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Background: An accurate pathological diagnosis of hepatocellular carcinoma (HCC), one
of the malignant tumors with the highest mortality rate, is time-consuming and heavily
reliant on the experience of a pathologist. In this report, we proposed a deep learning
model that required minimal noise reduction or manual annotation by an experienced
pathologist for HCC diagnosis and classification.

Methods: We collected a whole-slide image of hematoxylin and eosin-stained
pathological slides from 592 HCC patients at the First Affiliated Hospital, College of
Medicine, Zhejiang University between 2015 and 2020. We propose a noise-specific deep
learning model. The model was trained initially with 137 cases cropped into multiple-
scaled datasets. Patch screening and dynamic label smoothing strategies are adopted to
handle the histopathological liver image with noise annotation from the perspective of
input and output. The model was then tested in an independent cohort of 455 cases with
comparable tumor types and differentiations.

Results: Exhaustive experiments demonstrated that our two-step method achieved
87.81% pixel-level accuracy and 98.77% slide-level accuracy in the test dataset.
Furthermore, the generalization performance of our model was also verified using The
Cancer Genome Atlas dataset, which contains 157 HCC pathological slides, and
achieved an accuracy of 87.90%.

Conclusions: The noise-specific histopathological classification model of HCC based on
deep learning is effective for the dataset with noisy annotation, and it significantly improved
the pixel-level accuracy of the regular convolutional neural network (CNN) model.
Moreover, the model also has an advantage in detecting well-differentiated HCC and
microvascular invasion.
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INTRODUCTION

Hepatocellular carcinoma (HCC) is one of the most commonly
diagnosed cancers, ranking fifth in incidence rate and second in
fatality rate in male individuals worldwide (1). An accurate
diagnosis of HCC is essential in the choice of treatment
options and the overall survival of patients (2, 3). Some
pathological features provide guidance for clinical treatment
and prognosis, for example, microvascular invasion (MVI) and
microsatellite nodules. However, the current practice of
pathological diagnosis of HCC is time-consuming and
completely relies on the subjective experience of a pathologist,
which varies substantially.

Machine learning, especially deep neural networks, has made
appreciable breakthrough in recent years (4–6). The successful
application of this technology in medicine includes diabetic
retinopathy detection (7), machine learning model-derived
predictive gene signature for gastric cancer (8), and artificial
intelligence (AI)-based prediction of origins for cancers of
unknown primary (9). The transformation of practice from
microscope to digital slides has paved the way for using AI
assistance systems in pathology. AI-driven approaches for
pathological images can assist pathologists in diagnosis and
provide clinicians with prognostic stratification and prediction
of treatment response. Recent studies have confirmed the
effectiveness of pathological AI for tumor detection of various
organ systems, such as stomach (10, 11), lung (12), and breast
lymph node metastasis (13–15) and prostate core needle biopsies
(15, 16). Previous studies of HCC based on convolutional neural
network (CNN) mainly focused on radiology images, including
CT scans, ultrasound, and MRI scans (17). Li et al. (18) proposed
a structure convolutional extreme learning machine and case-
based shape template methods for HCC nucleus segmentation.
However, various tissue structure and cell characteristics should
be comprehensively considered for the diagnosis and histological
grade of HCC. There are few AI-based studies on large sample
whole-slide images (WSI) of HCC.

AI-based pathology usually requires a large number of accurate
annotations, while the manual annotating of histopathologic
images is very time-consuming and hard to be precise.
Furthermore, there exists a problem that the larger the scale we
use to get more complete cellular features, the higher probability of
selecting noisy patches—for instance, a larger annotated tumor
region may contain fibrous stroma and blood vessels. In addition,
sporadic cancer cells around the primary tumor are difficult to be
fully marked. These conditions make annotations of pathological
digital slides scarce and noisy, both of which are detrimental to
machine learning models. Song et al. (19) add artificial noisy
images as negative samples to simulate the influence of blood
vessels and stains, but the artificial images are oversimplified and
cannot fundamentally change the original annotations. It brings
us to the crucial problem in AI-driven diagnosis for HCC
pathological images, which is noisy annotation.

