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INTRODUCTION 
 

Prostate adenocarcinoma (PRAD) represents the most 

common male carcinoma in developed countries [1]. In 

spite of substantial efforts invested into therapeutic 

development of PRAD, its high relapse risk contributes 

to the second-leading cause of cancer-related deaths  

[2–4]. Therefore, it is clinically necessary to identify a 

useful signature for PRAD to guide cancer treatment. 

Presently, the most common clinical indicators of 

cancer relapse are including prostate-specific antigen 

(PSA), Gleason score, and tumor stage [5, 6]. However, 

due to the heterogeneity of PRAD, the predictive ability 
of these common indicators is not unmet. Thereby, to 

identify a novel biomarker for predicting relapse risk for 

PRAD is an urgent and relevant effort. 

Circadian rhythms are 24-hour oscillations that affect 

multiple biological functions in humans [7]. Circadian 

rhythm disorders are linked to aggressive tumor 

behaviors and unwanted clinical outcomes. Circadian-

related genes have been implicated in the pathogenesis 

of colorectal cancer [7], prostate cancer [8], and bladder 

cancer [9]. Meanwhile, emerging evidence points to its 

involvement in tumor microenvironment [10–12]. While 

circadian rhythm is a hot topic of cancer research 

recently, the specific mechanisms of its role in humans 

are unclear. Besides, it is unreported whether circadian 

rhythm- (CR-) related gene signature can be a prognostic 

biomarker for PRAD patients. 
 

To establish a CR-related predicting signature for 

PRAD patients, we investigated bulk RNA sequencing 
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ABSTRACT 
 

Prostate adenocarcinoma (PRAD) represents the most common male carcinoma in developed countries, its 
high relapse risk contributes to the second-leading cause of cancer-related deaths. Therefore, it is required to 
develop an effective signature for predicting the relapse risk of PRAD. To identify a circadian rhythm- (CR-) 
related predictive signature, we analyzed RNA-seq data of patients with prostate adenocarcinoma (PRAD) 
from the TCGA and GEO cohort. Seven circadian rhythm- (CR-) related genes (FBXL22, MTA1, TP53, RORC, 
DRD4, PPARGC1A, ZFHX3) were eventually identified to develop a CR-related signature. AUCs for 3-year 
overall survival were 0.852, 0.856 and 0.944 in the training set, validation set and an external independent 
test set (GSE70768), respectively. Kaplan-Meier curve analysis showed that the high-risk group has a reduced 
relapse-free survival (RFS) than the low-risk group in the training set, validation set, and test set, respectively 
(P < 0.05). We constructed a prognostic nomogram combining the CR-related signature with T staging to 
precisely estimate relapse risk of PRAD patients. Finally, we observed that the CR-related gene signature was 
associated with tumor mutation burden, multiple immune checkpoint molecules and microsatellite 
instability, and thus could predict response to immune checkpoint inhibitors in PRAD. Conclusively, we 
developed a circadian rhythm-related gene signature for predicting RFS and immunotherapy efficacy in 
prostate adenocarcinoma. 
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(RNA-seq) profiles from the Cancer Genomic Atlas 

(TCGA) and Gene Expression Omnibus (GEO), hoping 

provide an applicable gene signature for predicting 

prognosis for PRAD patients. 

 

MATERIALS AND METHODS 
 

Acquisition of data 

 

Gene expression profiling and clinical information for 

PRAD patients from TCGA were obtained from UCSC 

Xena on September 9, 2021 (https://xena.ucsc.edu/). 

Microarray RNA-seq data and survival information of 

29 PRAD patients was retrieved from GSE70768 in 

GEO. GSE70768 was sequenced using the platform of 

GPL10558 (Illumina HumanHT-12 V4.0 expression 

beadchip). RNA-seq data from TCGA and GSE70768 

were normalized in the form of TPM values and then 

log2(x + 1) transformed. 

 

Somatic nucleotide variation (SNV) data of PRAD 

patients were obtained from the TCGA database. 

 

Estimation of enrichment scores for individual patients 

 

To quantify the expression levels of CR gene set in 

individual patients, we estimated enrichment score (ES) 

of the CR-related gene set for individual PRAD patients 

using single-sample gene set enrichment analysis 

(ssGSEA) [13]. ssGSEA is a mathematic methodology 

to estimate relative expression levels of a given gene set 

using RNA-seq data. The parameters used in this study 

were as follows: min.sz = 1, max.sz = Inf, tau = 0.25. 

 

Construction of the gene signature 

 

338 PRAD patients from TCGA were randomly divided 

into the training set (n = 236) and the validation set  

(n = 102). The CR-associated genes were screened  

for eligible genes for establishing the predictive 

signature using univariate Cox regression firstly, and 

then further analyzed using least absolute shrinkage and 

selection operator (LASSO) regression. Then, the 

eligible genes in LASSO were utilized to construct a 

gene signature based on eligible genes’ expression 

levels and their corresponding coefficients in LASSO, 

using the following formula: FBXL22×(-0.3746637) + 

MTA1×(0.9070002) + TP53×(-0.2111043) + RORC× 

(-0.4931651) + DRD4×(0.4730237) + PPARGC1A× 

(-0.2315328) + ZFHX3×(-0.5221173). 

 

Assessment of the predictive performance of the 

gene signature 

 

The predictive ability of the gene signature was 

assessed mainly by two analyses including receiver 

operating characteristic (ROC) curve and Kaplan-Meier 

(KM) curve. Area under the curve (AUC) and log-rank 

test in were performed in the training set, the validation 

set, and an independent test set. 

 

Functional enrichment analysis 

 

Functional enrichment analysis was carried on using the 

R package “clusterProfiler” (version: 3.18.1) [14]. This 

toolkit can determine whether canonical biological 

processes and signaling pathways are significantly 

enriched in a given patient cohort based on gene 

expression profiles. The information of canonical 

biological functions and signaling pathways are 

available in Bioconductor annotation data GO.db and 

KEGG.db. 

 

Construction of a nomogram 

 

To better predict the prognosis of PRAD patients, we 

conjointly analyzed the gene signature and several 

common clinical characteristics using multivariate Cox 

regression analysis and established a predicting 

nomogram using R package ‘rms’. 

