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Interplay between epigenetics and metabolism in oncogenesis:
mechanisms and therapeutic approaches
CC Wong1, Y Qian2,3 and J Yu1

Epigenetic and metabolic alterations in cancer cells are highly intertwined. Oncogene-driven metabolic rewiring modifies the
epigenetic landscape via modulating the activities of DNA and histone modification enzymes at the metabolite level. Conversely,
epigenetic mechanisms regulate the expression of metabolic genes, thereby altering the metabolome. Epigenetic-metabolomic
interplay has a critical role in tumourigenesis by coordinately sustaining cell proliferation, metastasis and pluripotency.
Understanding the link between epigenetics and metabolism could unravel novel molecular targets, whose intervention may lead
to improvements in cancer treatment. In this review, we summarized the recent discoveries linking epigenetics and metabolism
and their underlying roles in tumorigenesis; and highlighted the promising molecular targets, with an update on the development
of small molecule or biologic inhibitors against these abnormalities in cancer.
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INTRODUCTION
It has been appreciated since the early days of cancer research
that the metabolic profiles of tumor cells differ significantly from
normal cells. Cancer cells have high metabolic demands and they
utilize nutrients with an altered metabolic program to support
their high proliferative rates and adapt to the hostile tumor
microenvironment. Cancer cells could metabolize glucose via
glycolysis to generate lactate, instead of oxidative phosphoryla-
tion (OXPHOS), even in the presence of normal oxygen levels.1–3

Although the process is less efficient compared with OXPHOS,
glycolysis has a much higher turnover and provides intermediates
for macromolecular biosynthesis and redox homeostasis. Apart
from metabolizing glucose, cancer cells are addicted to glutamine.
By means of a process known as glutaminolysis, cancer cells could
divert a major fraction of glutamine to replenish the tricarboxylic
acid (TCA) cycle.4–6 Hence, glutaminolysis supplies biosynthetic
precursors for nucleotides, proteins and glutathione biosynthesis
in tumorigenesis.7,8

Oncogenic pathways have well-established roles in metabolic
rewiring in human cancers. For instance, mutations in KRAS,
PIK3CA, PTEN or AKT have been shown to hyperactivate mTOR-
AKT pathway, which stimulates glycolysis via upregulation of
glucose transporter 1 (GLUT1),9–11 and the phosphorylation of
rate-limiting glycolytic enzymes, including hexokinases (HKs)
and 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatases (PFK2/
FBPase2).12,13 The oncogenic transcription factor MYC mediates
the transcription of almost all the genes involved in glycolysis and
glutaminolysis,6,14 and it promotes shuttling of glycolytic inter-
mediates to pentose phosphate pathway to generate large
quantities of reduced nicotinamide adenine dinucleotide phos-
phate (NADPH) and promote macromolecule biosynthesis via the
induction of pyruvate kinase isozymes M2 (PKM2).15 Numerous

metabolic genes have also been identified as driver genes
mutated in some cancers, such as isocitrate dehydrogenase 1
and 2 (IDH1/2) in gliomas16 and acute myeloid leukemia (AML),17

succinate dehydrogenase (SDH) in paragangliomas18 and fuma-
rate hydratase (FH) in hereditary leiomyomatosis and renal cell
cancer (HLRCC).19 Metabolic rewiring of cancer cells is considered
as one of 10 hallmarks of cancer.20

Metabolic rewiring in cancer has profound effects on regulation
of gene expression. Although metabolite profiles might have little
impact on the genetic level, it appears that they have a
fundamental role in epigenetic regulation of gene expression.
Epigenetics refers to heritable changes in gene expression, which
are not a consequence of alterations in the DNA sequence.
Epigenetic regulation of gene expression can be highly plastic and
responsive to various environmental clues.21–23 Epigenetics, which
principally involved the chemical modification of DNA and
histones, represents an innate mechanism that links nutritional
status to gene expression. As such, metabolic rewiring could hijack
the epigenome machinery in cancer cells to transmit a mitogenic
gene expression profile.24–26 Reciprocally, epigenetic deregulation
in cancer mediates, at least in part, to the altered expression of
genes involved in cellular metabolism.
A four-way crosstalk exists between epigenetics and metabo-

lism in cancer (Figure 1). Metabolic rewiring could affect the
availability of cofactors required for epigenetic modification
enzymes (1) and generate oncometabolites that act as agonists
and/or antagonists for epigenetic modification enzymes (2), thus
impacting the epigenetic landscape (Figure 2). On the other hand,
epigenetic dysfunction modifies metabolism by directly affecting
the expression of metabolic enzymes (3) and altering the signal
transduction cascades involved in the control of cell metabolism (4)
(Figure 3). In this review, we provide a summary of molecular
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mechanisms linking epigenetics and metabolism; and their under-
lying roles in tumorigenesis; highlight the potential molecular targets
whose inhibition may abrogate these crosstalks and suppress
tumorigenesis; and an outline of therapeutics against these potential
drug targets.