In this study, we conducted a series of experiments on slide
screening and scale selection to solve the noise problem.
Furthermore, we introduced label smoothing to implement soft
constraints. Compared to other methods that directly use the
Frontiers in Oncology | www.frontiersin.org 2
noisy label to optimize the model, our method can automatically
eliminate the influence of incorrect labels instead of being
misguided by them. The independent validation set
demonstrated that, through patch screening and noise-tolerant
loss function, our proposed method showed better results than
the traditional data processing approach on the noisy dataset.
MATERIALS AND METHODS

Patients and Samples
A total of 592 HCC patients treated by surgical resection at The
First Affiliated Hospital, College of Medicine, Zhejiang University
between 2015 and 2020 were enrolled in the study. Patients who
had undergone prior radiotherapy or chemotherapy and
combined with intrahepatic cholangiocarcinoma or mixed
hepatocellular–cholangiocarcinoma were excluded. We collected
an HCC pathological image dataset containing hematoxylin and
eosin (H&E)-stained digital slides from 592 patients with diverse
HCC subtypes and differentiation degrees. The digital slides were
produced at ×40 magnification by the 3DHISTECH P250 FLASH
digital scanner.

Data Set Preparation
One representative H&E-stained digital slide was available for each
HCC case, which included HCC tissues and the adjacent
surrounding liver tissues. An expert liver pathologist made the
rough annotations of the tumor regions, including 20 slides which
were elaborately annotated for pixel-level evaluation.Among all the
samples, more than 400 cases belong to grade 2 or grade 3 based on
the Edmondson–Steiner grading system. Concerning the
imbalanced slide amount of tumor differentiation degree, we
made a preliminary filtrating to 137 cases for training, and the
remaining 455 slideswere used for validation and testing (211 slides
of the validation set and244 slides of the testing set). Besides this, we
also collected 157 slides in The Cancer Genome Atlas (TCGA)
database as an external testing set for testing the robustness of our
model. It isworthnoting thatour task is todetect theHCCregion, so
all the other tissues, including liver cirrhosis, are labeled as grade 0.

To get the multi-scaled patch, hundreds of central points with
a minimum distance were selected on each slide. For each point,
three patches were cropped at ×5, ×20, and ×50 magnification to
retain the information of different scales. We resized all of them
to 448 pixels to get a set of patch groups with the same size and
position. The label of each patch was determined by its relative
position to the annotated tumor region. For the training set, a
certain number of patches were randomly chosen in each slide. It
is worth noting that these patches were used for pre-training the
model. As for the validating set, we artificially selected a small
number of patches with correct labels to obtain an accurate
assessment. All these patches are pre-processed by stain
normalization before training.

Data Screening
The above-mentioned training set was used to train preliminary
models for screening, which can obtain the model with an
accuracy of about 85% on the validating set. Since we used
December 2021 | Volume 11 | Article 762733
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data with rough annotations, there existed some slides with high
noise. In these slides, it is complicated for the pathologist to
annotate accurately on all these small regions. Considering that
the slide size is hundreds of times larger than the cropped
patches, it is impractical to ensure the accuracy of the patch-
level labels, resulting in the dataset with noisy labels. One of our
strategies for handling noisy data was slide-level screening,
which means to retest all the slides severally by pretrained
models and eliminate the patches of slides with low accuracy.
Differently, the patch-level screening would directly test on
patches and eliminate the incorrectly predicted ones. The pre-
trained model was not highly accurate, so ambiguous patches
would be retained in the screened dataset. It means that patch-
level screening reduces the dataset noise, but the remaining noisy
patches might be highly mistakable. The slide-level screening
focuses on the accuracy of each slide instead of the patch, so
noisy patches are filtered without strains of complexity. Both
screening methods have their pros and cons in different
conditions. As per the process shown in Figure 1, in the case
that the model has 85% accuracy, low slide-level accuracy of less
than 70% demonstrates that the slide contains lots of labeling
errors. These noisy samples can obstruct effective feature
extraction during training and need to be removed. For patch-
level screening, we filtered patches directly with predicted values
of less than 0.7. Then, two different training sets were prepared
for the next stage. Here the threshold is determined by the
ablation study. The models were trained on different datasets
with a threshold of 0.6, 0.7, and 0.8 to get accuracies of 91.58%
(0.009), 93.03% (0.008), and 92.12% (0.010), respectively.