 

Statistics 

 

Statistical analysis was carried on using R software 

(Version 4.0.1). Independent sample t test or Wilcoxon 

signed rank test was utilized according to the 

homogeneity of variance and normal distribution of 

data. Spearman’s correlation coefficient was performed 

to investigate the relationship between two continuous 

variables. Statistical significance was considered when 

P value is less than 0.05. 

 

Availability of data and materials 

 

All data generated and described in this article are 

available from the corresponding web servers, and  

are freely available to any scientist wishing to use 

them for noncommercial purposes, without breaching 

participant confidentiality. Further information is 

available from the corresponding author on reasonable 

request. 

 

RESULTS 
 

Establishment of a circadian rhythm- (CR-) related 

gene signature 

 

Circadian rhythm (CR) is reported to be implicated in 

cancer [7], whereas it remains unclear whether it has 

an effect on prostate adenocarcinoma (PRAD). To 

investigate its association with PRAD, we compared 

the expression levels of circadian rhythm signaling 

https://xena.ucsc.edu/
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pathway between PRAD and normal tissues using gene 

expression profiles of PRAD patients from TCGA. 

The expression levels of circadian rhythm signaling 

pathway was quantified as enrichment score (ES) 

using ssGSEA algorithm based on RNA-seq data of 

551 samples from the TCGA cohort of PRAD patients, 

and the findings showed that ES was significantly 

increased in normal tissue than in tumor tissue  

(Figure 1A). Moreover, we divided PRAD patients 

into the low-ES and high-ES groups according to a 

median value of ES, and performed a survival analysis. 

High-ES patients had an improved relapse-free 

survival (RFS) than low-risk patients (Figure 1B). 

Gene set enrichment analysis (GSEA) also supported 

that CR signaling pathway was significantly enriched 

in normal tissue compared with tumor tissue (Figure 1C). 

These findings indicated that circadian rhythm had a 

relationship with PRAD. 

 

Following the finding of the relationship between CR 

and PRAD, we wondered if CR could predict prognosis 

for PRAD patients and then planned to develop a 

circadian rhythm- (CR-) related gene signature to predict 

survival of PRAD patients. To identify eligible CR-

related genes in PRAD, we first performed univariate 

Cox regression analysis for 117 CR-related genes, and 

obtained 13 genes (FBXL22, FBXL6, MTA1, NR2F6, 

TP53, BTRC, GHRL, RORC, CIPC, DRD4, MTOR, 

PPARGC1A, ZFHX3; P<0.05; Figure 1D). Then, 13 

eligible genes were further filtered using LASSO 

regression analysis to eliminate multicollinearity and 

seven eligible genes (FBXL22, MTA1, TP53, RORC, 

DRD4, PPARGC1A, ZFHX3) were eventually acquired 

for establishment of a CR-related gene signature  

for predicting RFS in PRAD patients (Figure 1E, 1F). 

The CR-related gene signature was quantified based  

on the mRNA expression levels and the corresponding 

coefficients of seven CR-related genes, using the 

following formula: FBXL22×(-0.3746637)+MTA1× 

(0.9070002)+TP53×(-0.2111043)+ RORC×(-0.4931651) 

+DRD4×(0.4730237)+ PPARGC1A×(-0.2315328)+ 

ZFHX3×(-0.5221173). The coefficients represented the 

influence of genes on relapse risk; the positive 

represented a risk factor for relapse, while the negative 

represented a protective factor for relapse. 

 

Assessment of predicting performance of the gene 

signature 

 

The predicting capacity of the CR-related gene 

signature was validated using ROC curve and KM curve 

in the training set (n = 236) and the validation set (n = 

102). Area under the curve (AUC) for predicting 3-year 
overall survival were 0.852 and 0.856 in the training set 

and validation set, respectively (Figures 2A–2B). Then, 

we quantified the risk of relapse for PRAD patients as 

risk score using the above mentioned formula, and 

divided patients into the low- and high-risk patients 

according to the median value of risk score. Consistent 

with the above results, survival analysis also revealed 

that low-risk group had an improved RFS than high-risk 

group both in the training set and in the validation set 

(log-rank test, P <0.001). 

 

Discriminative ability of the CR-related signature 

 

To investigate the discriminative ability of the CR-

related signature, we performed principal component 

analysis (PCA) using seven selected CR-related genes 

for PRAD patients, and observed a distinction between 

the low- and high-risk patients (Figure 3A, 3C). Then, 

we explored the association among gene signature, 

relapse status and seven gene expression levels.  

The results demonstrated that risk score was linked  

to relapse status and the expression of seven genes 

(Figure 3B, 3D). 

 

Comparison of predicting performance of the CR-

related gene signature with other indicators 
 

To further evaluate the predicting performance of the 

CR-related gene, we compared the predicting 

capability of the CR-related gene with other indicators 

of RFS, including clinical characteristics and other 

four reported gene signatures. The results showed that 

CR-related gene signature showed an improved 

predictive performance than other clinical indicators 

(PSA, Gleason, clinical T stage, clinical N stage), with 

an AUC of 0.831 (Figure 4A). Meanwhile, CR-related 

gene signature (Signature 1) also showed an improved 

predictive performance than other four reported gene 

signatures: the immune-related gene signature [15] 

(Signature 2), the metabolism-related gene signature 

[16] (Signature 3), the PPP1R12A-related gene 

signature [16] (Signature 4), the TMB-related gene 

signature [17] (Signature 5), with an AUC of 0.856 VS 

0.763, 0.689, 0.626 and 0.488 (Figure 4B). 
 

Furthermore, we assessed the predicting ability of CR-

related gene signature in an independent cohort of 

PRAD patients (GSE70768) using ROC curve. 

