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Background: Visual snow is considered a disorder of central visual processing resulting

in a perturbed perception of constant binocular flickering or pixilation of the whole visual

field. The underlying neurophysiological and structural alterations remain elusive.

Methods: In this study, we included patients (final n = 14, five dropouts; five females,

mean age: 32 years) with visual snow syndrome (VSS) and age- and sex-matched

controls (final n= 20, 6 dropouts, 13 females, mean age: 28.2 years). We applied diffusion

tensor imaging to examine possible white matter (WM) alterations in patients with VSS.

Results: The patient group demonstrated higher (p-corrected < 0.05, adjusted for age

and sex) fractional anisotropy (FA) and lower mean diffusivity (MD) and radial diffusivity

(RD) compared to controls. These changes were seen in the prefrontal WM (including

the inferior fronto-occipital fascicle), temporal and occipital WM, superior and middle

longitudinal fascicle, and sagittal stratum. When additionally corrected for migraine or

tinnitus—dominant comorbidities in VSS—similar group differences were seen for FA

and RD, but less pronounced.

Conclusions: Our results indicate that patients with VSS present WM alterations

in parts of the visual cortex and outside the visual cortex. As parts of the inferior

fronto-occipital fascicle and sagittal stratum are associated with visual processing and

visual conceptualisation, our results suggest that the WM alterations in these regions

may indicate atypical visual processing in patients with VSS. Yet, the frequent presence

of migraine and other comorbidities such as tinnitus in VSS makes it difficult to attribute

WM disruptions solely to VSS.

Keywords: diffusion-weighted imaging, visual snow, white matter, neuro-ophthalmology, inferior fronto-occipital

fascicle

INTRODUCTION

Visual snow is a neurological state, defined by the presence of a continuous and chronic visual
disturbance in the form of innumerable small dots covering the whole visual field (1). Patients with
visual snow syndrome (VSS) experience a multi-layered array of visual symptoms in addition to
the static itself, such as palinopsia, entoptic phenomena, nyctalopia and photophobia (2, 3). Visual
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snow denotes a spectrum type disorder that at its worse
manifests with most of these additional symptoms, as well as
with comorbidities such as migraine and tinnitus (4). In such
instances, the condition is perceived as highly disabling (5).
Though the pathophysiology of VSS remains largely indefinite
(6) recent studies have provided some insight on the possible
biological mechanisms underlying the condition. Behavioural (7)
and neurophysiological studies (8, 9) have demonstrated patterns
of changes indicating to increased cortical excitability and visual
cortex dysfunction.

Through neuroimaging, it has been possible to reveal that
VSS is characterised by altered metabolism of the extrastriate
visual cortex (10–13). Recently, it has been shown by resting-
state functional magnetic resonance imaging (fMRI) that VSS
show hyperconnectivity (compared to healthy controls) between
regions of the visual cortex but also in frontal, parietal and
temporal brain regions (10, 12). In addition, task-based fMRI,
electroencephalography as well as MR spectroscopy pointed
towards an alteration in the visual and prefrontal (insular) cortex
(8, 11).

Furthermore, it is known that VSS demonstrate structural,
i.e., grey matter volumes, changes involving the visual system,
and further expanding beyond it (13, 14). A consistent finding
is that patients with VSS show increased grey matter volume of
the lingual gyrus (10, 14).

Diffusion tensor imaging (DTI) is one method to assess white
matter (WM) alterations on the microstructural level. In patients
with migraine—a frequent comorbidity in VSS—alterations have
been reported in fractional anisotropy (FA), mean diffusivity
(MD), radial diffusivity (RD), and axial diffusivity (AD). For
example, FA—an indirect surrogate of neuronal integrity—is
lower compared to controls in migraineurs in multiple WM
regions (15–18). So far, no study has yet examined if patients
with VSS display WM abnormalities. Based on the previous (and
above-described) studies on structural MRI, we hypothesise to
see altered WM integrity in patients with VSS.

METHODS

Sample
Inclusion criteria: 15 patients over 18 years of age andmeeting the
diagnostic criteria for VSS (1, 19) were recruited consecutively
at the Department of Ophthalmology, University Hospital
Zurich, Switzerland.

