced in recent years, such as deep learning and reinforcement
learning on sensor fusion. In each section, we start with the introduction of traditional
methods, and then gradually transition to the new developments in this area in recent years.

In addition, quite a few multi-sensor fusion methods are proposed by the experiments,
which are based on both indoor and outdoor environments, and a large portion of fusion
methods have high versatility in various environments. Due to the stability and safety
of indoor environments, compared with that of outdoors, we believe that some of these
methods still have the same potential in indoor navigation. In this way, a few multiple
fusion methods originally proposed in outdoor environments are also included in our
discussions, since the fusion methods are worth referencing.

The remainder of this paper is organized as follows: we first briefly review some
widely used sensors in Section 2; the main multi-sensor fusion methods for agent navigation
and some well-known multi-modal datasets are introduced in Sections 3 and 4; and the
discussions and possible technique trends of multi-sensor fusion methods are given in
Section 5. Finally, Section 6 concludes the whole work.

2. Single Sensor Based Navigation

There are multiple kinds of sensors have been used for mobile navigation, includ-
ing visual sensors [2], LIiDAR [3], IMU [4], and UWB devices [5]. In addition to these
four widely-used types of sensors, there are also some other sensors, such as Wi-Fi [6],
Bluetooth [7], etc.

2.1. Visual Sensors

There are three types of cameras that are widely used in navigation tasks: the monoc-
ular camera [2], the stereo camera [21], and the RGB-D camera [22]. Monocular vision
navigation tasks are divided into three categories: the feature points matching method, the
direct method, and the semi-direct method. One of the most well-known point matching
methods is oriented fast and rotated brief simultaneous localization and mapping (SLAM)
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(ORB-SLAM) [2], which is developed based on parallel tracking and mapping for small
augmented reality (AR) workspaces (PTAM) [23]. ORB-SLAM extracts the image ORB
features for calculation and optimization in navigation. Because the calculation speed of
ORB features is fast, and it is not likely to be affected by noise and image transformation to
a certain extent, ORB-SLAM is a good optimization strategy for navigation [21]. A typical
representative of the direct method is large-scale direct monocular SLAM (LSD-SLAM) [24],
which estimates the motion of the camera based on the gradient of the pixels, so there is
no need to calculate feature points, and it can also construct a semi-dense scene map. Al-
though the direct method reduces the calculation of feature points compared to the feature
point method, the direct method is more sensitive to camera exposure and is more likely to
lose information during rapid movement. The representative of the semi-direct method is
semi-direct visual odometry (SVO) [25], which is a combination of the feature point method
and the direct method. It is mainly used in unmanned aerial vehicles (UAVs) and achieves
faster operating speeds. In general, the feature point method is robust and flexible [26].

Stereo cameras are mostly divided into binocular cameras and trinocular cameras. It
is usually equipped with more than two lenses. Multiple lenses simultaneously shoot the
same scene from different angles, and then perform complex feature matching, so as to
more accurately restore 3D information of the scene [26]. Navigation methods with multi-
eye cameras have been widely used in mobile robot localization and navigation, obstacle
avoidance and map construction. At present, vision localization systems such as ORB-
SLAM 2 [21] and real-time appearance-based mapping (RTAB-MAP) [22] provide solutions
adopted for binocular sensors. However, the stereo vision system meets challenges in poor
feature point environments, which restricts the application prospect of stereo vision [13].

The RGB-D camera is equipped with an ordinary camera and an infrared transmit-
ter/receiver [27]. It is able to obtain the depth of the environment. The emergence of
RGB-D cameras simplifies the structure of the visual localization system to a certain extent.
At present, there are a few mature RGB-D visual navigation solutions, such as RGB-D
SLAM V2 [27], dense visual odometry-SLAM (DVO-SLAM) [28], and RTAB-MAP [22],
etc. At present, the main RGB-D camera products on the market are Kinect V2, RealSense
SR300, Xtion2, etc., with relatively low prices. However, RGB-D cameras still have the
unavoidable noises caused by sunlight interference or backlight. In spite of the advantage
of obtaining the objects” appearance information in scene, the visual sensors themselves
are not ideal for in-depth information perception.

2.2. LiDAR

LiDAR uses laser technology to measure distance. The agent can determine its relative
localization in the environment based on the distance information collected by LiDAR [13].

In general, LIDAR navigation methods are divided into two styles: 2D LiDAR and
3D LiDAR. The 2D LiDAR navigation method has been widely discussed: grid mapping
(GMapping) [29], Hector [3], etc. Although 2D LiDAR navigation is able to work in real
time, it lacks the height information of objects and has difficulty in constructing a 3D map.
Three-dimensional LiDAR navigation is able to collect depth information from different
heights, and can complete real-time imaging to restore the shape of objects. Representative
solutions of 3D LiDAR navigation include implicit moving least squares-SLAM (IMLS-
SLAM) [30] and LiDAR odometry and mapping (LOAM) [31], etc. At present, 3D LiDAR
navigation has become the research mainstream, and has been widely used in autonomous
driving and robotics [1].

In terms of data processing, LIDAR navigation methods are mainly divided into
two types: filtering and optimization. The representative of the filtering methods is
GMapping [29], which is a laser localization strategy based on the Rao-Blackwellized
particle filter (RBPF). This algorithm obtains high localization accuracy in a small scene
map. Due to the use of particle filter, this method is not suitable for the situation when
there is a large scene or too many particles. The representative of the optimization methods
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is Cartographer [32]. Low-end equipment can also perform well using the optimization
method and the cumulative errors of Cartographer are less than GMapping [31].

LiDAR has a wide detection range and is not easily affected by light, so it has strong
adaptability to the environment. Moreover, laser ranging has a good performance regarding
obstacle avoidance, and relative localization when facing towards objects. However,
compared with visual sensors, LIDAR cannot obtain semantic information and the color
and boundary of the object.

2.3. Inertial Measurement Unit

The inertial measurement unit (IMU) is a device that measures the angular velocity
and acceleration of an object’s posture. It usually consists of a three-axis gyroscope and
a three-axis accelerometer. Some IMUs even contain nine axes [33], in which a three-axis
geo-magnetometer is added to the six-axis IMU.

The IMU is fixed on the mobile agent and obtains the real-time angular velocity and
acceleration of the movement at a high frequency. Through the integration of angular
velocity and acceleration, the angle and the distance of the motivation within a certain
period of time can be calculated [34]. However, the IMU can only obtain the motion posture
of itself, and cannot collect environmental information. In practice, multiple measurements
with the IMU can easily cause cumulative errors, and the obtained data cannot be used
for localization for a long time [11]. Therefore, IMU-based navigation methods are mostly
combined with other sensors, such as LiDAR-inertial odometry (LIO) [35], where the IMU
is combined with LiDAR, and multi-state constraint Kalman filter (MSCKF), where the
IMU is combined with a visual sensor [36].