Surprisingly, the CR-related gene signature manifested 

an impressive predictive ability, with AUC of 0.944 

(Figure 4C). Consistently, we also quantified the risk of 

RFS for patients using the above mentioned formula 

and divided patients into the low- and high-risk group 

based on a cutoff point of median value. Low-risk group 

had a significantly improved RFS than high-risk group 

(log-rank test, P = 0.003; Figure 4D). These results 

further underlined the predicting capacity of the CR-

related gene signature for predicting RFS in PRAD 

patients. 
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Figure 1. Establishment of a circadian rhythm- (CR-) related gene signature in prostate adenocarcinoma (PRAD).  
(A) Enrichment score (ES) of CR-related gene set was significantly enriched in normal tissue than tumor tissue. (B) High-ES patients had an 
improved relapse-free survival (RFS) than their counterparts. (C) CR-related gene set was positively enriched in normal tissue compared with 
tumor tissue. (D) 13 CR-related genes were qualified in univariate Cox regression analysis (FBXL22, FBXL6, MTA1, NR2F6, TP53, BTRC, GHRL, 
RORC, CIPC, DRD4, MTOR, PPARGC1A, ZFHX3; P<0.05). (E, F) 13 qualified genes were further filtered using LASSO regression analysis to 
eliminate multicollinearity and seven eligible genes (FBXL22, MTA1, TP53, RORC, DRD4, PPARGC1A, ZFHX3) were eventually acquired for 
establishment of a CR-related gene signature for predicting RFS in PRAD patients. 
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Functional enrichment analysis 

 

To interrogate the biological functions that were linked 

to the CR-related gene signature, we carried out 

functional enrichment analysis for genes that correlated 

with the CR -related gene signature. We calculated the 

correlation coefficients between the gene signature and 

all genes. 695 genes were selected as the signature-

related genes (P < 0.01, R > 0.4) [18]. Afterwards, these 

695 genes were investigated using R package 

“clusterProfiler”. The results demonstrated that these 

genes were mainly enriched in cytoplasmic translation, 

oxidative phosphorylation, mitochondrial respiratory 

chain complex assembly, oxidoreduction-driven active 

transmembrane transporter activity and electron transfer 

activity (Figure 5A–5D). Gene set enrichment analysis 

(GSEA) displayed that several enriched biological 

processes were associated with cancer invasion and 

metastasis, including AMPK signaling pathway, 

dopaminergic synapse, central carbon metabolism in 

cancer, NF-kappa B signaling pathway and others 

(Figure 5E, 5F). 

Establishment of a nomogram 

 

For better prediction of the survival of the PRAD 

patients, we endeavored to combine the signature with 

clinical features to establish a prognostic nomogram. 

We first analyzed the ability of age, clinical T stage, 

clinical N stage, Gleason score, prostate specific antigen 

(PSA) and the CR-related gene signature (risk score) to 

predict RFS using multivariate Cox regression. The 

results demonstrated that the gene signature and clinical 

T stage remained to be a valid predictor (Figure 6A, 

P≤0.05). 

 

Then, we established a prognostic nomogram consisting 

of the gene signature and pathological T (Figure 6B). 

To assess prognostic ability of the nomogram, we 

performed a ROC curve and calibration curve. ROC 

curve showed an amazing predictive capability, with 5-

year AUC of 0.944; consistently, C-index of the 

nomogram was 0.75±0.05, indicating the discriminatory 

ability of the nomogram; calibration curve also 

displayed a consistency between predicted probability 

 

 
 

Figure 2. Evaluation of the performance of the gene signature. (A) AUC for predicting three-year RFS is 0.852 in the training set 
(n=236). (B) AUC for predicting three-year RFS is 0.856 in the validation set (n=102). (C) Low-risk patients had an improved RFS than high-risk 
patients in the training set. (D) Low-risk patients had an improved RFS than high-risk patients in the validation set. 
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and observed probability, suggesting the effectiveness 

and robustness of the established nomogram. 

 

Exploration of the association of CR-related gene 

signature with tumor immune microenvironment 

 

Since CR-related gene signature could predict RFS in 

PRAD, we next wondered to explore its relationship 

with tumor immune microenvironment. Tumor immune 

microenvironment has been reported to be implicated in 

identification of pivotal molecules, drug response, and 

novel therapeutic methods. To interrogate the role of 

CR-related gene signature in PRAD, we computed the 

proportion of immune cells in cancerous tissue using 

CYBERSORT and investigated the association between 

risk score and immune cells. The results showed that  

T cell follicular helper was significantly elevated, while 

B cell naive, B cell plasma, T cell CD4 memory resting 

and monocyte were reduced in high-risk group than 

low- risk group (P < 0.05; Figure 7A). Further 

correlation analysis supported that T cell follicular 

helper was positively correlated with gene signature 

(Figure 7E), while B cell naive, B cell plasma, T cell 

CD4 memory resting and monocyte were negatively 

correlated with gene signature (Figure 7B–7D, 7F). 

 

The profiling of somatic nucleotide variation for 

PRAD patients between the low- and high-risk 

patients 

 

To investigate the association of CR-related gene 

signature with the mutation levels in PRAD patients, we 

 

 
 

Figure 3. The discriminative power of the CR-related signature. (A) Principle component analysis (PCA) demonstrated that low-risk 
group was apparently distinct from high-risk group in Dim 1 in the training set. (B) As risk score increased, chance of tumor recurrence 
increased in the training set. (C) Principle component analysis (PCA) showed that the low-risk group was apparently distinct from the high-risk 
group in Dim 1 in the validation set. (D) As risk score increased, chance of tumor recurrence increased in the validation set. 
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profiled the mutation landscape of the low-risk and 

high-risk groups, respectively, by analyzing somatic 

nucleotide variation data of PRAD patients from the 

TCGA cohort using the maftool R package. To better 

compare the potential distinction of the mutation 

landscape between different risk-score groups, we here 

defined the patients with the top 25% of risk score as 

the high-risk group and defined the patients with 

bottom 25% of risk score as the low-risk group. The 

waterfall plot demonstrated that the high-risk group 

had a higher nucleotide variation rate than the low-risk 

group (50.6% vs 35.8%, Figure 8A, 8B). Consistent 

with the findings of the waterfall plot, the bar plot and 

box plot analyses also showed that the risk scores were 

critically increased in the high-mutation group than in 

the low-mutation group (Figure 8C, 8D). A high 

somatic nucleotide variation rate has been reported  

to be associated with tumor mutation burden (TMB) 

that is reflective of effective response to immune 

checkpoint inhibitors (ICIs) [19, 20]; Thus, we asked 

whether the risk score had a relationship with TMB. 