In consideration of the data imbalance problem, we adjusted
the patch quantity of different categories and different patients,
which avoided the model from having a preference. The training
samples were selected from filtered data, totaling 22,800 patches
from 137 slides. The validating set contained 412 patches of 211
slides by manual screening. Only a few patches of the same slide
were selected. In increasing the diversity of the dataset, involving
more slides was more helpful than more patches of the same
Frontiers in Oncology | www.frontiersin.org 3
slide. Unlike these processing methods, each sample of the
testing set retained whole-slide images to evaluate the
diagnosis results with slide-level accuracy.

Model Design
It usually takes tens or even hundreds of thousands of samples to
train an effective model in deep learning. Since it is unrealistic to
acquire large amounts of medical samples, we chose to use the
model already trained on the other large dataset [ImageNet
dataset (20)]. The pre-trained model would have a feature
extraction ability for basic image features. ResNet18 was
adopted as the basic architecture of our model. Although the
screening methods mentioned above have a certain efficiency in
filtration, the screened dataset will still be noisy. Focusing on the
abovementioned problem, we also applied a new strategy for
noisy HCC annotations based on the CNNmodel to improve the
HCC classification performance.

Considering the distinctive characteristics of pathological
slides, we took image scale as one of the most significant
factors in cancer recognition. In macro-view, the probability of
noisy samples will be lower, while the morphology of cells is
clearer in micro-view. It means that a proper scale would be
crucial in computational HCC diagnosis. In this work, we
attempted to examine model performance with patches of
various scales and get the proper magnification between
features and noise so that enough features were contained in
patches and the rate of noisy labels would not be too high. Our
dataset contained the patch groups with the same size and
different magnifications of ×5, ×20, and ×50. The label of each
group was decided by the annotation region. These patches of
three magnifications were severally inputted into three models
with the same architecture during training for comparison. The
process of our proposed model is shown in Figure 2.

As for the loss function, we introduced label smoothing into
our model for alleviating the influence of residual noisy labels.
With cross-entropy loss L = −o

N

i=1
yilog(pi) + (1 − yi)log(1 − pi), the predicted

probability of each sample pi = 1=(1 + e−zi ) will be forced to
FIGURE 1 | Illustration of the process of our proposed method. Firstly, all slides of the training set were cropped randomly and used for model pretraining.
Secondly, the pretrained model is trained with about 85% accuracy and then used for two different dataset screening methods. For patch-level screening, all patches
were independently assessed by patch-level screening and would be filtered if the predicted value was below 0.7. This threshold is determined by the ablation study.
For slide-level screening, patches cropped from the same slide are calculated together to filter the slides with low quality. Only patches of slides with 70% overall
accuracy would be retained, which means that the final dataset would not contain slides with unreliable annotation.
December 2021 | Volume 11 | Article 762733
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infinitely approximate to the probability interval [0,1] according to
the label. Here N denotes the batch size, y denotes the patch label,
and p denotes the predicted value. The latter formula is the
sigmoid function mapping model output zi into the probability
interval [0,1] as final probability pi. This loss function will guide
the output zi toward polarization during gradient descent,
resulting in the over-confidence of each sample and
consequently reducing model generalization. Differently, smooth
label is defined as y

e

i = (1 - ϵ)yi + ϵ/2 where ϵ is the hyperparameter
that determines the degree of smoothness. With the constrain of
smooth labels, the outputs of the model (before the sigmoid layer)
will be limited in a fixed range. Rafael et al. (21) found that
ordinary labels lead the outputs dispersing into broad clusters
through visualization of the activation of the penultimate layer. In
contrast, the clusters produced by smooth labels are tighter. The
work of Lukasik et al. (22) also demonstrated the superiority of
label smoothing for deep learning with noisy labels. In our work,
noise exists between two categories. After data screening limits the
noise to a lower degree, label smoothing has the ability to restrict
the over-fitting caused by noisy labels so that the model
generalization can be enhanced.