Nowadays, the IMU is mostly integrated onto the agent platform in the form of a
micro-electro-mechanical system (MEMS). Compared with LiDAR, the MEMS-IMU is
cheaper, smaller, and lighter. Most commercial indoor robots are integrated with the
MEMS-IMU, such as Turtlebot, RB-1 BASE, etc.

2.4. Ultra-Wide Band Localizationing System

Ultra-wide band (UWB) technology transmits data by sending and receiving extremely
narrow pulses of nanoseconds or less, and thus has a bandwidth in the order of GHz [37].
The UWB localization system needs the arrangement of more than four localization base
stations with known coordinates, and the agent needs to be equipped with pulse receiving
and returning equipment. The equipment transmits pulses at a certain frequency to
measure the distance between the base stations and the agent [38]. Because of the limitations
of equipment installation, the UWB localization system is usually used in relatively empty
indoors, such as factories and warehouses.

UWB ranging methods include time of flight (TOF) [39], angle of arrival (AOA) [40],
time of arrival (TOA) [40], and time difference of arrival (TDOA) [37]. Using different
methods will have a certain impact on the accuracy and real-time performance, but the
overall accuracy can reach a high level. The most advanced UWB localization equipment
has an error within 10 cm [37].

The UWB localization system has the advantages of low power consumption, high
localization accuracy, and high transmission rate. Moreover, the UWB localization does
not rely on the calculation of the agent, which helps to reduce the calculation cost of the
localization. However, the UWB localization strategy only determines the localization of
the mobile agent, but cannot build a map separately. Therefore, autonomous navigation
with the UWB system usually needs to be combined with other sensors. In addition, the
equipment usually needs to be pre-installed before working, which reduces the portability
and the usage of UWB system.

2.5. Others and a View

In addition to these four main kinds of sensors, other sensors including Wi-Fi, Blue-
tooth, ZigBee, infrared sensors, and ultrasonic sensors, etc., are also widely used in spatial



Sensors 2021, 21, 1605

5of 25

localization or distance measurement. In special indoor scenes, these sensors have special
applications, such as in situations where visually impaired people operate agents [41], and
low-power wireless signals are involved [42,43], etc. However, with similar functionality
to the UWB, these wireless sensors do not provide the high localization accuracy and
anti-interference ability found in UWB devices [31].

Table 1 presents a list of single-sensor navigation methods, including their classical
application environments, advantages, and disadvantages. In general, the visual sensors
have high performances in constructing visual maps, but their localization accuracies
need to be improved. LiDAR methods have high measurement accuracy, but the context
information is lost in their presentation. UWB devices provide high localization accuracy,
but they are only suitable for in a specific range. The IMU is a good tool to obtain the state
of motion in a short time. However, it does not provide environmental information and it
has the disadvantage of unavoidable cumulative errors in a long-term measurement. The

IMU is mostly used as an auxiliary tool in autonomous navigation.

Table 1. List of single-sensor navigation methods.

Sensor

Methods

Environments

Advantages

Disadvantages

Monocular Camera

ORB-SLAM [2]
LSD-SLAM [24]
SVO [25]

Small/medium indoors

Robust and versatile

Sensitive to
illumination changes

Stereo Camera

ORB-SLAM 2 [21]
RTAB-MAP [22]

Small/medium indoors

Higher accuracy but
fine calculation

Sensitive to
illumination changes

RGB-D Camera

RGBD-SLAM-V?2 [27]
DVO-SLAM [28]
RTAB-MAP [22]

Small/medium indoors

Acquisitively of depth
information

Significant noise

GMapping [29] Insufficient in
LiDAR Cartographer [32] Both indoors and High measurement supporting obiect
IMLS-SLAM [30] outdoors accuracy Pf(’:l ‘ tfi; N )
LOAM [31] erecto
CommeeId OV\Egt;l] LIDAR: Unavoidable and
IMU . . Only measure itself Accurate in a short time obvious cumulative
Combined with camera: orrors
MSCKE [36]
Ranging algorithm:
TOF [39], AOA [40], . . Insufficient flexibility
UWB System TOA [40] and TDOA Indoors High location accuracy in applications
[37]

Wi-Fi, Bluetooth,
ZigBee, infrared,
ultrasonic, etc.

Distance measurement
method which is
similar to UWB system
[6-10]

Mainly indoors

High applicability of
visually impaired
environments

Insufficient location
accuracy and
vulnerable to occlusion
interference

3. Multi-Sensors Fusion Navigation Methods

In spite of the high performance of single-sensor navigation, single-sensor navigation
methods still have their limitations. It has been reported that multi-sensor fusion methods
potentially improve the perception and navigation ability of mobile agents: first, multi-
sensor fusion enriches the modes of information acquisition and enhances the ability to
collect information in a specific environment; second, multi-sensor fusion organically
combines different modal information according to the sensors’ internal relationship,
which helps to improve the localization accuracy. Now, the research on multi-sensor fusion
navigation has become the mainstream.

According to the fusion strategy, the fusion models are divided into two types: one
dominant sensor combined with assisting sensors [19], and multiple sensors assisting each
other without dominant sensors [20]. In this section, we mainly discuss the characteristics
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of different kinds of multi-sensor fusion methods for indoor navigation tasks, and introduce
some representative multi-sensor fusion programs.

3.1. Visual Sensor-Dominant Navigation

The visual sensors provide context information relating to the environment and
construct a visual map. However, they are easily affected by illumination changes. In order
to overcome these deficiencies, other sensors, such as LIDAR, IMU, and UWB, are used to
improve the visual navigation.

3.1.1. Vision Combined with Depth Information

Although RGB images and depth data are different modalities, the RGB-D camera
is able to collect both of them simultaneously [27]. The point cloud provided by the
RGB-D camera contains RGB data and 3D coordinates, but the relative motion state of the
agent cannot be obtained by visual sensors alone [44]. In order to realize the autonomous
navigation, it is also necessary to perform motion pose estimation for the mobile agent [13].
Motion pose estimation helps to restore the trajectory of the agent, so as to construct a map
by determining the relative localization of the mobile agent.

For the pose estimation strategies for the fusion of RGB and depth information, there
are three kinds of methods: feature point matching, the optical flow method, and the direct
method. In addition, RGB-D visual semantic mapping based on deep learning is also a
new kind of fusion trend.