We first quantified tumor mutation burden (TMB) 

using the maftool R package based on somatic 

nucleotide variation data of PRAD patients, and found 

that TMB was significantly correlated with risk score 

(P = 0.02, Figure 8E). Collectively, these results 

showed that the risk score could reflect the genomic 

instability and the TMB level, indicating its potential 

capability to predict response to ICIs in PRAD 

patients. 

 

 
 

Figure 4. Comparison of the CR-related gene signature with other indicators for RFS in PRAD. (A) CR-related gene signature 
showed an improved predictive performance than other clinical indicators, with an AUC of 0.831. ( B) CR-related gene signature 
(Signature 1) showed an improved predictive performance than other four reported gene signatures. ( C) CR-related gene signature also 
showed an ideal predictive performance in an independent cohort of PRAD (GSE70768), with an AUC o f 0.944. (D) Low-risk group had 
an improved RFS than high-risk group in an independent cohort of PRAD (GSE70768) (with a cutoff point of median value; log -rank test, 
P = 0.003). 
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Figure 5. Functional enrichment analysis for CR-related gene signature. (A) Enriched biological processes included cytoplasmic 

translation, oxidative phosphorylation, mitochondrial respiratory chain complex assembly. (B) Enriched cell components included 
mitochondrial protein-containing complex, ribosome, inner mitochondrial membrane protein complex. (C) Enriched molecular functions 
included structural constituent of ribosome, oxidoreduction-driven active transmembrane transporter activity and electron transfer activity. 
(D) Enriched KEGG pathways included ribosome, diabetic cardiomyopathy, chemical carcinogenesis (E, F) Gene set enrichment analysis 
(GSEA) showed the top 10 KEGG signaling pathway including AMPK signaling pathway, dopaminergic synapse, central carbon metabolism in 
cancer, NF-kappa B signaling pathway and others. 
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Figure 6. Clinical application of CR-related gene signature for PRAD patients. (A) Multivariate Cox regression was used to 
investigate the ability of age, clinical T stage, clinical N stage, Gleason score, prostate specific antigen (PSA) and the CR-related gene signature 
(risk score) to predict RFS. Risk score remained to be a valid predictor (P<0.05). (B) A nomogram combing risk score and clinical T stage was 
constructed to predict 1-, 3- and 5-year RFS for individual PRAD patient. (C) ROC analysis for nomogram showed an impressive predictive 
performance, with AUC of 0.944. (D) Calibration curve showed agreement between actual and predicted RFS, indicating an ideal predictive 
capability. 
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Figure 7. Association of the CR-related gene signature with tumor infiltrating immune cells in PRAD. (A) Comparison of tumor 
infiltrating immune cells between low- and high-risk groups demonstrated that there existed a significant difference in the abundance of B 
cell naive, B cell plasm, T cell CD4 memory, T cell follicular helper, and monocyte (P < 0.05). (B–D) Risk score was inversely correlated with B 
cell naive, B cell plasm, T cell CD4 memory, T cell follicular helper, and monocyte (R < 0, P < 0.05). (E) Risk score was positively correlated with 
T cell CD4 memory (R < 0, P < 0.05). (F) Risk score was inversely correlated with monocyte (R < 0, P < 0.05). 
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The effects of CR-related gene signature on response 

to ICIs 

 

Elevated TMB, high-microsatellite instability (MSI) and 

immune checkpoint molecules have been demonstrated 

to be predictive of response to immune checkpoint 

inhibitors (ICIs) in cancer patients [21]. The previous 

results had suggested that CR-related risk score had a 

significantly impact on RFS, genomic stability and 

TMB; thereby we asked if it was also associated with 

MSI status and immune checkpoint molecules in PRAD. 

To enhance the reliability of results, we quantified MSI 

levels using three different strategies, including ssGSEA, 

PreMSIm and UCSCXenaShiny. MSI levels was 

significantly elevated in high-risk group than in low-risk 

group (P <0.001; Figure 9A), and positively correlated 

with risk score (P < 0.05, R = 0.37; Figure 9B). 

Consistently, risk score was also significantly higher in 

MSI-H group than MSI-L/MSS group using PreMSIm 

method (Figure 9C; P <0.001). Meanwhile, risk score 

was significantly higher in MSI-H group than MSI-

L/MSS group using UCSCXenaShiny method (P <0.05; 

Figure 9D). 

 

Consistently, the expression levels of LAG3, PDCD1 

and CTLA4 were also critically upregulated in the high-

risk patients than in the low-risk patients (Figure 9A), 

underlining the ability of CR-related gene signature to 

predict drug response (Figure 9E). Collectively, these 

findings further underlined the ability of CR-related 

gene signature to predict immunotherapeutic response 

in PRAD. 

 

 
 

Figure 8. The profiling of somatic nucleotide variation for PRAD patients of different risk groups. (A, B) The waterfall plot of 

nucleotide variation rate in high-risk group and low-risk group. (C, D) The bar plot and box plot analyses of risk scores in the high-mutation 
group and low-mutation group. (E) The correlation of tumor mutation burden and risk score. *P <0.05, ** P <0.01, ***P<0.001. 
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Figure 9. The effects of CR-related risk score on response to ICIs. (A) MSI levels was elevated in the high-risk patients than in low-risk 
patients (P <0.001). (B) MSI levels were positively correlated with risk score (P < 0.05, R = 0.37). (C) Risk score was significantly increased in 
MSI-H group than MSI-L/MSS group (data of MSI generated from PreMSIm R package; P < 0.001). (D) Risk score was significantly higher in 
MSI-H group than MSI-L/MSS group (data of MSI generated from UCSCXenaShiny R package; P < 0.05). (E) Comparison of multiple immune 
checkpoint mRNA (PDCD1, LAG3, CD40, CTLA4, PDCD1LG2) in the high-risk patients and the low-risk patients. *P <0.05, ** P <0.01, 
***P<0.001. 
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DISCUSSION 
 

We established a seven-gene CR-related signature for 

predicting relapse risk in PRAD patients, developed a 

nomogram consisting of the CR-related gene signature 

and T staging. Several enriched biological processes 

were related to AMPK signaling pathway, 

dopaminergic synapse, central carbon metabolism in 

cancer, and NF-kappa B signaling pathway. Moreover, 

we observed that the CR-related gene signature was 

associated with tumor mutation burden, multiple 

immune checkpoint molecules and microsatellite 

instability, and thus could predict response to immune 

checkpoint inhibitors in PRAD. Overall, this study 

provided a novel predictor of relapse risk and 

immunotherapeutic effects of patients with PRAD, 

which would help to develop precision medicine. 