Exclusion criteria for all participants were pregnancy,
presence of a neurodegenerative disorder, and contraindication
against an MRI examination. The patients were all examined by
senior neuro-ophthalmologists and neurologists. Patients were
age and sex matched to 20 healthy controls (HCs). In both
patients and HCs, the history was completed with regard to
symptoms and conditions associated with VS syndrome as shown
in Table 1.

The following clinical measures were included: duration of
VS symptoms, history of migraine, tinnitus, anxiety, depression,
tremor or imbalance, and perception of palinopsia, blue field
entopic phenomena, other entoptic phenomena, photophobia,
glare, nyctalopia, symptoms in darkness, symptom presence with

eyes closed, and overall perceived symptom severity on a scale
of 0–10. Migraine occurrence was assessed with the Diagnostic
Algorithm of the Hardship Questionnaire (20). Participants were
asked whether they had been diagnosed with, or feeling they
were suffering from, an anxiety disorder or depression but no
patients indicated the presence of anxiety or depression. None of
the VS patients showed any signs of an underlying ophthalmic
pathology based on the history and the clinical examination
including best corrected visual acuity, static perimetry (Octopus
900, Haag-Streit, Bern, Switzerland), fundoscopy, and optical
coherence tomography of themacula and the peripapillary retinal
nerve fibre layer (Heidelberg Spectralis, Heidelberg Engineering,
Heidelberg, Germany). All subjects provided informed written
consent to participate in this study, which was approved by
the ethics committee (Canton Zurich, Switzerland, BASEC-
NR: 2016-00225).

MRI Data Acquisition
MRI data acquisition was performed on a 3T whole-body MR
scanner (Ingenia, Philips Healthcare, Best, the Netherlands),
equipped with 80 mT/m gradients and a 32-channel receive head
coil. Diffusion data were acquired using a diffusion-weighted
single-shot spin-echo echo-planar-imaging sequence with the
following parameters: repetition time (TR): 9,837ms, echo time
(TE): 94ms, field of view (FOV): 224 × 224 mm2, 55 contiguous
transversal slices, slice thickness: 1.7mm, acquisition matrix:
132 × 130, SENSE factor: 2, partial Fourier encoding 68%.
The bounding box was planned with having the inferior slice
positioned at the inferior border of the cerebellum, defined on a
T1-weighted midline sagittal survey image. Due to the small slice
thickness, we did not cover the whole-brain but only included
regions inferior to the body of the corpus callosum (covering the
corpus callosum as well).

Diffusion acquisition was performed along 128 directions with
a b-value of 1,000 s/mm2 and two signal averages. Additionally,
one non-diffusion-weighted b = 0 s/mm2 scans were acquired
resulting in a scan time of 21min 40 s. For structural reference
and anatomical priors for the tracking algorithm, T1-weighted
images were recorded using a three-dimensional magnetisation
prepared rapid gradient-echo (MP-RAGE) sequence with 1mm
isotropic resolution.

Diffusion Data Pre-processing
Before any pre-processing steps, quality control of all acquired
diffusion data was assessed based on several criteria: First,
diffusion tensor residuals were calculated for every acquired
diffusion direction and the nine slices in the whole diffusion
dataset with the highest residuals were identified for visual
inspection. Plots were generated depicting the 12 slices (four
sagittal, four axial, and four coronal directions) with the highest
noise level. Second, mean signal intensity plots for every diffusion
direction and the non-diffusion-weighted image were derived
and plotted slice by slice in sagittal, axial, and coronal directions.
Artefacts, such as signal dropouts due to head motion, can easily
be spotted on these plots. A trained MR physicist inspected the
data for artefacts and rated the signal courses and fitting residuals
of every subject on a Likert-type scale.
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TABLE 1 | Summary of demographic and clinical values for patients with VSS.