EFFECT OF METABOLIC REWIRING ON EPIGENETIC
MODIFICATION ENZYMES
SAM/SAH ratio regulates DNA and histone methylation
DNA methylation is the most extensively studied epigenetic
alteration in cancers. Promoter DNA methylation at CpG sites
represses gene expression by impeding access to transcription
factors and inhibition of RNA polymerase II.27–29 In cancer,
aberrant DNA methylation is typically observed in the promoter
regions of various tumor suppressor genes and microRNAs,30–38

leading to their transcriptional silence. DNA methylation is
mediated by DNA methyltransferases, which catalyze the covalent
addition of a methyl group to cytosine to form 5-methylcytosine
(5 mC). All DNMT isoforms, DNMT1, DNMT3A and DNMT3B, are
overexpressed in cancers.39 Methylation markers on lysine
residues in histone proteins also have a key role in regulating
chromatin structure and gene transcription. Multiple lysine
residues (H3K4, H3K9, H3K27, H3K36, H3K79 and so on) may be
mono-, di- or tri-methylated, giving rise to a very complex histone
methylation code.40 Histone methyltransferases (HMTs) that
mediate histone-lysine methylation consist of two enzyme

families, SET-domain (SETD) containing and Dot1-like (DOT1L)
proteins.41

DNMTs and HMTs utilize a common activated methyl donor for
methyltransferase activity: S-adenosylmethionine (SAM). SAM is a
product of one-carbon metabolism cycle and is synthesized by
methionine adenosyltransferase (MAT) using methionine and ATP
as substrates. Donation of methyl group from SAM invariably
releases S-adenosyl-homocysteine (SAH) as the product and the
latter is a potent inhibitor of methyltransferase such as DNMTs and
HMTs. Hence, the SAM/SAH ratio dictates methyltransferase
activity in vivo. SAH is physiologically maintained at low levels
via hydrolysis to homocysteine, which can be recycled to
methionine via the transfer of a methyl group from 5-methyl-
tetrahydrofolate. Alternatively, homocysteine can be catabolized
to give amino acids, glutathione and inorganic sulfate. Changes in
SAM/SAH ratio and one-carbon cycle will thus modulate the
activity of DNMTs and HMTs.42

An excess supply of SAM might contribute to DNA hyper-
methylation at CpG sites and inappropriate gene silencing. Glycine
N-methyltransferase (GNMT) deficiency is a rare genetic condition
leading to SAM over-production.43 The genetic knockout of Gnmt
in mice increased hepatic SAM by over 40-fold.43 Moreover, Gnmt
knockout mice demonstrated promoter methylation of tumor
suppressor genes such as RASSF1 and SOCS2, which led to their
transcriptional silencing.44 As a consequence, Gnmt knockout was
associated with activation of oncogenic pathways and an
increased incidence of hepatocellular carcinoma.44 Cancer cells
have also been shown to boost SAM availability via promoting

Figure 1. Crosstalks between epigenetics and metabolism in cancer development.
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one-carbon metabolism. Cancer cells could directly increase the
uptake of methionine through the overexpression of amino-acid
transporters LAT1 and LAT4 (SLC7A5/SLC43A2).45,46 Alternatively,
overexpression of 3-phosphoglycerate dehydrogenase (PGDH)
diverts glycolysis intermediates to the serine-glycine biosynthesis
pathway.47,48 Serine participates in one-carbon metabolism
through donation of its side chain to tetrahydrofolate to drive
the folate cycle, which in turn recycles methionine from
homocysteine. Serine also supports SAM synthesis from methio-
nine through de novo ATP synthesis, a major contributor to the
functional ATP pool in cancer cells.49

Alterations in SAM/SAH ratio also profoundly affect aberrant
histone methylation in cancers. Nicotinamide N-methyl-transfer-
ase (NNMT) catalyzes the conversion of nicotinamide to
1-methylnicotinamide (1-MNA) using SAM as methyl donor. NNMT
is overexpressed in a variety of cancers, including lung, liver,
kidney bladder and colon cancers and exerts an oncogenic
effect.50–53 Recently, NNMT expression was found to be upregu-
lated in human embryonic stem cells, and NNMT is indispensable
for the maintenance for pluripotency. NNMT serves as a sink for
SAM, severely depleting cellular SAM pool, resulting in 450%
reduction in the SAM/SAH ratio and making SAM unavailable for

HMTs.54 As a consequence, cell lines overexpressing NNMT
showed a substantial decrease in histone methylation marks at
H3K4, H3K9, H3K27 and H4K20. Altered histone methylation
further regulated key signaling pathways associated with acquisi-
tion of a more aggressive/pluripotent phenotype. Conversely,
knockdown of NNMT increased histone methylation. However,
DNA methylation was not affected by NNMT overexpression or
knockdown. The apparent discrepancy between DNA and histone
methylation may arise from varying Km values of DNMTs and HMTs
for SAM. HMTs possess high Km values for SAM, thereby conferring
a higher sensitivity to changes in SAM levels.
SAM, as an activated methyl donor for DNMTs and HMTs, has a

major impact on the epigenomic landscape. Given the myriad of
processes that are affected by histone and DNA methylation, and
the diversity of the downstream signaling pathways involved,
deregulation of SAM levels in cancers likely has a context-
dependent effect, and much remains to be explored.