Differently from (22), the degree of label smoothing should be
determined by the surroundings of each patch, so an additional
module is added in our model to dynamically choose the smoothing
weight. As shown in Figure 2, the surrounding patches are formed
into the feature polymer, representing the large-scale view without
losing cellular information. Here the encoder Ep is pre-trained by
Autoencoder. Then, a group of fully connected layers is trained to
Frontiers in Oncology | www.frontiersin.org 4
output the value of ϵ. The core idea is that the surroundings of each
patch are related to the probability of the label being mislabeled. If
the patch is surrounded by a mixture of normal and cancerous cells,
the annotated label is not credible, and a large value of ϵ should be
applied, According to the ablation study of smoothing weight, the
new smoothing weight is set as ϵ′ = 0.2ϵ, where ϵ is the output of the
sigmoid function between 0 and 1.

Ethics Statement
This study was approved by the Ethics Committee of The First
AffiliatedHospital,CollegeofMedicine,ZhejiangUniversity.Written
informed consent was obtained from all patients in this study.
RESULTS

In the experiments, ResNet18 (23) is adopted as the encoder of the
model,which ispre-trainedonImageNetdatasets (20).The encoder
of the feature polymer consists of six convolutional layers, followed
by two fully connected layers to output the weight ϵ. In model
training,Adam is used as the optimizer. The batch size is 32, and the
learning rate is 0.0001 in all the experiments for fair comparison.

Slide Screening
To demonstrate the necessity of screening slides to filter out
those with high noise, we compared the performance of the same
CNN model training on the raw dataset, slide-level screened
dataset, and patch-level screened dataset. Furthermore, for each
FIGURE 2 | The process of our proposed model. Patches of three scales (×5, ×20, ×50 magnification) were cropped from slides, and the corresponding labels
were decided according to annotations. Patches of ×50 magnification are at a large scale containing the clearest cellular features but are also probably noisier. In
contrast, ×5 magnification minimizes errors, but the cellular features can be hardly seen. These patches are severally inputted into the main encoder Em and classifier
to get results. In the other part, the regular labels are transferred into smooth labels to guide the training in our model. Additionally, our model contains a module to
get dynamic smoothing weight by the surrounding information of each patch. Here Ep denotes the pretrained Autoencoder to generate the feature polymer, which is
utilized to output the dynamic smoothing weight ϵ.
December 2021 | Volume 11 | Article 762733
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dataset, three magnifications were employed to generate patches.
The result is shown in Table 1, which demonstrates the
incredible advantage of the patch-level screening method in all
scales. The accuracy on the patch-level screened dataset is on
average 5.10% better than the slide-level screened dataset and
8.92% better than the raw dataset. We got the highest accuracy of
93.03% in the patch-level screening dataset with ×20
magnification. This result illustrates that, with patch-level
screening, the ×20 magnification dataset balances the influence
of the image noise and the cellular features so that the model
achieves high performance in this dataset.
Label Smoothing
After determining the screening method and patch scale, label
smoothingwas applied to furthermitigate the negative effects of the
noisy samples. Here we adjusted the hyper-parameter ϵ from 0.1 to
0.3 andcalculated thepatch-level accuracyon thevalidating set. The
results are shown inTable 2. According to the results, the weight of
0.2 was adopted in label smoothing. Moreover, to dynamically
choose the smoothing weight ϵ, we introduced the feature polymer
to integrate surrounding information, and the results demonstrate
the significance of our model.
Slide-Level Accuracy
In slide prediction, all patches of each slide were input into the
trained model to get the predicted categories, and the ratio of the
cancer patch will be calculated to decide the slide-level prediction
according to the threshold. We collected 244 slides in our dataset
as an internal testing set, including 161 HCC slides and 83
paracancerous liver tissue slides. Given the necessity of data
balance, the slide numbers of all grades according to the
Edmondson–Steiner grading system were controlled to be as
equal as possible. We calculated the accuracy separately to have
an intuitional understanding of the results. In slide prediction, all
patches of each slide are input into the trained model to get the
predicted categories, and the cancerous ratio of the whole slide
will be calculated to decide the slide-level prediction according to
the threshold. The results showed that 0.04 was the optimal
threshold value for both models, in which the baseline model
achieved the accuracy of 97.54% and our model achieved the
accuracy of 98.77%. The predicted results and the sample
amounts of each grade are shown in Table 3. It can be seen
that the model accuracy on grade 2 and grade 4 is the same; it
might be due to the high similarity of the slides in our dataset.
Nevertheless, our model achieves better performance with
Frontiers in Oncology | www.frontiersin.org 5
98.77% overall accuracy, which demonstrates the superiority of
our model.