(1) Feature Point Matching

Feature point motion estimation is widely used in traditional visual localization
methods, such as ORB-SLAM [2] and scale-invariant feature transform (SIFT) [45], etc. In
the case of RGB and depth data fusion processing, because the images collected by RGB-D
cameras have spatial location information, the feature points of RGB-D images are actually
3D points with spatial information. The motion estimation of 3D points is dealt with using
perspective-n-point (PnP) [46] or iterative close point (ICP) [47]. Several approaches have
been proposed to solve PnP and ICP [48], including direct linear transformation (DLT) [49]
and singular value decomposition (SVD) [50].

Equation (1) presents a mathematical description for DLT, where a point P = (X, Y, Z, 1)T
is projected to the matching point x = (11, vy, 1)7, and s is the scale factor. In addition, the
3 x 4 matrix between P and x are rotation and translation parameters.

X
uq 1 b t3 Iy Y

s| v = s tg 7 i3 7 (1)
1 tg to tn f2 1

With simplifications to Equation (1), the transformation matrix can be solved by sub-
stituting matching point pairs from Equation (2) with common equation solving methods,
such as the Gauss-Newton method.

Pl 0 -—wP!

0 Pl —uP! f
Do : t | =0 )
P, 0 —uynPk 3

0 PI]\} —MNPZY\}

The SVD method of ICP is generally divided into three steps:
Step 1. Calculate the centroid p, p’ of the two sets of points, and then calculate the
de-centroid coordinates of each point:

Gi=pi—p q=p—r ©)
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Step2. Calculate the rotation matrix:

1
R* = argminz ) || gi — Rj || * C)
i=1

Step3. Calculate t according to R in Step 2, where R, t is the Euclidean transformation
of ICP:
B=p-Rp )

The PnP method is usually adopted in a 3D to 2D point register, while ICP often
used in a 2D /2D or 3D/3D point register. However, sometimes the depth information
obtained by RGB-D camera contains larger errors; in this case, PnP and ICP are combined
in RGB-D point register where PnP solution is adopted firstly to select the outliers and
ICP is continually used to improve accuracies for the point register [51]. This hybrid PnP
method helps to compute the pose change between two camera frames when depth values
are rather noisy, thereby improving the accuracy of pose estimation.

There are cases that the feature point method is dependent on the quality of feature
points’ selection, and it cannot work well when there are too few feature points [13].
In practical calculation, PnP or ICP problems’ solutions usually rely on linear algebraic
methods [52] or nonlinear optimization methods [53]. Usually, feature point methods are
time-consuming due to them generating point descriptors and matching, and thus suffer
from insufficient real-time demands [24]. Generally speaking, feature point methods are
still limited in practical applications, especially in bad environments such as light changes
and obstructions.

(2) Optical Flow Method

The optical flow method is based on feature point tracking and matching. The rep-
resentative is Lucas-Kanade (LK) optical flow [54]. The optical flow method is based on
the assumption that the gray level of the same space is constant in each image [55]. This
is a strong assumption, which may not be true in practice: when the camera adjusts the
exposure parameters, the acquired image will be brighter or darker as a whole, and the gray
level of the image will also change. Article [56] proposed using optical flow residuals to
highlight the dynamic semantics in the RGB-D point clouds and provide more accurate and
efficient dynamic/static segmentation for camera tracking and background reconstruction.
This approach achieved accurate and efficient performances in both dynamic and static
environments compared to state-of-the-art approaches.

Recently, there are researchers who have adopted deep learning techniques in optical
flow. For example, article [57] proposed a convolutional neural network (CNN)-based
nonlinear feature embedding optical flow method. CNN-based optical flow helps to
improve the quality of optical flow and the accuracy of optical flow pose estimation.
However, the deep learning-based optical flow method has the disadvantage of being
time-consuming.

(3) Direct Method

The direct method is developed from the optical flow method. It estimates the motion
of the camera according to the brightness of pixels, eliminating the calculation of descriptors
and feature points [28]. The direct method is divided into three types: sparse, dense, and
semi-dense. Compared with the feature point method, which can only construct sparse
maps, the direct method can construct dense and semi-dense maps [27].

In the calculation of the direct method, a spatial point with a known localization is
required. By using the RGB-D camera, any pixel contains spatial localization information
that can be back-projected into 3D space, and then projected to the next image. The infor-
mation about this spatial point will need to be calculated separately when using monocular
or stereo vision systems, but the RGB-D camera can directly obtain it, which simplifies the
steps and reduces the calculation. Therefore, the direct method is more suitable for motion
estimation used in RGB-D vision systems than monocular and binocular vision.
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The direct method can work fast on a low-end computing platform, so it is suitable
for occasions with high real-time performance and limited computing resources. However,
the direct method belongs to the non-convex optimization algorithm, so it cannot track
well when the camera moves in a large scale [28]. In addition, the direct method is also
based on the assumption that the gray level is constant in each image. Therefore, it relies on
advanced camera equipment to ensure the acquisition image is clear as well as to maintain
stable exposure.

The application of RGB-D cameras has greatly changed the way in which the visual sen-
sor obtains the environmental depth information. RGB images and depth data are collected
together, which optimizes the space-time synchronization of environmental information
collection. In addition, the emergence of the RGB-D camera also promotes the development
of point cloud mapping and 3D visualization in more details. However, RGB-D cameras
obtain depth information depending on infrared reflection, hollows, and speckle burrs
which exist in the depth image because of strong backlight, far or near objects. The RGB-D
camera inherits the disadvantage of traditional cameras in that it is sensitive to light.

(4) Semantic SLAM Based on Deep Architectures

Semantic SLAM extends the research content of traditional SLAM, and its research is
currently focused on indoor environments. The fusion of RGB images and depth informa-
tion helps semantic SLAM, mainly embodied in the semantic segmentation of environmen-
tal targets, while those based on deep learning are the common methods.

Article [58] proposed an approach to object-class segmentation from multiple RGB-D
views using deep learning. It inputs RGB images and depth images into a deep neural net-
work at the same time, and predicts object-class semantics that are consistent from several
viewpoints in a semi-supervised way. The semantics predictions of this network can be
fused more consistently in semantic keyframe maps than predictions of a network trained
on individual views. Article [59] creatively proposed a 3D graph neural network (3DGNN)
for RGB-D semantic segmentation. This graph neural network is built on top of points
with color and depth extracted from RGBD images. The 3DGNN leverages both the 2D ap-
pearance information and 3D geometric relations. It is capable of capturing the long-range
dependencies within images, which has been difficult to model in traditional methods. This
model achieves good performance on standard RGBD semantic segmentation benchmarks.