Non-visual symptoms Visual symptoms

Patients Age

(years)

Sex Migraine With aura Tinnitus Depression Anxiety Duration

of VS

(years)

Imbalance Palinopsia Blue field

entoptic

phenomenon

Other

entoptic

phenomena

Photophobia Glare Nyctalopia

P1 44 0 1 0 1 0 0 9.0 1 0 0 1 0 0 1

P2 47 1 1 1 1 1 0 17.0 1 0 1 0 0 1 1

P3 23 1 0 0 0 1 0 5.5 0 0 1 0 0 0 1

P4 33 1 0 0 1 0 1 4.2 0 0 0 1 1 1 0

P5 18 1 0 0 1 1 1 1.0 1 1 1 0 1 0 1

P6 19 1 0 0 1 0 0 19.3 0 0 0 1 0 0 0

P7 44 0 1 1 0 1 1 4.1 0 1 0 0 1 1 1

P8 30 0 1 1 1 0 0 4.9 0 1 0 0 1 0 0

P9 39 0 1 1 1 0 1 0.8 0 0 1 0 1 1 1

P10 33 1 0 0 0 0 0 2.0 1 0 1 1 1 0 0

P11 21 1 1 1 1 0 0 1.2 1 1 0 1 0 1 0

P12 54 0 1 1 1 1 0 0.6 0 1 1 1 1 0 0

P13 22 1 0 0 1 0 0 6.0 0 0 0 0 0 1 1

P14 30 1 0 0 0 0 0 5.0 0 0 1 1 0 0 1

For sex, 1 = male, 0 = female. For all other variables, 1 = present, 0 = absent. Six of seven patients with migraine demonstrated visual aura.
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Pre-processing diffusion data followed a similar procedure
previously described in our recent publication (21). After
denoising the raw data using the “dwidenoise function” from the
MRtrix3 software package (https://www.mrtrix.org/), diffusion
weighted data were first corrected for eddy-current and motion
induced distortions by registration the diffusion weighted images
to the b0 image using the dwipreproc routine from MRtrix3
software package. This function makes use of the eddy tool
implemented in FSL (FMRIB, Oxford, UK version 6.0.0) (22).
The brain extraction tool (BET) from FSL was then applied
to remove non-brain tissue and estimate the inner- and outer
skull surfaces. Next, the diffusion data were corrected for
susceptibility-induced distortions using the “bdp correction
algorithm” implemented in the BrainSuite software package
(http://brainsuite.org) (23). Diffusion maps derived from the
diffusion tensor, i.e., FA, MD, RD, and AD were then calculated
using the DTIFIT tool implemented in the FSL software
package (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki).

Statistical Analysis
To evaluate differences between the groups, voxel-wise (whole-
brain) Tract-Based Spatial Statistics (TBSS, https://fsl.fmrib.
ox.ac.uk/fsl/fslwiki/TBSS) analysis based on a general linear
model was performed using FSL’s randomise tool (24) with

5,000 permutations to correct for multiple comparisons (p
< 0.05, corrected). All results included threshold-free cluster
enhancement (TFCE) (25). Three statistical contrasts were
computed, testing for positive and negative differences of the DTI
parameters between the patients with VSS and HCs:

a) General linear model, with correction for age and sex (i.e., age
and sex were used as nuisance variables in the model).

b) General linear model, with correction for age, sex, and
migraine occurrence

c) General linear model, with correction for age, sex, and
tinnitus occurrence.

RESULTS

Demography and Clinical Data
Seven patients showed episodic migraine; six of them
demonstrated visual aura (Table 1 provides a summary of
demographic and clinical data for the VSS group). Based on
the HARDSHIP questionnaire, three HCs showed migraine,
and were thus excluded. Groups did not differ in sex (p = 0.14,
Chi-Square test) or age (p = 0.13, unpaired t-test; mean age VSS
group: 32.6± 11.1 years, mean age HCs: 28.2± 5.5 years).

FIGURE 1 | Illustration of WM changes for the statistical comparison “HCs vs. patients with VSS.” Patients demonstrated higher FA values in multiple brain regions. In

contrast, HC showed higher MD and RD values compared to patients with VSS (not shown, see Table 2). All results are TFCE, age and sex corrected. IFOF, Inferior

Fronto-Occipital fascicle.
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Image Quality
Five patients and three HCs had to be excluded because of poor
DTI data quality (strong head motion resulting in artefacts on
the FAmap). Hence, the reported results are based on 14 patients
with VSS and 20 HCs.