TCA cycle metabolites modulate DNA and histone demethylation
The dynamics of DNA and histone methylation is additionally
regulated by the activity of DNA and histone demethylases,

Figure 2. Effect of the tumor metabolome on the epigenetic processes such as histone acetylation, DNA methylation, DNA/histone demethylation,
N-linked glycosylation in human cancers. An altered epigenetic regulation in turn contributes to deregulation of gene expression.
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respectively. Methylated cytosine residues are demethylated in
two sequential steps, involving oxidation of 5-methyl-cytosine
(5-mC) to 5-hydroxymethyl-cytosine (5-hmC), catalyzed by the
10–11 translocation (TETs) family of proteins,55–57 followed by
reversion to cytosine through oxidation and base excision repair
by thymine DNA glycosylase (TDG).58 TETs are putative tumor
suppressors. Frequent inactivating TET2 mutations have been
detected in myeloid lineage malignancies59 and downregulation
of TETs have been observed in several human cancers.60–62

Therefore, hyperactive methylation and deactivated demethyla-
tion machinery work in conjunction to induce promoter DNA
hypermethylation in cancers. Demethylation of histone lysine
marks is mediated by flavin-dependent Histone Lysine Demethy-
lases that consist of lysine-specific protein demethylases (KDM1)
family and jumonji C-domain-containing (JMJD) enzymes. The role
of histone demethylases in cancer is less clear-cut.63 In some
cases, histone demethylases are downregulated by gene muta-
tions or deletions in cancers, but in others they can be amplified,
such as JMJD2C64 and lysine-specific protein demethylases
LSD1.65 TETs and JMJDs both belong to α-ketoglutarate (α-KG)-
dependent dioxygenases that requires α-KG as a cofactor and is
competitively inhibited TCA cycle intermediates such as succinate
and fumarate.66 Cancer cells with mutations in metabolic genes
may gain the ability to accumulate or synthesize metabolites, such
as 2-hydroxylglutarate (2-HG), succinate and fumarate.

2-hydroxyglutarate. Mutations in the metabolic enzymes isoci-
trate dehydrogenase (IDH) isoforms IDH1 and IDH2 are common
in gliomas,16,67 AML17,68,69 and angioimmunoblastic T-cell
lymphoma.70 IDH1/2 are Nicotinamide Adenine Dinucleotide
Phosphate (NADP)+-dependent metabolic enzymes that partici-
pate in the TCA cycle, catalyzing a two-step reaction for oxidative
decarboxylation of isocitrate to α-KG.71 Mutations in IDH1/2 occur
at substrate binding sites (IDH1: R132; IDH2: R140/172). Mutant
IDH1/2 possess oncogenic properties, and their ectopic expression
enhanced cancer cell proliferation, colony formation and inhibits
cellular differentiation in vitro.69,72,73 These mutations abrogate
the ability of IDH1/2 to synthesize isocitrate from α-KG but are
accompanied by the gain-of-function conversion of α-KG to 2-
HG.72 2-HG is pivotal to the functional effect of mutant IDH1/2.
This oncometabolite accumulates to very high levels (5 to 35 mM)
in mutant IDH1/2 tumors. 2-HG is structurally similar to α-KG and it
acts as a competitive antagonist. Thus, 2-HG inhibits activity of
α-KG dependent dioxygenases, such as TETs and JMJDs, which
have broad implications for the regulation of epigenome.74 Apart
from tumors with mutant IDH1/2, increased 2-HG have also been
reported in breast cancer75 and renal cancer (L-enantiomer),76

which is associated with activation of MYC and L-2-hydroxyglu-
tarate dehydrogenase (L2HGDG) deficiency, respectively.
The former promotes glutaminolysis and 2-HG production via

Figure 3. Effect of DNA hypermethylation (5mC), histone deacetylation (-Ac) and microRNA (miRs) on the expression of metabolic enzymes
involved in glycolysis and glutaminolysis in cancer.
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wild type IDH2; while inactivation of L2HGDG prevents conversion
of 2-HG back to α-KG.77

TET1/2-mediated conversion of 5mC to 5hmC is a relevant
target of 2-HG.17,74 In vitro enzymatic assays with TET1/2 revealed
that 2-HG behaves as a competitive inhibitor.78,79 Its inhibitory
effect was especially pronounced for TET2, with 33% and 83% at
10 and 50 mM, respectively. Either introduction of mutant IDH1/2
or 2-HG abrogated TET1/2-mediated formation of 5-hmC in
human cell lines. Moreover, ectopic expression of mutant
IDH1R132H into primary human astrocytes is sufficient to produce
a CpG island methylator phenotype (CIMP) by inducing hyper-
methylation in a large number of genes. In human patients,
IDH1/2 mutations in glioma or AML define distinct patient
subgroups associated with CIMP.80,81 DNA hypermethylation
induced by 2-HG is reversible, and therefore represents a viable
therapeutic target in IDH1/2-mutant cancers.17

2-HG levels in IDH1/2 mutant tumors also have implications for
histone demethylase activity.78 2-HG strongly inhibited several
histone demethylases (JMJD2A/KDM4A, JMJD2C/KDM4C and
JHDM1A/KDM2A) as compared to other dioxygenases. Other
studies additionally identified 2-HG as a histone demethylases
KDM7A inhibitor73,79 by binding to catalytic core and competing
with α-KG. In U-87MG (human glioma cells), 2-HG or over-
expression of mutant IDH1 increased H3K9, H3K27 and H3K79
dimethylation and H3K4 trimethylation.79 Knockin of IDH1R132H in
haematopoietic cells was associated with increased dimethylation
of H3K79 and trimethylation of H3K4, H3K9, H3K27 and H3K36.74

Alterations in these methylated histone marks, in particular H3K9
trimethylation, were found to promote pluripotency and inhibit
differentiation.73 Human primary glioma with mutant IDH1 had
elevated H3K79 dimethylation levels compared with those with
wild type;73 oligodendroglioma patients with mutations in IDH1
also had higher H3K9me3 compared with those with wild-type
IDH1/2.82 Given a large number of JMJDs enzymes and their
diverse substrate specificities, more studies are required to unravel
the full spectrum of histone methylation induced by 2-HG and its
biological significance.