We also collected 157 HCC slides in TCGA database as an
external testing set for testing the robustness of our model.
Because of the difference of the image acquisition equipment,
the models would tend to be less accurate. It is noticeable that
our model holds a significant lead over the baseline model with a
slide-level accuracy of 87.90%, while the regularly trained CNN
model only makes accurate predictions on 54.14% of the TCGA
slides (Table 4). From the results described above, we conclude
that, although the baseline model achieves accuracy close to our
model with a specific threshold, it cannott generalize well to
other samples like the slides from TCGA. The primary cause of
that is that our model uses label smoothing to alleviate the over-
fitting problem, resulting in a better ability in recognizing easily
confused samples. The slide-level accuracy reflects the
superiority of our model in the classification. It is an overall
criterion without reflecting details of the prediction. Moreover,
the slides with different predictions by the baseline and our
model are shown in Figure 3. It can be found that the difference
between the predictions on our dataset is not obvious, but the
performance of our model is more significant in the public
dataset TCGA, which means that our model has a high
generalization on the different datasets without training. The
next step of evaluation is to pay attention to the model prediction
on each slide, which helps us to understand why our model
performance is better than the regular CNN model.
Visualization Result
For further assessing the effects of two models on the diagnosis of
HCC, we visualized the model prediction on whole-slide images to
acquiremore intuitive results. A total of 20 independent slides were
elaborately annotated for pixel-level evaluation. Compared to the
elaborate annotation, the rough annotation always contains some
non-tumor components and ignores scattered HCC cells around
the major tumor region. One example is shown in Figure 4.

Since pathological images are too large for segmentation, the
common approach is to utilize the sliding window to calculate
the mean prediction of each pixel as the pixel-level accuracy.
Since blank areas around the valid region do not contain cells,
the model can easily distinguish the patches cropped from these
areas. The high proportion of these areas will also highly make
the results false. We excluded the blank areas around and within
the organization before calculating the accuracy. All the
visualization results of precisely annotated slides can be found
in Supplementary Figure S1. Among all the 20 slides with
TABLE 1 | Comparison of convolutional neural network model performance on multiple-scale datasets with different magnifications.

Scale Data

Raw data Slide-level screening Patch-level screening

ACC (×5) 81.29% (0.017) 86.99% (0.011) 90.85% (0.008)
ACC (×20) 83.15% (0.022) 86.00% (0.013) 93.03% (0.008)
ACC (×50) 84.49% (0.021) 87.40% (0.006) 91.80% (0.008)
December 2021 | Volu
The variance of 10 trials is shown after each accuracy score. Acc denotes the patch-level accuracy.
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precise annotation, our proposed model achieves an accuracy of
89.98%, which is higher than the performance of the baseline
model of 82.52% and label smoothing of 87.72%.