The methods based on RGB-D semantic segmentation were applied earlier in the field
of computer vision. Because of the geometric consistency between the images collected by
the RGB-D camera on the agent, it has a promoting effect on the deep learning semantic
segmentation methods. The results of semantic segmentation can also be used to promote
the positioning or closed loop detection of navigation.

3.1.2. Vision Combined with LiDAR

LiDAR provide another kind of depth data in navigation environment which is more
robust in light changing environment. The fusion of the visual sensor and the LiDAR
information helps to improve the accuracy and stability of the navigation system.

(1) Localization

The depth data obtained by LiDAR help to improve the localization accuracy of
visual navigation. Lidar-monocular visual odometry (Limo) is one example of this kind
of method [34]. It proposes a depth data extraction algorithm to extract the camera track
features from LiDAR data, and estimates the motion by beam adjustment (BA) from the
visual key frames. Article [60] used 2D LiDAR data as assistance data and adopted a
residual neural network (RES-NET) to estimate the residual between the reference depth
and the actual depth, thereby completing more accurate depth estimation and enhancing
the positioning accuracy. A direct visual navigation method using sparse depth point cloud
of LiDAR was proposed in article [61]. The difficulty of visual sensor and LiDAR fusion
comes from the fact that the resolution of the camera is much higher than that of LiDAR,
so many pixels of images have no depth information. Article [62] proposed a solution
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to solve the problem of resolution matching between the two sensors: after calculating
the geometric transformation correspondence between the two sensors, Gaussian process
regression was used to interpolate the missing values. In this way, the features detected in
the image can be initialized directly by using LiDAR.

(2) Map Reconstruction

LiDAR detects the boundary of the environment object well, and improves the ac-
curacy of contour detection of the navigation system. The paper [63] drew the route and
vegetation map along the river with the help of the hybrid framework of UAVs and robots.
It proposed that using visual odometry combined with IMU for state estimation, and
use LiDAR to detect obstacles and draw river boundaries. However, the LiDAR data
may contain occluded points, which will reduce the estimation accuracy. To this end, a
direct navigation method with occlusion detector and coplanar detector was proposed to
solve this problem [64]. This regards the reflectivity data obtained by multi-line LiDAR
as texture information, and uses visual algorithms and texture information for relocation.
This information can be integrated with a high-precision map [65]. Article [66] proposed
a LiDAR-enhanced SfM pipeline that jointly processes data from a rotating LiDAR and
a stereo camera pair to estimate sensor motions. This approach combined with LiDAR
helps to effectively reject falsely matched images and significantly improve the model’s
consistency in large-scale environments.

The depth estimation of the LIDAR improves the localization accuracy of the nav-
igation system. In addition, the fusion navigation system of LiDAR assisted the visual
sensor in the edge detection of objects and the environment. However, the calibration of
these two sensors automatically is still a challenge which is related to the location, posture,
and the inner parameters of these two different sensors. In recent years, some researchers
have put forward some innovative solutions [67,68], some of which used semantic features
as indicators of calibration quality [69]. However, it is still difficult to calibrate these two
sensors simultaneously in real-time practical environments.

3.1.3. Vision Combined with IMU

The images obtained by the visual sensors are easily blurred when robots move
rapidly. In addition, when there are too few overlapping regions between the two adjacent
images for feature matching, single visual sensor navigation easily loses the motion state.
Visual sensor localization combined with IMU helps to solve this problem, which is usually
called visual-inertial odometry (VIO). This fusion strategy includes both spatial geometric
localization and motion pose estimation [4]. In a short period of time when the visual
sensor cannot obtain effective data, the data obtained by IMU can be used to maintain a
good motion posture estimation [70]. The current VIO frameworks are mainly divided
into two categories: loosely coupled and tightly coupled. In addition, VIO based on deep
learning is also an important development direction.

(1) Loosely Coupled Methods

The target of the loosely coupled method is to avoid importing image features to the
state vector. The camera and the IMU perform their own motion estimation respectively,
and then fuse the pose estimation. The methods usually rely on the processing of the
extended Kalman filter (EKF) for fusion. The core of EKF is to establish the state prediction
and update equations required for filtering [71]. The prediction equation predicts the
current state based on the previous state and control amount, and the update equation
indicates that the prediction result is judged by the Kalman gain. In this process, the two
equations continuously update the current state (as shown in Figure 1). The loosely coupled
method separately takes the image features and IMU into the observation equation to
predict them separately, and finally combines the prediction results to judge the pose state.
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Figure 1. Extended Kalman filter (EKF) algorithm flow is divided into two parts: time update and measurement update.

Among them, k—1 and k represent the previous state and current state respectively, £y is the priori estimate of current state,

%y is the posteriori estimate of the current state, z; is the measurement vector, f (-) is the nonlinear mapping equation from

the previous state to the current state, / (-) is the nonlinear mapping equation between state and measurement, Q is the

covariance matrix, A is the Jacobian matrix of the partial derivative of f (-) with respect to x, W is the Jacobian matrix of the

partial derivative of f (-) with respect to noise, H is the Jacobian matrix of the partial derivative of & (-) with respect to x, and

V is the Jacobian matrix of the partial derivative of & (-) with respect to noise.

The representatives of loosely coupled EKF fusion are the modular framework for
single-sensor fusion based on an extended Kalman filter (ssf) [72] and the modular frame-
work for multi-sensor fusion based on an extended Kalman filter (msf) [73]. The difference
between them is that ssf is used for the fusion of IMU and a single sensor, while msf is
used for the fusion of IMU and multiple sensors. Both of them provide relatively perfect
solutions for the integration of the visual sensor and the IMU. The ssf/msf methods both
aim to eliminate the accumulated errors. The visual estimation part is regarded as a black
box module in the loosely coupled method. Its advantage lies in modularization: the visual
motion estimation and inertial navigation motion estimation systems are two independent
modules, and one sensor’s errors will not affect the other sensor. The information acquisi-
tion and processing of each module does not interfere with the other module. The loosely
coupled method is easy to use due to its simple structure. However, using this kind of
method, it is difficult to adjust the errors caused by visual measurement.

(2) Tightly Coupled Methods

The tightly coupled method merges the states of the camera and the IMU, and puts im-
age features into a feature vector to construct a motion equation and observation equation.
Therefore, the tightly coupled method belongs to fusion methods of feature layers. Tightly
coupled methods are divided into filtering methods and nonlinear optimization meth-
ods. The representatives of filtering methods are MSCKEF [36] and robust visual-inertial
odometry (ROVIO) [74]. The representatives of nonlinear optimization methods are open
keyframe-based visual-inertial SLAM (OKVIS) [75] and visual-inertial state monocular
(VINS-mono) [76].