Succinate and fumarate. Inactivating mutations in TCA cycle
enzymes fumarate hydratase (FH) and succinate dehydrogenase
(SDH) are driver mutations in a subset of human cancers and they
mediate epigenetic reprogramming.83 SDH mutations are present
in gastrointestinal stromal tumors (GISTs), renal cell carcinoma,
paraganglioma and pheochromocytoma. 84–88 SDH consists four
subunits (SDHA, SDHB, SDHC and SDHD) and it catalyzes oxidation
of succinate to fumarate. Mutations in any of the four subunits can
inactivate the SDH complex, leading marked accumulation of
succinate. Mutations in FH have been detected in HLRCC.19

Mitochondrial FH mediates the reversible conversion between
fumarate and malate, and the loss-of-function mutation of FH
resulted in high levels of fumarate.
Recent data have shed new light on the mechanisms of the

tumor suppressor effect of FH and SDH. Both succinate and
fumarate behave as α-KG competitive antagonists for inhibiting
TETs and JMJDs. Both of these metabolites inhibited TETs-
catalyzed hydroxylation of 5mC and the activity of histone
demethylases KDM2A and KDM4A.66 Ectopic expression of FH
and SDH mutants recapitulated the effect of fumarate and
succinate. Furthermore, mouse chromaffin cells with genetic
knockout of Sdhb exhibited a methylator phenotype, with an
increased 5-mC/5-hmC ratio and enhanced histone methylation at
H3K9, H3K27, and H3K27.89 Epigenetic dysregulation in Sdhb
knockout cells triggered a transcriptional program that down-
regulated genes associated with the suppression of metastasis,
leading to increased cell invasiveness. Consistent with in vitro
data, a deregulated epigenomic landscape is frequently observed
in FH or SDH mutant tumors. Gastrointestinal stoma tumors
(GISTs) harboring mutant SDH have genomic DNA methylation an

order of a magnitude greater than c-Kit-mutated GISTs.90 Genomic
hypermethylation was also observed in patients with SDH-mutant
hereditary paraganglioma and pheochromocytoma. Moreover,
paraganglioma patients with SDH or FH-deficiency associated
DNA CIMP had a much worse prognosis compared with other
molecular subtypes, indicating that epigenetic dysregulation in
SDH or FH-mutant patients contributes to tumor development
and progression.89 Thus, genetic mutations in FH and SDH can
lead to accumulation of fumarate and succinate, respectively,
which drives tumorigenesis via epigenetic deregulation.

Acetyl-CoA and NAD+ influence histone acetylation
Histone acetylation involves the addition of an acetyl group to
lysine residues. Histone acetylation is dynamically regulated by
opposing actions of histone acetyltransferases (HATs) and histone
deacetylases (HDACs) that catalyze the addition and removal of
the acetyl group, respectively. HATs are divided into GCN5/PCAF,
p300/CBP and MYST (MOZ, Ybf2/Sas3, Sas2, Tip60) families,
whereas HDACs are classified into four groups: the zinc-
dependent class I, II and IV and NAD+-dependent class III HDACs
(also known as sirtuins). Histone acetylation decreases the
electronic interaction between histones and negatively charged
DNA, which is associated with a more open chromatin structure
and active gene transcription 91. HDAC-mediated histone deacty-
lation has well-recognized roles in cancers via transcriptional
repression of tumor suppressor genes.92,93 While some HATs are
also putative tumor suppressors and inactivating mutations in
p300/CBP have been identified in breast, colorectal and gastric
cancers,94,95 several fusion genes that involve HATs, such as
MLL-CBP96 and MOZ-TIF297 behaves as oncogenic factors in
hematological malignancies.

Acetyl-CoA. Acetyl-CoA is an important molecule in intermediary
metabolism. It fuels the TCA cycle and it is at the crossroads of
glycolysis, glutaminolysis and β-oxidation of fatty acids in
mitochondria. Cytosolic and nuclear acetyl-CoA levels are main-
tained by two metabolic pathways, its direct synthesis from
acetate and CoA by acetyl-CoA synthetase short-chain family 1
(AceCS1); and the conversion from citrate to acetyl-CoA by ATP
citrate lyase (ACL).98 Acetyl-CoA is utilized extensively as a cofactor
for enzymes that catalyze the transfer of an acetyl group,
including HATs that utilize the acetyl group of acetyl-CoA to form
ε-N-acetyl-lysine. Intracellular concentrations of acetyl-CoA can
vary roughly ~ 10-fold under normal physiological conditions and
it falls within the Km range of HATs. Histone acetylation activity is
thus dynamically regulated by availability of acetyl CoA.
Both absolute acetyl-CoA and the ratio of acetyl-CoA to