In addition, the visualization results show that our proposed
model has superior ability in differentiating regions mixed with
cancer cells and benign cells, recognizing well-differentiated
HCC and MVI. As shown in Figure 5, the figures from the left
to the right represent the whole-slide image, annotated ground
truth, predicted map of the baseline model, and our model.
Each pixel in the predicted figures is the output of the
corresponding patch, and we magnify the same part of the
region to have a distinct view. One of the visualization results
shown in Figure 5A is a complex sample with highly dispersed
cancer cells. Significantly, the selected region is located in the
cancer region according to the rough annotation, but from the
elaborate annotation, we find fibroblasts (left of the region) and
erythrocytes in the vessels (right of the region). From the
corresponding area of predicted maps, we can see that the
baseline model recognizes the erythrocyte area but puzzles at
the fibroblasts area on the left. On the contrary, these patches
are accurately discriminated by our proposed model. The
visualization results also show that our proposed model could
distinguish well-differentiated HCC. As shown in Figure 5B,
the baseline model ignores almost all the well-differentiated
cancer cells, while our model accurately predicts most of them.
Notably, our proposed model can also help pathologists to
identify MVI and microsatellite nodules. Here we show an
example in Figure 5C, which contains multiple MVI samples
(the annotated regions outside the tumor with red circles).
From the visualization results, it is clear that the model trained
by our screening dataset can recognize several distinguishable
MVI samples, avoiding the omission of important information
by human diagnosis.
Frontiers in Oncology | www.frontiersin.org 6
DISCUSSION

There have been plenty of innovative research on traditional
machine learning methods, like support vector machine, random
forest, and boosting algorithms (24). In general, the above-
mentioned methods have achieved applaudable performance in
CT and ultrasound image analysis, which provides a non-
invasive and low-cost way for the auxiliary diagnosis of
disease. Liao et al. (25) extracted image features from HCC
pathological images and then adopted random forest to diagnose
HCC and predict survival outcomes. Fehr et al. (26) applied
recursive feature selection support vector machine in the binary
classification task of prostate cancer. Although traditional
machine learning methods have been well applied in these
studies, all the approaches are highly dependent on the
features extracted by manual rules, which is time- and labor-
consuming. The hand-designed features are not likely to fit the
data perfectly, leading to the limitation in model performance.

With the popularization of deep learning, various structures
of CNN were widely applied in the diagnosis of HCC. Schmauch
et al. (27) proposed a deep learning model to differentiate space-
occupying lesions in the liver using data of 367 ultrasound
images with a classification accuracy of 91.6%. Vivanti et al.
(28) proposed an automated detection model based on the CT
images of HCC which can identify tumor recurrence with an
accuracy of 86%. Hamm et al. (29) described an MRI liver lesion
classification system based on CNN with an accuracy of 92%, a
sensitivity of 92%, and a specificity of 98%. As the gold standard
in medical diagnosis, pathological slides contain more features
for conclusive analysis. Indeed the high complexity of slide
annotation and gigapixel image processing makes the
computer-assisted diagnosis on pathological slides meaningful
but also challenging (30).
TABLE 3 | Slide-level accuracy results of different grades in internal testing set.

Total

Baseline model
Grade 0 1 2 3 4 /
Acc 97.59%(81/83) 93.94%(31/33) 97.92%(47/48) 97.92%(47/48) 100%(32/32) 97.54%(238/244)
Our model
Grade 0 1 2 3 4 /
Acc 98.80%(82/83) 96.94%(32/33) 97.92%(47/48) 100%(48/48) 100%(32/32) 98.77%(241/244)
December 2021 | Volume 11
We utilized our testing set to determine the optimal threshold of 0.04. The sample amount of each grade is shown after each accuracy. Here grade 0 denotes non-tumor, and the others are
Edmondson–Steiner grades. Acc denotes the slide-level accuracy.
TABLE 2 | Patch-level accuracy with label smoothing of different weight ϵ, which was trained on the screened dataset of ×20 magnification and evaluated on a
validating set.