DTI Findings
The VSS patient group demonstrated higher (p-corrected <

0.05, adjusted for age and sex, Figure 1) FA, lower MD and RD
values compared to HCs. FA changes were seen in the prefrontal
WM [with extension into the inferior fronto-occipital fascicle
(IFOF)], sagittal stratum, temporal and occipital WM, superior
longitudinal fascicle (SLF3), andmiddle longitudinal fascicle. For
MD changes were additionally seen in the corpus callosum (genu)
but not in the sagittal stratum, middle longitudinal fascicle and
occipital WM. No significant group differences were seen for AD.

When additionally corrected for interictal migraine
occurrence (Figure 2), FA changes were seen in the same
WM areas as well except of the middle longitudinal fascicle. RD
changes were seen in the prefrontal WM (with extension into the
IFOF), right SLF3, and temporal WM. Yet, no significant group
differences were observed for MD and AD. When additionally
corrected for tinnitus occurrence FA were only seen in the right
prefrontal WM, SLF3, and sagittal stratum. For RD changes were

observed in the right prefrontal WM (with extension into the
IFOF), SLF3, temporal and occipital WM, and sagittal stratum.
Table 2 shows the full summary of WM group differences.

DISCUSSION

Our study demonstrated widespread WM alterations in patients
with VSS. We thus add to the growing body of literature
reporting structural, i.e., grey matter volume, abnormalities in
the visual cortex and visual association cortex. A novel finding
is that structural WM alterations are evident in the visual cortex
but also in the frontal and temporal cortex. Group differences
were similar but less strong compared to the analysis without
correcting for migraine or tinnitus. Consistent changes for both
analyses were seen in the IFOF, sagittal stratum and right SLF.
We suggest that these abnormalities could thus be associated to
the manifestation of VS rather than by the presence of migraine.

Parts of the IFOF are associated with visual processing (26) by
visual conceptualisation (27) and visual hallucinations (28, 29).
Our results suggest that the WM alterations in these regions
might indicate atypical visual processing in patients with VSS.
Similarly, Aldhafeeri et al. found a disruption of WM integrity
in the IFOF in patients suffering from tinnitus, a frequent
comorbidity in individuals affected by VSS (30). Yet, even after

FIGURE 2 | Illustration of WM changes for the statistical comparison “HCs vs. patients with VSS.” Patients demonstrated higher FA values in multiple brain regions. In

contrast, HC showed higher RD values compared to patients with VSS. Results were TFCE corrected and corrected for age, sex, and additionally for migraine or

tinnitus.
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TABLE 2 | Summary of DTI group differences.

Measure Direction Region Hemisphere

A)

DTI

FA VSS > HC

Prefrontal WM (with inferior fronto-occipital fascicle) Bilateral

Superior longitudinal fascicle III Right

Occipital WM Right

Temporal WM Right

Middle longitudinal WM Right

Sagittal stratum Right

MD HC > VSS

Prefrontal WM (with inferior fronto-occipital fascicle) Bilateral

Superior longitudinal fascicle III Right

Corpus callosum n.a.

Temporal WM Right

RD HC > VSS

Prefrontal WM (with inferior fronto-occipital fascicle) Bilateral

Superior longitudinal fascicle III Right

Occipital WM Right

Temporal WM Right

Middle longitudinal WM Right

Sagittal stratum Right

B)

DTI

FA VSS > HC

Prefrontal WM (with inferior fronto-occipital fascicle) Bilateral

Superior longitudinal fascicle III Right

Occipital WM Right

Temporal WM Right

Sagittal stratum Right

RD HC > VSS

Prefrontal WM (with inferior fronto-occipital fascicle) Bilateral

Superior longitudinal fascicle III Right

Temporal WM Right

C)

DTI

FA VSS > HC

Prefrontal WM (with inferior fronto-occipital fascicle) Right

Superior longitudinal fascicle III Right

Sagittal stratum Right

RD HC > VSS

Prefrontal WM (with inferior fronto-occipital fascicle) Right

Superior longitudinal fascicle III Right

Occipital WM Right

Temporal WM Right

Sagittal stratum Right

HC, healthy controls; VSS, patients with visual snow syndrome; n.a., not applicable. A) Results are TFCE, age, and sex corrected. B) Results are TFCE, age, and sex as well as for

migraine. C) Results are TFCE, age, and sex corrected as well as for tinnitus.

correction of tinnitus presence, alterations were seen in the
right prefrontal WM (IFOF). This suggests that this region
might therefore be directly involved in the underlying biology of
the condition.