coenzyme A have been shown to regulate histone acetylation in
cancer.99,100 Availability of acetyl-CoA for HATs is primarily
modulated by 1) ACL expression; and 2) the availability of citrate
as a substrate for ACL. ACL protein expression is localized to the
nucleus and its activity contributes to nuclear specific acetyl-CoA
pool.100 ACL silencing in HCT116 cells suppressed histone
acetylation for all core histones, whereas the knockdown of
AceCS1 had no effect. Non-histone protein acetylation was
unaltered, suggesting that ACL-derived acetyl-CoA has a specific
role in regulating histone acetylation. Cancer cells often over-
express ACL101 and this probably contributes to nuclear acetyl-
CoA pool that is necessary for histone acetylation and expression
of glycolytic enzymes. Oncogene-driven metabolic reprogram-
ming in cancers also promotes a high level of glycolytic flux and
mitochondrial production of citrate, which translocates to the
cytosol and nucleus. In mouse pancreas, expression of constitutive
activated KRASG12D allele resulted in high histone H3 and H4
acetylation in pancreatic adenocarcinoma.99 KRASG12D dependent
activation of AKT promoted nuclear acetyl-CoA accumulation via (1)
induction of glycolysis, leading to overproduction of citrate; and
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(2) ACL phosphorylation and activation. Indeed, constitutively
active AKT induced a rapid and pronounced rise histone acety-
lation in cancer cells,99 further confirming its role in mediating
histone acetylation.
Another player involved in histone acetylation is MYC. MYC has

been shown to upregulate the expression of HAT-GCN5, which
induced mono-, di-, tri-, and tetra-acetylation of histone H4 N-
terminal.102 Besides, MYC mediates gene expression of metabolic
enzymes linked to acetyl-CoA synthesis, including glycolysis and
glutaminolysis. In isogenic rat fibroblasts with Myc− /− or Myc+/+, it
was demonstrated that Myc increased the mitochondrial export of
acetyl-groups and a majority of these acetyl equivalents ended up
in histone H4-K16.103 These data emphasizes the role of Myc in
modulating the gene expression of HATs and the availability of
acetyl-CoA to support histone acetylation in response to
proliferative signals. Hence, multiple oncogenic signals contribute
to increased histone acetylation to regulate gene expression.

NAD+. NAD+ is essential for the deacetylation activity of sirtuins,
a subgroup of HDAC, and changes in NAD+/NADH ratio is thought
to positively regulate activity of sirtuins. NAD+/NADH ratio is
closely associated with energy status in cells. When energy is
plentiful, NAD+/NADH ratio drops; while NAD+ level can be
induced in nutrient deprived conditions. Hence, through sensing
of NAD+/NADH levels, sirtuins serves as a link between energy
status and regulation of gene expression.104 High glycolytic
activity in cancers often generates a low NAD+/NADH ratio that
is inhibitory for sirtuins. Repressed sirtuins, together with
increased HATs activity induced by acetyl-CoA, may contribute
to histone hyperacetylation and aberrant gene transcription. More
studies are needed to understand the role of metabolic status and
sirtuin activation in cancer.

Hexosamine biosynthetic pathway promotes protein glycosylation
O-GlcNAcylation is one of the most common post-translational
modifications in eukaryotic cells, via attachment of O-linked
β-D-N-acetylglucosamine (O-GlcNAc) to Ser/Thr residue. O-GlcNA-
cylation is regulated by competing actions of O-GlcNAc transfer-
ase (OGT) and O-GlcNAcase (OGA), which, respectively, catalyzes
addition and removal of O-GlcNAc from proteins. Recent evidence
indicate that modifications of all core histone proteins by
O-GlcNAc constitute part of the histone code.105–108 OGT has
been shown to coordinate with TETs to modulate O-GlcNAcylation
of histone H2B to activate gene transcription;109,110 whereas its
association with EZH2 in polycomb repressive complex 2 regulates
H3K27 me3 to silence tumor suppressor genes.111 Alternatively,
OGT activates gene transcription via O-GlcNAcylation of C-terminal
domain of RNA polymerase II.112 Elevated OGT expression and
protein hyper-O-GlcNAcylation is a common feature in human
cancers.113 Cell metabolism has a crucial role in O-GlcNAcylation via
modulating the biosynthesis of uridine diphosphate β-D-N-acetylglu-
cosamine (UDP-GlcNAc), the activated substrate for O-GlcNAcylation.

O-GlcNAc. O-GlcNAc is synthesized via the hexosamine biosyn-
thetic pathway (HBP). In this pathway, glucose entering glycolysis
is first metabolized to glucose-6-phosphate (glucose-6-P) and then
fructose-6-phosphate (fructose-6-P). About 2–5% of the fructose-
6-P will be diverted to fructose-6-P amidotransferase (GFAT), the
first and rate limiting enzyme of HBP. GFAT converts fructose-6-P
to glucosamine-6-phosphate (GlcNH2-6-P) utilizing an amine
group from glutamine. A sequence of reactions then adds an
acetyl group from acetyl-CoA and UDP from UTP results in
production of UDP-GlcNAc. Hence, HBP integrates substrates from
carbohydrate, amino acid, fat and nucleotide metabolism.
Glycolysis and supply of glutamine have a pivotal role in UDP-
GlcNAc synthesis, as they are obligatory for the rate limiting
reaction catalyzed by GFAT. Cancer cells frequently demonstrate