 

One contribution of this research is the development of 

a CR-related gene signature for predicting clinical 

outcomes of PRAD patients. The predicting ability of 

the signature has been validated in an independent 

cohort (GSE70768) and compared with common 

clinical index and some reported gene signatures to 

prove the superiority of its predicting ability. 

 

Another important finding that several important 

biological processes were identified to be involved in 

CR and high relapse risk, including AMPK signaling 

pathway, dopaminergic synapse, central carbon 

metabolism in cancer, and NF-kappa B signaling 

pathway. Consistent with our findings, AMPK signaling 

pathway has been reported to involve in PRAD [22–24], 

and targeting AMPK signaling pathway with CO or 

metformin can suppress prostate cancer cell growth [25, 

26]. Remarkably, it is unreported that whether 

dopaminergic synapse is related to PRAD. Here, we 

observed the association between dopaminergic synapse 

and PRAD, which requires further investigation. Central 

carbon metabolism has a key role in metabolic 

programming [27], and regulation of carbon metabolism 

is essential for the treatment of prostate cancer. Current 

studies have pointed out that NF-kappa B signaling 

pathway is involved in castration-resistant prostate 

cancer [28, 29] and associated with prostate cancer cell 

EMT and bone metastasis [30, 31]. Here, we found CR-

related gene signature was associated with these 

oncogenic signaling pathways, suggesting the role of 

circadian rhythm disruption in the development of 

cancer. 

 

Moreover, the seven genes consisting of the CR-related 

gene signature could be potential biomarkers for the 

development and relapse risk of prostate cancer. 

FBXL22 has been identified to correlated with ER- 

breast cancer in an exome-wide analysis [32]; 

nevertheless, its specific effects on cancer, including 

prostate cancer, is unclear. Here, the present study 

indicated its role in predicting recurrence risk of 

prostate cancer. MTA1 has been reported to drive 

malignant progression and bone metastasis in prostate 

cancer in several studies [33, 34], whereas the 

protective effect of TP53 is well-known [35, 36]. RORC 

encoding ROR-γ could induce androgen expression in 

prostate cancer [37] and is a potential therapeutic target 

in castration-resistant prostate cancer [38]. PPARGC1A 

and ZFHX3 are also reported to be associated with 

prostate cancer [39, 40], which could partly explain 

their ability to predict relapse risk. 

 

This research has several practical meanings for clinical 

management of PRAD patients. Firstly, we developed a 

new gene signature and a novel predicting nomogram 

that would benefit therapeutic strategies for PRAD. In 

addition, we identified multiple pivotal genes and 

signaling pathways that would help development of new 

therapeutic strategies for PRAD. Needless to say, this 

study was mainly performed using bioinformatics, and 

thus laboratory experiments are needed for further 

research. 

 

The present study has several limitations that need 

attention. Firstly, the pivotal gene and signaling 

pathways in this study were identified using 

bioinformatics analysis, laboratory experiments are 

needed to investigate their biological rationales. In 

addition, the risk score was identified to predict 

response to immunotherapy of PRAD, warranting 

further clinical investigation. 

 

Conclusively, we successfully developed a new CR-

related signature and a nomogram that could predict 

relapse risk of PRAD patients, which could provide 

insights into further researches on PRAD. 

 

AUTHOR CONTRIBUTIONS 
 

Jin Liu, Shijie Yang and Zhao Tan collected the data. 

Jin Liu, Shijie Yang, Xinda Song and Wenping Li 

analyzed the data and wrote the manuscript. All authors 

reviewed and approved the final manuscript. 

 

CONFLICTS OF INTEREST 
 

The authors declare that they have no conflicts of 

interest. 

 

FUNDING 
 

The study was supported by 2020 Government-Funded 

Clinical Medical Talent Training Program by Hebei 

Provincial Finance Department. 



www.aging-us.com 7183  AGING 

REFERENCES 
 
1. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer 

Statistics, 2021. CA Cancer J Clin. 2021; 71:7–33. 
 https://doi.org/10.3322/caac.21654  
 PMID:33433946 

2. Ward PS, Thompson CB. Metabolic reprogramming: a 
cancer hallmark even warburg did not anticipate. 
Cancer Cell. 2012; 21:297–308. 

 https://doi.org/10.1016/j.ccr.2012.02.014 
PMID:22439925 

3. Ferlay J, Colombet M, Soerjomataram I, Dyba T, Randi 
G, Bettio M, Gavin A, Visser O, Bray F. Cancer incidence 
and mortality patterns in Europe: Estimates for 40 
countries and 25 major cancers in 2018. Eur J Cancer. 
2018; 103:356–87. 

 https://doi.org/10.1016/j.ejca.2018.07.005 
PMID:30100160 

4. Matsumoto K, Niwa N, Hattori S, Takeda T, Morita S, 
Kosaka T, Mizuno R, Shinojima T, Kikuchi E, Asanuma 
H, Oya M. Establishment of the optimal follow-up 
schedule after radical prostatectomy. Urol Oncol. 
2018; 36:341.e9–14. 

 https://doi.org/10.1016/j.urolonc.2018.04.003 
PMID:29730065 

5. Numan A, Singh S, Zhan Y, Li L, Khalid M, Rilla K, Ranjan 
S, Cinti S. Advanced nanoengineered-customized point-
of-care tools for prostate-specific antigen. Mikrochim 
Acta. 2021; 189:27. 

 https://doi.org/10.1007/s00604-021-05127-y 
PMID:34905090 

6. Epstein JI, Zelefsky MJ, Sjoberg DD, Nelson JB, Egevad 
L, Magi-Galluzzi C, Vickers AJ, Parwani AV, Reuter VE, 
Fine SW, Eastham JA, Wiklund P, Han M, et al. A 
Contemporary Prostate Cancer Grading System: A 
Validated Alternative to the Gleason Score. Eur Urol. 
2016; 69:428–35. 