Model Patch-level accuracy Dynamic ϵ

ϵ = 0.1 ϵ = 0.2 ϵ = 0.3

Acc 92.17% (0.008) 93.01% (0.004) 92.55% (0.004) 93.87% (0.005)
AUC 0.9572 (0.007) 0.9691 (0.007) 0.9604 (0.011) 0.9720 (0.008)
F1-score 0.9364 (0.016) 0.9585 (0.010) 0.9397 (0.010) 0.9644 (0.012)
The variance of 10 trials is shown after each accuracy score. Acc denotes the patch-level accuracy. AUC denotes the area underneath the entire ROC curve. “F1-score” is the harmonic
mean of the precision, and recall that F1 = 2 (precision recall) / (precision + recall).
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Unlike other pattern recognition tasks, pathological image
diagnosis faces two primary challenges: large image size and
noisy annotation (31). Commonly, the size of a pathological
digital slide is more than 100,000 pixels, which is too large for an
input of a normal model. Simply resizing the whole slide into a
small image will make nuclear morphology indistinguishable,
leading to the loss of crucial classification information. Most of
the research split the whole slide into patches for individual
classification and assembled the results back to the original slide.
Kiani et al. (32) created a model based on CNN to differentiate
HCC from cholangiocarcinoma. They used a total of 25,000 non-
overlapping image patches of size 512 × 512 pixels to train the
model and yielded an accuracy of 84.2% on an independent test
set. Liao et al. (33) designed a CNNmodel to identify liver tumor
tissue from normal. The CNN model was trained and tested on
256 × 256 pixels and yielded an accuracy of 94.9% at ×5
magnification and 86.0% at ×20 magnification, respectively.
These methods ignored the macro-view structural information.
Besides that, the size problem generally caused the noisy
Frontiers in Oncology | www.frontiersin.org 7
annotation in HCC pathological slides. These noisy
annotations will potentially limit the performance of the
model. Our proposed method aims to solve these problems
during data processing and model training. From the dataset
with rough annotation, our method trained with patch-level
screening dataset achieved the highest accuracy with 93.03%
on ×20 magnification, while regular CNN model with the
same architecture only reaches 84.49% accuracy at most.
The most significant difference from the above-mentioned
research is that our proposed method was devised for
classification with noise annotation. Since some components,
like fibrous stroma located in the tumor region, are more likely to
be annotated as cancer samples, they appended artificial noisy
images to the dataset to enhance the recognition capability of the
model, but for the preexisting fibrous stroma images, this
approach cannot correct the inaccuracy annotations. Moreover,
the correction effect largely depended on the quality of the
artificial images, so simple artificial images with singular colors
were more likely to be distinguished from real noisy images. It is
FIGURE 3 | Visualization of slides with different predictions by the baseline and our model. For each slide, the figure to the left is the prediction of the baseline
model, and the figure to the right is the prediction of our model. The ratio below each figure denotes the overall ratio of cancerous patches. Except for the slide of
grade 0 in our dataset, all the other slides contain tumors with different grades. It can be seen that, although there is not much difference in the predictions of our
dataset, the performance of our model is more significant in the public dataset The Cancer Genome Atlas, which reflects the high generalization of our model.
TABLE 4 | Slide-level accuracy results of different grades in The Cancer Genome Atlas database.

Total

Baseline model
Grade G1&G2 G3&G4 NA /
Acc 47.48%(47/99) 68.09%(32/47) 54.54%(6/11) 54.14%(85/157)
Our model
Grade G1&G2 G3&G4 NA /
Acc 83.84%(84/99) 93.62%(44/47) 90.91%(10/11) 87.90(138/157)
December 2021 | Volume 11
We utilized our testing set to determine the optimal threshold of 0.04. The sample amount of each degree is shown after each accuracy score. Acc denotes the slide-level accuracy.
NA denotes the group of samples without the exact grade.
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FIGURE 4 | One of the whole-slide images of hepatocellular carcinoma tissues. The width of the image is around 10k pixels. In the figure to the left, the blue line
drawn by pathologists points out the tumor regions roughly, containing non-tumor areas without tumor features. In the figure to the right, with elaborate annotation,
in addition to the blue line showing the cancer region precisely, the yellow line circles the non-tumor parts within the tumor.
A

B

C

FIGURE 5 | The visualization of model prediction on whole-slide images. Acc denotes the overall accuracy of the slide. (A) Differentiation of the proposed model in
the suspected area of tumor. (B) Recognition of the proposed model in well-differentiated hepatocellular carcinoma. (C) Recognition of the proposed model in
microvascular invasion (MVI). The white region denotes the tumor, and the red regions denote the MVI.
Frontiers in Oncology | www.frontiersin.org December 2021 | Volume 11 | Article 7627338

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Feng et al. Diagnosis of Hepatocellular Carcinoma
necessary to alleviate the impact of noisy annotations by
considering the causes of the problem, such as the rough
annotation and the over-fitting of noisy labels.