the upregulation of HBP, which is in turn associated with aberrant
O-GlcNAcylation and increased malignant behavior.114–118 The
upregulation of HBP in cancer cells is primarily driven by an
increased glucose uptake and metabolism. In KRASG12D-driven
pancreatic cancer, KRASG12D promotes glucose utilization via
increased expression of glucose transporter 1 (Glut1), hexokinase 1
(Hk1) and hexokinase 1 (Hk2), which induce metabolic flux
through GFAT and protein O-GlcNAcylation.30 KRASG12D inactiva-
tion, in contrast, downregulated global protein glycosylation,
suggesting that KRASG12D-mediated glucose utilization via HBP is
essential for O-GlcNAcylation. In another study, tumor hypoxia was
found to co-ordinately upregulation of glucose and glutamine
utilization via HBP, which increased protein O-GlcNAcylation
required for tumor survival.119 Conversely, glucose deprivation
suppressed O-GlcNAcylation and cell growth, an effect reversed by
addition of N-acetylglucosamine, a HBP substrate. These studies
confirm the role of accelerated glucose metabolic in protein
O-GlcNAcylation in cancer cells.

EPIGENETIC REGULATION OF METABOLIC GENES EXPRESSION
IN CANCERS
DNA methylation
DNA methylation has been shown to modulate the expression of
metabolic genes directly by regulating their transcription or
indirectly via dysregulation of oncogenic cascades (for example,
AKT, AMPK and HIF). DNA methylation mediates silence of
fructose-1,6-bisphosphatase 1 (FBP1) and fructose-1,6-bispho-
sphatase 2 (FBP2) via promoter methylation in breast, gastric,
liver and colorectal cancers.120–123 FBP1 and FBP2 are rate limiting
enzymes for gluconeogenesis that antagonize glycolysis, and their
decreased expression promotes glycolytic flux for driving macro-
molecules biosynthesis and ATP production. DNA methylation also
mediates overexpression of glucose transporter 1 (GLUT1) by
epigenetic loss of Derlin-3, a key gene involved in the proteasomal
degradation of GLUT1.124 Conversely, promoter hypomethylation
contributes to upregulation of pyruvate kinase ioszyme 2 (PKM2)
in multiple cancer types.125 PKM2 is a less active isomer that drives
glucose flux towards macromolecules biosynthesis and is the
predominant isoform in actively proliferating cells. DNA methyla-
tion also drives transcriptional silencing of tumor suppressor
genes involved in signaling cascades linked to tumor metabolism.
PI3K/AKT/mTOR and HIF-1 signaling are central activators of
glycolysis and cancer-related metabolism. Multiple tumor sup-
pressors that repress PI3K/AKT/mTOR and HIF-1 signaling are
epigenetically silenced by promoter hypermethylation, including
PTEN126–130, LKB1,131,132 VHL133–136 and prolyl hydroxylases
(PHD1/2/3).137,138 Hence, differential DNA methylation signifi-
cantly contributes to glycolytic phenotype in human cancers.

Histone modifications
Among the histone modification enzymes, the role of sirtuins
(SIRTs) in regulating cell metabolism has been most extensively
investigated. SIRT6 regulates glucose homeostasis by modulating
histone acetylation.139 SIRT6 interacts directly with HIF1 and MYC,
and it functions as a co-repressor through histone deacetylation,
thereby inhibiting transcription.139–142 SIRT6 hence acts as a tumor
suppressor by repressing HIF-dependent glycolytic switch and
MYC-dependent ribosome biogenesis and glutaminolysis. SIRT6
knockout induced a shift towards a ‘glycolytic phenotype’ and
promoted cancer formation and aggressiveness. Consistent with
its tumor suppressive role, frequent deletions in SIRT6 have been
detected in cancer cell lines and colon, pancreatic and hepato-
cellular cancers.143 SIRT7 is another sirtuin that directly interacts
with MYC.144,145 SIRT7 possesses selective catalytic activity
towards H3K18Ac. As H3K18 deacetylation is a repressive mark,
it is not surprising that SIRT7 opposes MYC- dependent gene
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regulation and thus suppresses MYC-mediated metabolic alterna-
tions. In contrast to SIRT6/7, SIRT2 promotes deregulated
metabolism through indirectly stabilizing MYC.146 SIRT2 deacety-
lases histone at H4K16, leading to suppressed expression of
ubiquitin-protein ligase NEDD4. NEDD4 is a negative regulator of
MYC by targeting it for ubiquitination and degradation. Critically,
SIRT2 is itself upregulated by MYC in cancer cell lines; it constitutes
a positive-feedback loop that promotes MYC-dependent transcrip-
tion and oncogenesis. Given the myriad of histone modifications
that contributes to gene regulation, much remains to be under-
stood with regards to the role of histone code on metabolic
reprogramming in cancer.

miRNA
MicroRNAs (miRNAs) regulate expression of genes involved in
diverse cellular functions. Several aspects of cell metabolism are
regulated by miRNAs, including glycolysis and mitochondrial TCA
cycle, thereby contributing to the Warburg’s effect. miRNAs also
have a major impact on the signal transduction via PI3K/AKT, HIF1
and Myc that contribute to the metabolic phenotype in human
cancers. miRNAs regulates the expression of numerous genes
taking part in glucose uptake, including miR-1291 for GLUT1,147

miR-195-5p and miR-106a for GLUT3,148,149 and miR-93 for
GLUT4.150 as well as glycolysis, such as miR-143, miR-145 and
miR-155 for hexokinase 2 (HK2),151–156 miR-200 for glucose-6-P
isomerase (GPI),157 miR-15a/16-1 and miR-122 for aldolase A
(ALDOA),158 miR-326 and miR133a/b for PKM2.159,160 Glutamino-
lysis is also targeted by miRNAs (miR-23a/b) via glutaminase.161