In the tightly coupled filtering methods represented by MSCKF and ROVIO, the
feature data obtained from the visual sensor and the IMU are processed by an optimized
filter, and then fused to pose estimation. This kind of method is the improvement of EKF:
it based on the first-order Markov hypothesis—that is, the state of the current moment is
only related to the state of the previous moment, and has nothing to do with the earlier
moment before the previous one [77]. Within this method, although the calculation of the
whole system will be reduced, the drift error of the previous time will accumulate to the
current time. Generally speaking, the calculation of the filtering method is less than that of
the optimization method.

OKVIS and VINS-mono are both nonlinear optimization methods. Most of these
methods based on optimization take key frames into account. They usually save all
the states of previous time, and constantly use the new observed data to correct the
accumulated errors. The most ideal situation is to eliminate the errors after the detection
of the closed loop. However, the disadvantage of the optimization method is that the
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calculation is relatively huge, and the RAM is more occupied. With the further research on
the Jacobian matrix [78] and Hessian matrix [79], and the application of graph optimization
tools, the calculation needed by the optimization method is greatly reduced. At present, the
optimization method is the mainstream research direction of the tightly coupled method.

In total, the loosely coupled method is superior to the tightly coupled method in speed,
but the fusion of different modal information is not tight enough, and the localization
performance is generally not as good as the tightly coupled method. Therefore, there are
more studies on tightly coupled methods than loosely coupled methods [4].

(3) Deep Learning based Coupled Methods

Recently, deep learning techniques have been widely applied in visual sensor data-
dominant navigation [80]. Visual-inertial odometry with specific network (VINet) [81]
and deep learning network for monocular visual-inertial odometry (DeepVIO) [82] are
the representatives of these techniques. VINet uses an end-to-end trainable method for
VIO which performs fusion of the data at an intermediate feature-representation level.
The model combines a CNN and recurrent neural network (RNN) framework which is
tailored to the task of VIO estimation. This approach is competitive with state-of-the-art
traditional methods when accurate calibration data are available, and it performs better in
the presence of calibration and synchronization errors. DeepVIO combines IMU data and
2D optical flow feature into the unsupervised learning framework, and uses specialized
loss training to reconstruct the global camera trajectory. It employs an IMU status update
scheme to improve IMU pose estimation through updating the additional gyroscope and
accelerometer bias.

In particular, an important advantage of VIO deep learning is that it can correct
odometry estimation errors by self-learning, saving a lot of manual debugging work [80].
Their combination has great potential to make the agent navigation more intelligent.

3.1.4. Vision Combined with UWB

The UWB system provides accurate spatial coordinates and it is stable in the long
term. The fusion of the UWB system and visual sensors is mostly based on monocular
cameras [2,21], since the fusion of single-modal data and the UWB is structurally simple
and it is easy to implement. Compared with stereo and RGB-D camera fusion, it is easier
for the UWB system and the monocular camera to obtain fusion synchronization. In total,
the fusion of the UWB and visual sensors includes feature-level and decision-level fusion.

(1) Feature-Level Fusion

Taking the fusion method of UWB system assisted monocular ORB-SLAM as an
example [83], this method takes the independent coordinate system of the UWB localization
as the global coordinate system, and transforms the coordinates of monocular ORB into
the UWB coordinates by spatial transformation. The method takes all the localization
and velocity errors as the state vectors of the whole monocular ORB/UWRB integrated
system. The localization data obtained by UWB system and monocular ORB are fused by
the extended Kalman filter (EKF) algorithm, and the localization information of the fusion
system is obtained by updating the state and measuring.

Deep learning methods are also involved in this aspect. Article [84] used a deep neural
network to integrate UWB information into the visual positioning navigation framework.
The information obtained by this framework is not only taken into navigation algorithms,
but is also used to detect non-line-of-sight (NLOS) UWB measurements. Compared with
the methods of using visual positioning alone, this method reduces the error by 20%.

(2) Decision-Level Fusion

This kind of method relies on the accurate spatial coordinates obtained by the UWB
system to improve the loop detection performance of visual navigation methods [85]. Tak-
ing the fusion of UWB system and ORB-SLAM as an example, this method uses the ORB
features and the bag-of-words model to calculate the similarity of images, and then com-
bines the agent movement tracked by the UWB localization system to determine whether
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a loop occurs. This method takes the comparison of image features as the appearance
similarity judgment link, and the robot motion trajectory as the spatial coordinate similar-
ity judgment link. These two constraints jointly judge whether a loop occurs. This loop
detection method makes good use of the two sensors and enhances the precision and recall
of loop detection.

In general, the UWB system helps to improve the accuracy and robustness of the
original visual navigation task. However, there are still some limits in use for this kind of
fusion model. First, the UWB system is inconvenient in portability. Second, the stability of
the UWB system depends on the correct installation and calibration of the sensors, which
requires the operators to know the indoor environment in advance. Finally, the accuracy
of the UWB localization will be greatly reduced in the complex indoor environment with
multiple obstructions.

3.2. LiDAR Dominant Navigation
3.2.1. LiDAR Combined with Visual Information

Although the localization accuracy of LIDAR is high and it provides real-time data,
2D LiDAR cannot recognize the color, material, and other appearance features of the
object [13]. Similarly, the point cloud obtained by 3D LiDAR is relatively sparse, and the
appearance of the object cannot be described well. The images collected by the visual
sensor can match the visual feature points, help detect the 3D features better, and associate
more semantic information.

In many cases, the LIDAR performs motion estimation through scanning matching,
while the camera performs feature detection. For example, paper [86] proposed a map
correction method based on laser scanning and visual loop detection, which combines
a 3D LiDAR navigation with visual sensor, which performs loop detection by using the
key frame technology of the bag of words model. This loop detection method enhances
the performance of LiDAR navigation. The ICP algorithm can also be optimized by the
combination of LiDAR and visual sensors data [87].

There are also some fusion methods that use deep learning. Article [88] proposed a
global positioning algorithm called OneShot, which creatively proposes a custom neural
network structure. It integrates the visual information provided by the camera into the
descriptor matching of the 3D LiDAR point cloud, thereby enhancing the performance
of the descriptor. Compared to using only LiDAR, fusing in the visual appearance of
segments results in increased descriptor retrieval rates by 17% to 26%. Due to the high
price of high-precision 3D LiDAR, some scholars have proposed methods of RGB-D or
stereo cameras fusion with multi-planar 2D LiDAR to predict depth information in 3D
space by DNN [89].