 https://doi.org/10.1016/j.eururo.2015.06.046 
PMID:26166626 

7. Papagiannakopoulos T, Bauer MR, Davidson SM, 
Heimann M, Subbaraj L, Bhutkar A, Bartlebaugh J, 
Vander Heiden MG, Jacks T. Circadian Rhythm 
Disruption Promotes Lung Tumorigenesis. Cell Metab. 
2016; 24:324–31. 

 https://doi.org/10.1016/j.cmet.2016.07.001 
PMID:27476975 

8. Wendeu-Foyet MG, Menegaux F. Circadian Disruption 
and Prostate Cancer Risk: An Updated Review  
of Epidemiological Evidences. Cancer Epidemiol 
Biomarkers Prev. 2017; 26:985–91. 

 https://doi.org/10.1158/1055-9965.EPI-16-1030 
PMID:28377415 

9. Zhou R, Chen X, Liang J, Chen Q, Tian H, Yang C, Liu C. 
A circadian rhythm-related gene signature associated 
with tumor immunity, cisplatin efficacy, and 
prognosis in bladder cancer. Aging (Albany NY). 2021; 
13:25153–79. 

 https://doi.org/10.18632/aging.203733 
PMID:34862329 

10. Li M, Chen Z, Jiang T, Yang X, Du Y, Liang J, Wang L, Xi J, 
Lin M, Feng M. Circadian rhythm-associated clinical 
relevance and Tumor Microenvironment of Non-small 
Cell Lung Cancer. J Cancer. 2021; 12:2582–97. 

 https://doi.org/10.7150/jca.52454  
PMID:33854619 

11. Aiello I, Fedele MLM, Román F, Marpegan L, Caldart C, 
Chiesa JJ, Golombek DA, Finkielstein CV, Paladino N. 
Circadian disruption promotes tumor-immune 
microenvironment remodeling favoring tumor cell 
proliferation. Sci Adv. 2020; 6:eaaz4530. 

 https://doi.org/10.1126/sciadv.aaz4530 
PMID:33055171 

12. Xuan W, Khan F, James CD, Heimberger AB, Lesniak 
MS, Chen P. Circadian regulation of cancer cell and 
tumor microenvironment crosstalk. Trends Cell Biol. 
2021; 31:940–50. 

 https://doi.org/10.1016/j.tcb.2021.06.008 
PMID:34272133 

13. Hänzelmann S, Castelo R, Guinney J. GSVA: gene set 
variation analysis for microarray and RNA-seq data. 
BMC Bioinformatics. 2013; 14:7. 

 https://doi.org/10.1186/1471-2105-14-7 
PMID:23323831 

14. Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R 
package for comparing biological themes among gene 
clusters. OMICS. 2012; 16:284–7. 

 https://doi.org/10.1089/omi.2011.0118 
PMID:22455463 

15. Fu M, Wang Q, Wang H, Dai Y, Wang J, Kang W, Cui Z, 
Jin X. Immune-Related Genes Are Prognostic Markers 
for Prostate Cancer Recurrence. Front Genet. 2021; 
12:639642. 

 https://doi.org/10.3389/fgene.2021.639642 
PMID:34490029 

16. Zhang Y, Zhang R, Liang F, Zhang L, Liang X. 
Identification of Metabolism-Associated Prostate 
Cancer Subtypes and Construction of a Prognostic Risk 
Model. Front Oncol. 2020; 10:598801. 

 https://doi.org/10.3389/fonc.2020.598801 
PMID:33324566 

17. Wang L, Yao Y, Xu C, Wang X, Wu D, Hong Z. 
Exploration of the Tumor Mutational Burden as a 
Prognostic Biomarker and Related Hub Gene 
Identification in Prostate Cancer. Technol Cancer Res 

https://doi.org/10.3322/caac.21654
https://pubmed.ncbi.nlm.nih.gov/33433946
https://doi.org/10.1016/j.ccr.2012.02.014
https://pubmed.ncbi.nlm.nih.gov/22439925
https://doi.org/10.1016/j.ejca.2018.07.005
https://pubmed.ncbi.nlm.nih.gov/30100160
https://doi.org/10.1016/j.urolonc.2018.04.003
https://pubmed.ncbi.nlm.nih.gov/29730065
https://doi.org/10.1007/s00604-021-05127-y
https://pubmed.ncbi.nlm.nih.gov/34905090
https://doi.org/10.1016/j.eururo.2015.06.046
https://pubmed.ncbi.nlm.nih.gov/26166626
https://doi.org/10.1016/j.cmet.2016.07.001
https://pubmed.ncbi.nlm.nih.gov/27476975
https://doi.org/10.1158/1055-9965.EPI-16-1030
https://pubmed.ncbi.nlm.nih.gov/28377415
https://doi.org/10.18632/aging.203733
https://pubmed.ncbi.nlm.nih.gov/34862329
https://doi.org/10.7150/jca.52454
https://pubmed.ncbi.nlm.nih.gov/33854619
https://doi.org/10.1126/sciadv.aaz4530
https://pubmed.ncbi.nlm.nih.gov/33055171
https://doi.org/10.1016/j.tcb.2021.06.008
https://pubmed.ncbi.nlm.nih.gov/34272133
https://doi.org/10.1186/1471-2105-14-7
https://pubmed.ncbi.nlm.nih.gov/23323831
https://doi.org/10.1089/omi.2011.0118
https://pubmed.ncbi.nlm.nih.gov/22455463
https://doi.org/10.3389/fgene.2021.639642
https://pubmed.ncbi.nlm.nih.gov/34490029
https://doi.org/10.3389/fonc.2020.598801
https://pubmed.ncbi.nlm.nih.gov/33324566


www.aging-us.com 7184  AGING 

Treat. 2021; 20:15330338211052154. 
 https://doi.org/10.1177/15330338211052154 

PMID:34806485 

18. Dong C, Dang D, Zhao X, Wang Y, Wang Z, Zhang C. 
Integrative Characterization of the Role of IL27 In 
Melanoma Using Bioinformatics Analysis. Front 
Immunol. 2021; 12:713001. 