Deregulation of aforementioned miRNAs has been reported in
cancers and they contribute to increased glycolysis and glutami-
nolysis in cancers. Moreover, miR-210, by repressing iron–sulfur
cluster assembly proteins (ISCU1/2), inhibits mitochondrial func-
tion. miR-210 therefore favors a shift towards a glycolytic
phenotype and lactate production, which is critical for adaptation
to hypoxic tumor microenvironment.162 miRNAs also have a
profound effect on signal transduction. PI3K/AKT/mTOR, LKB1/
AMPK, MYC, and HIF1 signaling cascades have all been shown to
be regulated by miRNAs. Hence, the dysregulation of metabolic
signaling pathways by miRNAs additionally contributes to altered
metabolism in cancers.

THERAPEUTIC OPPORTUNITIES TARGETING EPIGENETIC-
METABOLISM CROSSTALKS IN CANCER
Reversal of epigenetic dysregulation by targeting cancer
metabolism
Glycolysis inhibitors. Accelerated glycolysis in cancer contributes
to histone acetylation via citrate and acetyl CoA. Histone
acetylation in cells is regulated by glucose flux in a dose-
dependent manner163 and elevated glycolysis in cancer is
associated with global histone hyperacetylation.164 Inhibition
of glycolysis holds promise for modulating histone acetylation.
2-Deoxyglucose (2-DG) is a glucose analog that is transported to
cells and metabolized by hexokinase (HK) to form 2-DG-P. 2-DG-P
cannot be further metabolized by phosphohexose isomerase,165

leading to the feedback inhibition of hexokinase, a rate-limiting
enzyme for glycolysis. Treatment with 2-DG significantly sup-
presses acetyl-CoA levels, and the acetylation of histone H3, H4,
H2A and H2B in multiple cancer cell lines.164 The reductions in
global histone acetylation by 2-DG compromise DNA repair and
sensitize cancer cells to DNA-damaging therapeutics. Acetyl-CoA is
also required for maintenance of pluripotency through histone
acetylation and glycolysis inhibition by 2-DG or 3-bromopyruvate
(BrPA, a GAPDH inhibitor), which was found to induce differentia-
tion in embryonic stem cells.166 Hence, glycolysis represents a
viable target for modulating histone acetylation.

Glutaminolysis inhibitors. Glutaminolysis is frequently elevated
in cancer, and accumulating evidence indicates that its inhibition
is effective for targeting glutamine-addicted cancers.5 Glutami-
nase (GLS), which catalyzes the deamination of glutamine to
glutamate, is the most extensively studied drug target in this
pathway. Several inhibitors, such as bis-2-(5-phenylacetamido-
1,2,4-thiadiazol-2-yl) ethyl sulfide (BPTES),167 compound 968168

and CB-839167 have been characterized, and CB-839 is currently
undergoing Phase I dose escalation trials in solid and hematolo-
gical malignancies (Table 1). Glutaminolysis generates α-KG, TCA
cycle intermediates and acetyl-CoA, which in turn influence
epigenetic status. Indeed, treatment of breast cancer cells with
compound 968 significantly altered histone H4K16 acetylation
and histone H3K4 methylation, leading to downregulation of
numerous cancer-related genes.169,170 Using an unbiased small
molecule screen, Elhammali et al.171 unravelled Zaprinast, a
phosphodiesterase 5 inhibitor, as a potent inhibitor of mutant
IDH1R132C-mediated 2-HG biosynthesis in HT1080 cells. Surpris-
ingly, Zaprinast did not target mutant IDH1, but instead it
suppressed GLS. GLS-mediated glutaminolysis is essential for
maintaining supply of α-KG, upstream of IDH1/2 metabolism of
α-KG to 2-HG. As a consequence, Zaprinast treatment resulted in a
marked reduction in histone H3K9me2/3 methylation. These
studies highlight potential utility of GLS inhibitors in the reversal
of epigenetic dysregulation in cancer, especially in the context of
IDH1/2 mutations.

IDH1/2 inhibitors. Inhibition of IDH1/2 has been pursued as a
strategy to suppress the production of oncometabolite 2-HG.
Rohle et al.172 described the first selective inhibitor (AGI-5198) of
mutant IDH1,R132H which selectively inhibited mutant IDH1
(IC50 = 70 nM), but not wild-type IDH1 or any of the IDH2 isoforms
(IC504100 μM). In IDH1-mutant glioma cells, AGI-5198 inhibited
2-HG production and cell growth in vitro and in vivo. AGI-5198
induced demethylation of H3K9me3 and H3K27me3, whilst it had
no effect on DNA methylation. AGI-5198 also demonstrated
anticancer activity in human chondrosarcoma cells harboring IDH1
mutations.173 Subsequently, novel mutant IDH1R132H inhibitors has
been reported, such as AG-120, AG-881, ML309,174 2-(3-trifluor-
omethylphenyl)isothioazol-3(2H)-one,175 bis imidazole phenol
(cpd 1),176 1-hydroxypyridin-2-one compounds177 and GSK321
and GSK864178 (Table 1). These drugs inhibited mutant IDH1R132H

in nanomolar range and exhibited promising selectivity over wild
type IDH1.
AG-221 is a first-in-class inhibitor of mutant IDH2179 (Table 1).