The deep reinforcement learning (DRL) technique has also presented its effectiveness
in LIDAR combined with visual information fusion in dynamic environments. Article [90]
proposed a collision avoidance algorithm, CrowdSteer, based on deep reinforcement
learning, which uses 2D LiDAR as the main sensor to integrate a RGB-D camera to perceive
surrounding dynamic objects and calculate collision-free speed. It uses CNN to fuse
2D LiDAR and depth image features of different dimensions, and uses proximal policy
optimization (PPO) as the main training algorithm for collision avoidance and smooth
trajectory formation. This method can achieve better performance in complex and occluded
scenes. Article [91] proposed a multi-sensor fusion autonomous navigation method based
on the Asynchronous Advantage Actor-Critic network (GA3C). This method combines
the 2D depth data converted from the 3D RGB-D camera with the 2D LiDAR data, and
input them into GA3C. The output is the linear velocity and angular velocity, thereby
completing the robot’s motion planning. At present, this method is still in its preliminary
stage, but it still can be applied in both simulation and reality. Deep learning and DRL
make LiDAR and visual features more closely integrated, and it is be more adaptable to
intelligent navigation work.
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3.2.2. LiDAR Combined with IMU

The LiDAR data are not ideal at the corner of the complex environment, which leads
to the loss of details in some phases of navigation [11]. The IMU is able to compensate for
the data loss of LIDAR. Some researchers use the IMU interpolation to remove the motion
distortion caused by LiDAR acquisition. In general, the fusion methods of LiDAR combined
with IMU can be divided into two types: feature layer fusion and decision-level fusion.

(1) Feature-level Fusion

Filtering fusion and nonlinear optimization are two kinds of the main LiDAR and IMU
fusion methods which belong to feature level fusion. Filtering methods are divided into
tightly coupled and loosely coupled, and optimization methods are almost tightly coupled.

In loosely coupled EKF fusion methods, when the LIDAR data are lost, EKF fusion
directly compensates for the LIDAR data with the pose angle data collected by the IMU
without constructing a new loss function [92]. Although the accuracy of loosely coupled
EKF fusion is not particularly high, it is simple in construction and can be implemented
quickly. The representative method of tightly coupled EKF fusion is robocentric LIDAR-
inertial state estimator (R-LINS) [93], which uses the error state Kalman filter (ESKF) model
to minimize nonlinear constraints, thereby achieving the update of the agent’s posture. It
provides comparable performance to the most advanced LiDAR-inertial odometry in terms
of stability and accuracy, and an order of magnitude improvement in speed.

Different from EKF fusion methods, nonlinear optimization methods use fixed lag
smoothing and the marginalization of original posture to complete real-time motion estima-
tion [94]. The typical representative methods are LIDAR-inertial odometry (LIO) [35] and its
improved method: LiDAR inertial Odometry via smoothing and mapping (LIO-SAM) [95].
LIO-SAM uses a tightly coupled structure and formulates LiDAR-inertial odometry atop
a factor graph. In order to improve the real-time performance of local scan matching,
keyframes are selectively added to the factor graph, and sliding windows are used to
marginalize old LiDAR frames.

Furthermore, feature-level methods based on deep learning are also researched. For
example, article [96] proposed a method for odometry estimation using convolutional
neural networks from 3D LiDAR scans. The original sparse data are encoded into 2D
matrices for the training of proposed networks and for the prediction. This method
can be combined with the rotation parameters obtained by IMU, while achieving high-
quality odometry estimation and LiDAR data registration. This network framework shows
significantly better precision in the estimation of translational motion parameters compared
with LOAM, while achieving real-time performance.

Methods of feature layer fusion make full use of IMU’s advantages of collecting
high-precision and small-error information in a short time, and estimate and restore
the real situation of the LIDAR navigation in this period of time, so as to improve the
accuracy and speed of localization and mapping. For now, tightly coupled methods have
more research prospects.

(2) Decision-level Fusion

When the laser frame rate is low, the laser frame motion distortion caused by the agent
motion cannot be ignored [97]. In order to eliminate the influence of motion distortion,
the IMU is one of the most common assisting sensors [31]. The acquisition frequency of
the IMU is very high (above 100Hz), and the IMU data are accurate in a short time period.
So, when the data distortion occurs, the IMU can reflect the posture of the agent. This
motion distortion removal method belongs to decision level fusion [31]. Since the IMU
does not have the ability to perform visualization, the map construction of IMU and LiDAR
usually relies on LIDAR mapping. In general, the methods of LiDAR and IMU when
tightly coupled are better than the loosely coupled filtering methods in the localization and
mapping performance.
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3.3. UWB Combied with IMU

The UWB system has the advantage of obtaining the spatial localization information,
but it is not able to obtain its motion posture. Other sensors are needed to obtain the
information of motion state when the UWB acts as the dominant sensor. Fusion methods
of IMU-assisted UWB were first applied to UAV indoor localization [98], and achieved
outstanding results. Since the UWB and the IMU are heterogeneous, the fusion methods of
them usually belong to feature layer fusion. The existing fusion methods are mainly based
on the EFK methods [99].

The EKF method firstly uses the UWB system to collect and calculate the real-time
coordinates of the agent, and the IMU obtains the angular acceleration and acceleration of
the agent. Then, the IMU data are converted into the coordinate system where the UWB is
located through the rotation matrix. Finally, the KF algorithm is used to fuse the data of
the two sensors to obtain the localization information by updating of execution status and
measurement [92].

In general, with the assistance of the IMU, the UWB system can reduce the difficulty
of acquiring the motion state of the agent. The information collection of both of them has
a high frequency, so they can easily meet the requirements of real-time synchronization.
However, neither the IMU nor the UWB are able to obtain appearance information such
as the shape or color of objects. It is impossible to construct a complete visual map only
depending on UWB and IMU.

3.4. Others

There are some other situations where it is not obvious as to which sensor is the domi-
nant one, with multi-sensor fusion based on the same kind of sensors [100], or the sensors
are closely connected when three or more sensors are used at the same time. The typical
example of these is visual-LiDAR odometry and mapping (V-LOAM) [20], which combines
the visual sensor, LIDAR, and IMU simultaneously. It improves the VIO and the scanning
matching LiDAR odometry at the same time. This method improves the performance of
real-time motion estimation and point cloud registration algorithms. Some researchers
used BA to align the LIDAR map with the visual map, which improves the accuracy of the
whole mapping system, and enhances the robustness against environmental changes [101].

Some recent studies include the following: Article [102] proposed a fusion odometry
with plane-feature tracking based on 3D LiDAR, IMU, and the camera. This method
makes the sensors compensate for each other and uses a sliding window to track plane
points, which makes the plane extraction efficient and robust. Article [103] proposed a
tight fusion method, which takes into account the LiDAR data and the cost function of
feature constraints for graph optimization, in which both LiDAR data and visual data
are used to obtain the posture estimation. Article [104] proposed a compact network for
absolute camera pose regression. In this approach, a 3D scene geometry-aware constraint
is introduced by exploiting all available information including motion pose, depth, and
image contents. For both in indoor or outdoor environments, this method has obvious
performance improvement in prediction accuracy and convergence efficiency.