The SLF is involved in speech processing (31, 32), musical
processing (33), spatial attention (34) and memory (35), decision
making (36), visual perception (37), and perceptual organisation

(38). For example, right-hemisphere brain damage e.g., induced
by stroke often results in visual-spatial deficits, such as a neglect
(37). McKendrick et al. (7) demonstrated that patients with
visual snow demonstrated reduced centre-surround contrast
suppression and elevated luminance increment thresholds in
noise but did not differ on a global form or global motion task.
Our study suggests that patients with visual snow may show
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not only deficits in visual perceptual measures involving the
suprathreshold processing of contrast and luminance but also in
tasks involving high-order visual brain regions. Yet, this needs
to be verified by psychophysical testing combined with structural
neuroimaging (such as DTI).

Alterations in patients with VSS were also seen in the
sagittal stratum, which contains the IFOF, inferior longitudinal
fasciculus, and posterior thalamic radiation (39–41). Specifically,
the sagittal stratum is a major cortico-subcortical WM bundle
that conveys fibres from the parietal, occipital, cingulate,
and temporal regions to subcortical destinations in the
thalamus, pontine nuclei, and other brainstem structures (42).
It additionally has afferents from the thalamus to the cortex,
thus, it is a major subcortical fibre system and not exclusively
a fibre tract linking the lateral geniculate nucleus with the
calcarine cortex. Recently, electrical stimulation in patients
undergoing wide-awake surgery for a cerebral glioma was
applied combined with behavioural tasks (including visual and
somesthetic processes, semantics as well as language, spatial and
social cognition) to monitor online the patients’ functions during
stimulation (43). Stimulation of the right sagittal stratum lead
to visual disturbances, visual hemi-agnosia, semantic paraphasia,
left spatial neglect, confusion and comprehension difficulties,
anomia, and mentalizing disturbances. We suggest that the
observed DTI alterations in this region could be associated with
some of the known visual disturbances generally observed in
patients with VSS.

The alterations in temporal WM regions parallel findings
of our recent resting-state fMRI connectivity study, performed
in a similar sample of patients and controls (10). The middle
and superior temporal cortex are involved in object, motion
and form processing (44, 45) and abnormal WM could point
towards a disturbed information processing in patients with VSS
in these regions.

In general, we found stronger FA values for patients.
Therefore, our data could indicate that patients demonstrate
elevated excitability of parts of the visual cortex as well as
other brain regions. Yet, further research is required to provide
a more direct evidence for this proposed mechanism. We
observed that WM impairments showed a right-hemispheric
lateralisation (e.g., right IFOF), when results were corrected for
the presence of tinnitus. This extends previous functional PET
studies, who reported metabolic alterations in the right visual
(lingual) gyrus (13, 19). However, the origin of the tentative
anatomical lateralisation has not been examined in detail and
further studies are needed to replicate this observation, especially
examining larger cohorts of patients with VSS with and without
tinnitus. In contrast to structural (VBM or DTI) studies, resting
state fMRI studies reported abnormal functional connectivity in
visual snow patients in both hemispheres (10, 12).

The ability to measure perceptual parameters in visual snow
reveals promise for the development of novel ancillary tests. They
may help to assist in visual snow diagnosis and possibly as a
method for quantitatively assaying any benefits of treatment.

LIMITATIONS

The lack of whole-brain coverage is a strong limitation of
our study. Hence, we could not examine if WM alterations
might be present e.g., in regions superior of the corpus
callosum, e.g., in the parietal cortex, superior frontal regions,
somatosensory, or (pre-)motor cortex. Future studies should be
performed to examine this question in full detail. New DTI
measures with clinical relevance, such as fibre density (46),
could be additionally explored in upcoming studies. Regarding
migraine presence in HCs, we excluded (based on the Hardship
questionnaire) all subjects with migraine. In addition, there is
no validated genetic marker (in contrast to e.g., Alzheimer’s
disease) for migraine. For patients, we did no assess—e.g.,
by headache diaries—the presence of a migraine attack the
day before or the days after scanning. Thus, it might be that
patients (with migraine) were scanned in an acute pre- or
postictal phase.
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