 https://doi.org/10.3389/fimmu.2021.713001 
PMID:34733272 

19. Goodman AM, Kato S, Bazhenova L, Patel SP, Frampton 
GM, Miller V, Stephens PJ, Daniels GA, Kurzrock R. 
Tumor Mutational Burden as an Independent Predictor 
of Response to Immunotherapy in Diverse Cancers. 
Mol Cancer Ther. 2017; 16:2598–608. 

 https://doi.org/10.1158/1535-7163.MCT-17-0386 
PMID:28835386 

20. Carbone DP, Reck M, Paz-Ares L, Creelan B, Horn L, 
Steins M, Felip E, van den Heuvel MM, Ciuleanu TE, 
Badin F, Ready N, Hiltermann TJN, Nair S, et al, and 
CheckMate 026 Investigators. First-Line Nivolumab in 
Stage IV or Recurrent Non-Small-Cell Lung Cancer. N 
Engl J Med. 2017; 376:2415–26. 

 https://doi.org/10.1056/NEJMoa1613493 
PMID:28636851 

21. Samstein RM, Lee CH, Shoushtari AN, Hellmann MD, 
Shen R, Janjigian YY, Barron DA, Zehir A, Jordan EJ, 
Omuro A, Kaley TJ, Kendall SM, Motzer RJ, et al. 
Tumor mutational load predicts survival after 
immunotherapy across multiple cancer types. Nat 
Genet. 2019; 51:202–6. 

 https://doi.org/10.1038/s41588-018-0312-8 
PMID:30643254 

22. Green AS, Chapuis N, Lacombe C, Mayeux P, Bouscary 
D, Tamburini J. LKB1/AMPK/mTOR signaling pathway 
in hematological malignancies: from metabolism to 
cancer cell biology. Cell Cycle. 2011; 10:2115–20. 

 https://doi.org/10.4161/cc.10.13.16244 
PMID:21572254 

23. Penfold L, Woods A, Muckett P, Nikitin AY, Kent TR, 
Zhang S, Graham R, Pollard A, Carling D. CAMKK2 
Promotes Prostate Cancer Independently of AMPK via 
Increased Lipogenesis. Cancer Res. 2018; 78:6747–61. 

 https://doi.org/10.1158/0008-5472.CAN-18-0585 
PMID:30242113 

24. Yuan H, Han Y, Wang X, Li N, Liu Q, Yin Y, Wang H, Pan 
L, Li L, Song K, Qiu T, Pan Q, Chen Q, et al. SETD2 
Restricts Prostate Cancer Metastasis by Integrating 
EZH2 and AMPK Signaling Pathways. Cancer Cell. 2020; 
38:350–65.e7. 

 https://doi.org/10.1016/j.ccell.2020.05.022 
PMID:32619406 

25. Yan Y, Du C, Li G, Chen L, Yan Y, Chen G, Hu W, Chang L. 

CO suppresses prostate cancer cell growth by directly 
targeting LKB1/AMPK/mTOR pathway in vitro and  
in vivo. Urol Oncol. 2018; 36:312.e1–8. 

 https://doi.org/10.1016/j.urolonc.2018.02.013 
PMID:29566977 

26. Chen C, Wang H, Geng X, Zhang D, Zhu Z, Zhang G, Hou 
J. Metformin exerts anti-AR-negative prostate cancer 
activity via AMPK/autophagy signaling pathway. 
Cancer Cell Int. 2021; 21:404. 

 https://doi.org/10.1186/s12935-021-02043-2 
PMID:34399755 

27. Pällmann N, Deng K, Livgård M, Tesikova M, Jin Y, 
Frengen NS, Kahraman N, Mokhlis HM, Ozpolat B, 
Kildal W, Danielsen HE, Fazli L, Rennie PS, et al. Stress-
Mediated Reprogramming of Prostate Cancer One-
Carbon Cycle Drives Disease Progression. Cancer Res. 
2021; 81:4066–78. 

 https://doi.org/10.1158/0008-5472.CAN-20-3956 
PMID:34183356 

28. Shang Z, Yu J, Sun L, Tian J, Zhu S, Zhang B, Dong Q, 
Jiang N, Flores-Morales A, Chang C, Niu Y. LncRNA 
PCAT1 activates AKT and NF-κB signaling in castration-
resistant prostate cancer by regulating the 
PHLPP/FKBP51/IKKα complex. Nucleic Acids Res. 2019; 
47:4211–25. 

 https://doi.org/10.1093/nar/gkz108 PMID:30773595 

29. Thomas-Jardin SE, Dahl H, Nawas AF, Bautista M, Delk 
NA. NF-κB signaling promotes castration-resistant 
prostate cancer initiation and progression. Pharmacol 
Ther. 2020; 211:107538. 

 https://doi.org/10.1016/j.pharmthera.2020.107538 
PMID:32201312 

30. Ren D, Yang Q, Dai Y, Guo W, Du H, Song L, Peng X. 
Oncogenic miR-210-3p promotes prostate cancer cell 
EMT and bone metastasis via NF-κB signaling pathway. 
Mol Cancer. 2017; 16:117. 

 https://doi.org/10.1186/s12943-017-0688-6 
PMID:28693582 

31. Chen L, De Menna M, Groenewoud A, Thalmann GN, 
Kruithof-de Julio M, Snaar-Jagalska BE. A NF-ĸB-Activin 
A signaling axis enhances prostate cancer metastasis. 
Oncogene. 2020; 39:1634–51. 

 https://doi.org/10.1038/s41388-019-1103-0 
PMID:31740783 

32. Haddad SA, Ruiz-Narváez EA, Haiman CA, Sucheston-
Campbell LE, Bensen JT, Zhu Q, Liu S, Yao S, Bandera 
EV, Rosenberg L, Olshan AF, Ambrosone CB, Palmer JR, 
Lunetta KL. An exome-wide analysis of low frequency 
and rare variants in relation to risk of breast cancer in 
African American Women: the AMBER Consortium. 
Carcinogenesis. 2016; 37:870–7. 