Due to the difficulty of technology implementation, the research on the fusion navi-
gation method of three or more sensors has only just started. In addition to the design of
fusion strategies, the collaborative processing of data is also a big challenge after multi-
source information acquisition. Table 2 presents a summary of multi-sensor fusion methods
for agent navigation.
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Table 2. Summary of multi-sensor fusion navigation methods.

Dominant Sensor

Assisted Sensor Related Works

Visual Sensor

Motion Estimation Methods:
Feature points’ matching (PnP [46]/ICP [47])
Depth Optical flow (LK optical flow [54], based on deep learning [56,57])
Direct method (sparse/dense/semi-dense [27,28])
Semantic SLAM based on deep architectures [58,59]

Fusion location in feature level [34,60-62]

LIDAR Assistance of edge detection of visual detection [63-65]
Loosely Coupled (ssf [72]/msf [73])
IMU Tightly Coupled (Filtering Methods: MSCKEF [36]/ROVIO [74] and
Optimization Methods: OKVIS [75]/VINS-mono [76])
Deep learning based coupled methods [81,82]
UWB System Feature-level fusion (EKF fusion [83], based on deep learning [84])

Decision-level fusion (Fusion loop detection [85])

LiDAR

Fusion loop detection [86,87]

Optimization of 3D LiDAR point cloud [13]
Based on deep learning [88,89]

Based on DRL [90,91]

Visual Sensor

Feature-level fusion (based on EKF [92,93], nonlinear optimization
IMU method [35,94,95]
Decision-level fusion (Fusion motion estimation [31,97])

UWB System

IMU EKF fusion location [98,99]

Others No dominant sensor (V-LOAM [20], and others [102-104])

4. Multi-Modal Datasets

To validate the performance of multiple data fusion methods, some researchers have
constructed multi-modal indoor simulation datasets, and a few of them are freely available
on websites [105-107]. These public datasets contain at least two kinds of multi-modal data,
which help to validate the multi-sensor fusion methods. According to the styles of data
collection, we divide multi-modal indoor simulation datasets into three types according
to the data acquisition styles: the datasets acquired by the devices setup on robots, the
datasets acquired by handheld devices, and those generated in virtual 3D environments.

4.1. Robot@Home: An Example of Datasets Acquired by The Devices Setup on Robot

The Robot-at-Home dataset is a multi-modal dataset published by J.R. Ruiz Sarmiento
in 2017, which collects multi-modal data from the home environment from the view of
robot platform [108]. The Robot-at-Home dataset is a collection of raw and processed data
from five domestic settings (36 rooms) compiled by a mobile robot equipped with 4 RGB-D
cameras and a 2D laser scanner. In addition to the RGB-D cameras and laser scanner data,
the 3D room reconstruction, the semantic information and the camera posture data are also
provided (as shown in Figure 2). Therefore, the dataset is rich in contextual information
of objects and rooms. The dataset contains more than 87,000 groups of data collected by
mobile robots under different time nodes. The dataset samples multiple scenes to provide
different perspectives of the same objects in the same scene, which shows the displacement
changes of objects at different times. All modal data are correlated by the time stamp.
Figure 1 presents several types of data provided by the Robot-at-Home dataset. There are
some multi-modal fusion works discussed based on the Robot-at-Home dataset, such as
multi-layer semantic structure analysis using RGB-D information combined with LIDAR
data [109], visual odometry with the assistance of depth data [110], and path planning by
the combination of depth data and LiDAR data [111], etc.
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(a)

(b) (c) (d)

Figure 2. Several types of data provided by the Robot-at-Home dataset: (a) RGB image, (b) depth image, (c) 2D LiDAR
map, (d) 3D room reconstruction, and (e) 3D room semantic reconstruction [108].

The Robot-at-Home dataset is collected in the real home environment and contains
detailed semantic labels, which is also important in SLAM. There are also other multi-
modal datasets acquired by the devices setup on robot, such as the MIT Stata Center
Dataset [112], TUMindoor Dataset [113], Fribourg Dataset [114], and KITTI Dataset [115],
etc. These datasets also provide abundant multi-modal data and are widely used in
navigation research [116-118].

4.2. Microsoft 7 Scenes: An Example of Datasets Acquired by Handheld Devices

Microsoft 7 Scenes is a multi-modal dataset released by Microsoft in 2013. The dataset
contains seven scenes, and the data collection is completed by 640 x 480 resolution hand-
held Kinect RGB-D camera [119]. Each scene in the dataset contains 500-1000 sets of data,
and each set of data is divided into three parts (as shown in Figure 3): a RGB image, a
depth image, and a 4 x 4 pose matrix from camera to world homogeneous coordinate
system. For each scene, the dataset is divided into a training set and a test set. In addition,
the truncated signed distance function (TSDF) volume of the scene is also provided in
the dataset. Users can use these data as the basis of multi-modal information fusion, or
directly reconstruct the scene using the TSDF volumes provided by the dataset. In 2013,
Ben Glocker et al. proposed a camera relocalization method based on Microsoft 7 Scenes,
which achieved a good result [119]. Jamie Shotton et al. proposed an approach which
employs a camera relocalization method based on regression forest, which was performed
on the Microsoft 7 Scenes dataset [120].

(b)

Figure 3. Three types of the data provided by Microsoft 7 Scenes Dataset: (a) RGB image, (b) depth

image, and (c) TSDF volume for scene reconstruction [119].

The Microsoft 7 Scenes dataset has a large quantity of samples and rich details for a
single room, and the difference between adjacent samples is small. Some samples also have
motion blur, which is suitable for model training related to the discrimination of scene
changes. However, the data of Microsoft 7 Scenes were collected by a hand-held RGB-D
camera, and thus are not suitable for research on indoor robots where viewing angles are
strictly required.
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4.3. ICL-NUIM RGB-D Benchmark Dataset: An Example of Datasets Generated in
Virtual 3D Environments

The ICL-NUIM RGB-D Benchmark Dataset is a dataset released by Imperial College
London and the National University of Ireland in 2014. It simulates the agent motion and
visual sensor posture in 3D virtual scenes [121]. The dataset contains two basic scenes: the
living room and the office. There are 4601 sets of image data in each scene. Each group
of data includes a RGB image, a depth image, and a 4 x 4 matrix, which describes the
camera pose. For each scene, two different view modes are designed by the dataset: one
is to simulate the free movement of the camera in the scene, and the collected images
have a variety of perspectives (as shown in Figure 4a); the other is that the camera rotates
and moves at a certain height, and the collected images only have a head-up perspective
(as shown in Figure 4b). Images from different perspectives can correspond to different
application scenarios. For example, multi-perspective view images may be more suitable
for simulating the indoor UAV [122], while head-up perspective view images are closer to
the motion state of mobile robots [123,124].