In practice, our proposedmodelmay assist pathologists inHCC
diagnosis. The pathological diagnosis of hepatic atypical
hyperplastic nodule and well-differentiated HCC is difficult.
Sometimes pathologists need to rely on immunohistochemistry
and reticular fiber staining for diagnosis. The cancer features of
these slides are not clear enough to be distinguished, leading to
neglect of the underlying tumor in the baseline model. Our model
can identify early HCC ignored by the baseline CNNmodel, which
is particularly significant in practical diagnosis. In addition, our
proposed model can also help pathologists to identify MVI and
microsatellite nodules (34). It is well known that MVI and
microsatellite nodules are two crucial prognostic indicators of
HCC. Song et al. (35) and Wei et al. (36) used deep learning to
predict MVI in HCC based on MRI with an accuracy of 79.3 and
81.2%, respectively. However, until now, there is no previous study
based on deep learning to enable the diagnosis of MVI. The
recognition of MVI is very challenging since most of the MVI
samples are too small and consist offew distinguishing features. It is
worth noting that our model was not trained by anyMVI samples,
which highly increased the difficulty of this task. From the
visualization of prediction, the model trained on the dataset
without screening misclassifies lots of normal cells, but the model
trained by our screening dataset not only accurately predicts two
types of cells but also recognizes several distinguishable MVI
samples, which will be meaningful for diagnosis. Such good
results benefit from screening by a pretrained model.

Increasing studies have uncovered that the histological
phenotypes of HCC are closely related to gene mutations and
molecular tumor subgroups (37)—for instance, CTNNB1-
mutated HCCs display a particular phenotype, exhibiting
microtrabecular and pseudoglandular architectural patterns (38).
Macrotrabecular-massiveHCC frequentlyharborsTP53mutations
and/or FGF19 amplifications, which exhibits a very aggressive
phenotype (38, 39). Recently, CNN has been shown to be able to
predict genetic alterations and the overall survival of patients with
lung and brain tumors, respectively. Coudray et al. (12) found that
CNNs can be trained to predict the six frequently mutated genes of
lungadenocarcinomasusingWSI.Thepredictionaccuracy rate is in
between 73.3 and 85.6%. The study conducted by Mobadersany
et al. (40) showed that survival CNN models can detect histologic
differences associated with isocitrate dehydrogenase mutations in
astrocytomas. The establishment of a classification of HCC that
integrates morphology and molecular alterations is extremely
important for therapeutic strategies and the prognosis of HCC. In
future studies, we will further investigate this aspect.

In conclusion, we propose the first high-accuracy
histopathological classification of hepatocellular carcinoma with
deep learning technique. The patch screening and dynamic label
smoothing strategies are adopted to handle liver histopathological
image with noise annotation from the perspective of input and
output. The sufficient experiments demonstrate that our two-step
method has the ability to reduce the negative effects of noise.
Compared to the regular CNN model, our proposed model has a
Frontiers in Oncology | www.frontiersin.org 9
higher pixel-level accuracy, and it also has an advantage indetecting
well-differentiated HCC andMVI. Our work might be of reference
value for future research exploring digital pathology diagnosis,
mainly reflecting in the results of the screening methods, multiple
patch scales, and label smoothing. In the future, theproposedmodel
will be able to subdivide the tumor into several categories if there are
sufficient and balanced data. Besides that, liver cirrhosis, hepatitis,
and other liver tumors can also be trainedwith ourmodel as long as
the training set contains enough samples, and these additional
categories will benefit clinical diagnosis from multiple indicators.
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