 https://doi.org/10.1093/carcin/bgw067 

https://doi.org/10.1177/15330338211052154
https://pubmed.ncbi.nlm.nih.gov/34806485
https://doi.org/10.3389/fimmu.2021.713001
https://pubmed.ncbi.nlm.nih.gov/34733272
https://doi.org/10.1158/1535-7163.MCT-17-0386
https://pubmed.ncbi.nlm.nih.gov/28835386
https://doi.org/10.1056/NEJMoa1613493
https://pubmed.ncbi.nlm.nih.gov/28636851
https://doi.org/10.1038/s41588-018-0312-8
https://pubmed.ncbi.nlm.nih.gov/30643254
https://doi.org/10.4161/cc.10.13.16244
https://pubmed.ncbi.nlm.nih.gov/21572254
https://doi.org/10.1158/0008-5472.CAN-18-0585
https://pubmed.ncbi.nlm.nih.gov/30242113
https://doi.org/10.1016/j.ccell.2020.05.022
https://pubmed.ncbi.nlm.nih.gov/32619406
https://doi.org/10.1016/j.urolonc.2018.02.013
https://pubmed.ncbi.nlm.nih.gov/29566977
https://doi.org/10.1186/s12935-021-02043-2
https://pubmed.ncbi.nlm.nih.gov/34399755
https://doi.org/10.1158/0008-5472.CAN-20-3956
https://pubmed.ncbi.nlm.nih.gov/34183356
https://doi.org/10.1093/nar/gkz108
https://pubmed.ncbi.nlm.nih.gov/30773595
https://doi.org/10.1016/j.pharmthera.2020.107538
https://pubmed.ncbi.nlm.nih.gov/32201312
https://doi.org/10.1186/s12943-017-0688-6
https://pubmed.ncbi.nlm.nih.gov/28693582
https://doi.org/10.1038/s41388-019-1103-0
https://pubmed.ncbi.nlm.nih.gov/31740783
https://doi.org/10.1093/carcin/bgw067


www.aging-us.com 7185  AGING 

PMID:27267999 

33. Kumar A, Dholakia K, Sikorska G, Martinez LA, 
Levenson AS. MTA1-Dependent Anticancer Activity of 
Gnetin C in Prostate Cancer. Nutrients. 2019; 11:2096. 

 https://doi.org/10.3390/nu11092096 PMID:31487842 

34. Kumar A, Dhar S, Campanelli G, Butt NA, Schallheim 
JM, Gomez CR, Levenson AS. MTA1 drives malignant 
progression and bone metastasis in prostate cancer. 
Mol Oncol. 2018; 12:1596–607. 

 https://doi.org/10.1002/1878-0261.12360 
PMID:30027683 

35. Mu P, Zhang Z, Benelli M, Karthaus WR, Hoover E, 
Chen CC, Wongvipat J, Ku SY, Gao D, Cao Z,  
Shah N, Adams EJ, Abida W, et al. SOX2 promotes 
lineage plasticity and antiandrogen resistance in 
TP53- and RB1-deficient prostate cancer. Science. 
2017; 355:84–8. 

 https://doi.org/10.1126/science.aah4307 
PMID:28059768 

36. Nyquist MD, Corella A, Coleman I, De Sarkar N, 
Kaipainen A, Ha G, Gulati R, Ang L, Chatterjee P, Lucas J, 
Pritchard C, Risbridger G, Isaacs J, et al. Combined TP53 
and RB1 Loss Promotes Prostate Cancer Resistance to a 
Spectrum of Therapeutics and Confers Vulnerability to 
Replication Stress. Cell Rep. 2020; 31:107669. 

 https://doi.org/10.1016/j.celrep.2020.107669 
PMID:32460015 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

37. Stone L. Prostate cancer: ROR-γ drives androgen 
receptor expression. Nat Rev Urol. 2016; 13:237. 

 https://doi.org/10.1038/nrurol.2016.71 
PMID:27071453  

38. Wang J, Zou JX, Xue X, Cai D, Zhang Y, Duan Z, Xiang Q, 
Yang JC, Louie MC, Borowsky AD, Gao AC, Evans CP, 
Lam KS, et al. ROR-γ drives androgen receptor 
expression and represents a therapeutic target in 
castration-resistant prostate cancer. Nat Med. 2016; 
22:488–96. 

 https://doi.org/10.1038/nm.4070  
PMID:27019329 

39. Canto P, Granados JB, Feria-Bernal G, Coral-Vázquez 
RM, García-García E, Tejeda ME, Tapia A, Rojano-Mejía 
D, Méndez JP. PPARGC1A and ADIPOQ polymorphisms 
are associated with aggressive prostate cancer in 
Mexican-Mestizo men with overweight or obesity. 
Cancer Biomark. 2017; 19:297–303. 

 https://doi.org/10.3233/CBM-160467  
PMID:28453464 

40. Hu Q, Zhang B, Chen R, Fu C, A J, Fu X, Li J, Fu L, Zhang 
Z, Dong JT. ZFHX3 is indispensable for ERβ to inhibit cell 
proliferation via MYC downregulation in prostate 
cancer cells. Oncogenesis. 2019; 8:28. 

 https://doi.org/10.1038/s41389-019-0138-y 
PMID:30979864 

https://pubmed.ncbi.nlm.nih.gov/27267999
https://doi.org/10.3390/nu11092096
https://pubmed.ncbi.nlm.nih.gov/31487842
https://doi.org/10.1002/1878-0261.12360
https://pubmed.ncbi.nlm.nih.gov/30027683
https://doi.org/10.1126/science.aah4307
https://pubmed.ncbi.nlm.nih.gov/28059768
https://doi.org/10.1016/j.celrep.2020.107669
https://pubmed.ncbi.nlm.nih.gov/32460015
https://doi.org/10.1038/nrurol.2016.71
https://pubmed.ncbi.nlm.nih.gov/27071453
https://doi.org/10.1038/nm.4070
https://pubmed.ncbi.nlm.nih.gov/27019329
https://doi.org/10.3233/CBM-160467
https://pubmed.ncbi.nlm.nih.gov/28453464
https://doi.org/10.1038/s41389-019-0138-y
https://pubmed.ncbi.nlm.nih.gov/30979864