(b)

Figure 4. Two kinds of different view modes are designed in ICL-NUIM RGB-D Benchmark
Dataset [121]. Image (a) shows the view mode of a variety of camera perspectives. Image (b)
shows the view mode of a head-up camera perspective.

Because the data in ICL-NUIM RGB-D Benchmark Dataset are simulated 3D data, they
are slightly different from real scenes. The light in the 3D scene is ideal, and the details of the
collected images are rich and balanced. There are no motion blur or illumination changes
in the images. These characters make the images of ICL-NUIM RGB-D unrealistic in vision,
and the algorithms validated in ICL-NUIM RGB-D may not be completely effective in real
practical applications.

4.4. Others

In addition the discussed datasets above, Table 3 presents a view for various multi-
sensors agent navigation datasets, including UZH-FPV Drone Racing [125], TUM RGB-D
Dataset [126], ScanNet [127], NYU V2 [128], InteriorNet [129], SceneNet RGB-D [130], and
others [131-144], etc. These datasets provide the basic requirements of simulation and
evaluation of multi-sensor fusion in experiments.
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Table 3. A List of Multi-modal Datasets.

Category Representatives Modalities Related Works Year
I;{e G]t3h Semantic Structure Analysis [109],
Robot@Home [108] LiLAR LiDAR Odometery [110], 2017
IMU Path Planning [111], etc.
UZH-FPV Drone RGB Visual Feature Tracking [131]
Devices Setup on Robots Racing [125] ?ﬁfg‘ UAV Navigation [132], etc. 2019
RGB
TuM RG[E?] Dataset Depth Visual SLAM [2,21,24,25,28] 2012
Camera Posture
. RGB Camera Relocation [119,120],
MlCI‘OS[Olf; 97] Scenes Depth 3D Reconstruction [133], 2013
Camera Posture RGB-D SLAM [134], etc.
RGB
Depth Visual Feature Extraction [135],
Datasets Collected by Hand ScanNet [127] Camera Posture 3D Point Cloud [136], etc. 2017
Semantic Labels
RGB
NYU V2 [128] Depth Semantic Segmentation [137-139] 2012
Semantic Labels
RGB . .
ICL-NUIM RGB-D Depth UAV Pose Estimation [122], 2014
Benchmark [121] CamerapPos hire RGB-D SLAM [123,124], etc.
RGB Semantic Dataset [140],
Datasets of 3D Virtual Scenes InteriorNet [129] Depth RGB-D SLAM [141], 2018
Semantic Labels Computer Vision [142], etc.
RGB
SceneNet RGB-D [130] Depth Semantic Dataset [143], 2016

Camera Posture, Fusion Pose Estimation [144], etc.

Semantic Labels

5. Discussions and Future Trends
5.1. Discussions

In this work, we focus on the discussions of sensors and the fusion methods of them
according to their dominant functionalities in fusion. This strategy benefits the outline of
each sensor, and helps to present the sensors” advantages and disadvantages in the fusion
procedure. However, because of the space limitation of this work, we did not present the
sensors’ data acquisition and the data processing, such as feature extraction, sensors’ data
presentations, etc., in details. Since data acquisition and process are also important factors
in multi-modal information fusion, we hope that the readers will refer to the details in
related references listed in this work.

In addition, in the section relating to the multi-modal dataset, the categories of the
datasets were divided into three types according to the locations where the sensors are
mounted. We believe that how the sensors are placed on or around the robots is critical
for multi-modal sensor fusion. Although there are researchers who divided the dataset
according to the number of sensors involved in the dataset, or the scale of accessible ranges
for navigation, the ways that we consider the dataset from sensors’ mounting styles are
useful supplements to the previous work.
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5.2. Future Trends

With the emergence of various sensors and the continuous development of them, multi-
sensor fusion will be an urgent need, which includes not only more specific algorithms,
but also their applications in more practical scenes. We briefly discuss several technique
trends of multi-sensor fusion navigation methods.

5.2.1. Uniform Fusion Framework

The fusion methods discussed in this work are mostly bi-modal or tri-modal fusion
methods and most of them are task-specific. Compared with bi-modal and tri-modal fusion
methods, the fusion of more than three sensors means the whole navigation system will
become more complex. There are some researchers that have already paid attention to
more than three kinds of sensor fusion in robot navigation [20]. However, there is a lack
of methods fusing various sensors’ information in a uniform framework, and there are
problems integrating the algorithm in the robot navigation and providing a more effective
fusion strategy. In the future, we need a multiple fusion framework, which is able to fuse
more different modalities simultaneously in a uniform framework.

5.2.2. Evaluation Methods

To evaluate a fusion model, it is necessary to establish an evaluation method for a
multi-modal sensor fusion model [145]. In spite of several mature evaluation methods,
such as the Monte Carlo strategy, real-time simulation, and individual calculation in the
specific applications, and some SLAM evaluation methods, for instance relative pose error
(RPE) [146], absolute trajectory error (ATE) [146], etc., they are not suitable to evaluate
the performance of each sensor in the whole fusion system. For the multi-sensor fusion
methods, we need more effective evaluation methods which are able to score not only the
fusion system, but also to outline the contribution and performance of each sensor in the
whole fusion process.

5.2.3. On-Line Learning and Planning

With the increasing demands of practical applications, the agents are possibly required
to complete some tasks that have not been learned before. These tasks need the agent
to make appropriate judgments independently, which depend on the agents’ perception,
on-line learning and planning in the unknown indoor environment. For example, the
agent is able to learn the name and localization of unknown objects in the scene, so as
to effectively feedback the tasks and instructions given by users. The related techniques
include interactive learning, knowledge transfer leaning, etc., from the multi-modal fusion
data. With these methods, the agents are hoped to obtain the ability to correct itself with
continuous learning in continuous environments, simulate human thinking and make
decisions in dynamic environments.

6. Conclusions

Multi sensor fusion has become an important research direction in mobile agent
navigation. We introduce the mainstream techniques of multi-sensor fusion methods
for mobile agents’ indoor autonomous navigation in this work, including: single-sensor
navigation methods, multi-sensor fusion navigation methods, some well-recognized multi-
modal datasets, and the trend of future development. We believe with the increasing
demand for human—computer interaction, mobile agents with multi-sensor fusion will be
more intelligent and interactive in the future.
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