AG-221 was found to suppress 2-hydroxyglutarate (2-HG) levels in
hematopoietic cells expressing mutant IDH2R140Q, and in murine
models of IDH2-mutant leukemia. Consistent with its role in
epigenetic dysregulation, mutant IDH2 inhibition with AG-221
reversed DNA hypermethylation in LSK stem cells from mice
expressing mutant IDH2. Notably, AG-211 induced cell differentia-
tion in leukemia cells from IDH2-mutant expressing mice and it
synergized with Flt3 inhibition to reduce leukemic cell burden
in vivo. AG-211 also demonstrated a survival benefit in primary
human IDH2 mutant AML xenografts.180,181 AG-211 has since been
introduced into Phase I clinical trials and a Phase III trial has been
initiated in 2015. Interim results presented thus far suggest that
AG-211 is highly effective in decreasing plasma and bone marrow
2-HG levels and achieved durable remission in some patients with
IDH2 mutant advanced hematologic malignancies.182 AGI-6780 is
another selective inhibitor towards mutant IDH2R140Q.183 AGI-6780
treatment in IDH2 mutant cells resulted in histone and DNA
demethylation,184 and reversed gene signatures caused by
epigenetic dysregulation. These proof-of-concept studies indicate
that targeting of mutant IDH1/IDH2 has potential clinical
applications as a differentiation therapy in cancers bearing mutant
forms of these proteins.
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SAM cycle inhibitors: As the availability of SAM is critical for the
activities of DNMTs and HMTs, SAM cycle blockade will likely affect
DNA and histone methylation. S-adenosylhomocysteine hydrolase
(SAH hydrolase) participates in the activated methyl cycle through
catalyzing the hydrolysis of SAH into adenosine and homocys-
teine. SAH hydrolase is essential for the maintenance of
methylation homeostasis, as SAH caused the byproduct inhibition
of DNMTs and HMTs. DZNep (3-deazaneplanocin A) was first
identified as a SAH hydrolase inhibitor,185 and subsequent studies
showed that DZNep treatment in cancer cell lines globally
inhibited DNA and histone methylation, an effect that is non-
selective.186 Another SAH hydrolase inhibitor (adenosine dialde-
hyde) also had the similar impact on DNA and histone
methylation. EZH2, an oncogenic HMT that methylates histone
H3K27 and facilitates transcriptional repression, is indirectly
targeted by DZNep in cancer cells via SAH hydrolase inhibition.
DZNep treatment reactivates a subset of developmental genes,
but it is ineffective towards genes silenced by dense promoter
methylation. Hence, combination of DZNep with 5-aza-2′-deox-
ycytidine (5-Aza), a DNMT inhibitor, has shown synergistic
anticancer activity in leukemia and colorectal cancer,187–190 by
activating genes that are aberrantly silenced by histone and DNA
methylation.
NNMT inhibitor: As NNMT overexpression induced SAM deple-
tion and histone hypomethylation, it might be a potential drug
target in NNMT-overexpressing cancer cells. N-methyl-nicotina-
mide, a reaction side product of NNMT, is a specific and potent
inhibitor towards NNMT. Indeed, NNMT inhibition in vivo using
N-methylnicotinamide is able to increase histone methylation at
H3K4 and increased methylated H3K4 occupancy at gene
promoters.191 Thus, inhibition of NNMT is a viable approach for
modification of histone methylation.
Hexosamine biosynthesis pathway inhibitors: UDP-GlcNAc, the
substrate for protein O-GlcNAcylation, is synthesized via HBP.
GFAT is the rate-limiting enzyme in HBP that can be targeted by
well characterized inhibitors, O-diazoacetyl-L-serine (azaserine)
and 6-diazo-5-oxo-L-norleucine (DON).192 Cancer cells cultured
under high glucose exhibited increased HBP pathway flux
and protein O-GlcNAcylation, which mediates transcriptional
activation of β-catenin, thereby promoting the Wnt/β-catenin
signaling and cell proliferation.193–195 Treatment with either
azaserine or DON decreased protein O-GlcNAcylation level,
reduced β-catenin expression and reversed glucose-mediated cell
proliferation.193,194 Protein O-GlcNAcylation has also been shown
to be upregulated in CD133+ cancer stem cells.196 Inhibition of
HBP using azaserine reduced the CD133+ subpopulation and
CD133 expression; whereas treatment with N- N-acetylglucosa-
mine (GlcNAc, which promotes HBP) had a reverse effect. It will be
of great interest to investigate whether intervention of HBP will
impact epigenetic regulators and histone modifications.

Modulation of cancer metabolism using epigenetic drugs
DNMT inhibitors. DNA methylation can be therapeutically
targeted using DNMT inhibitors. Two inhibitors of DNMT,
5-azacytidine and 5-aza-2′-deoxycytidine, have been clinically
approved by FDA for treatment of myelodysplastic syndrome, and
the latter has been approved for acute myeloid leukemia (AML).
Clinical trials (Phase I–III) have also been conducted in several solid
malignancies (Table 2). These are cytosine analogues that non-
selectively inactivate DNMT1, DNMT3A and DNMT3B.197 It is
largely unknown whether DNMT inhibitors can have a metabolic
effect on cancer. Given the non-specific nature of these DNA
methylation inhibitors and their widespread effect on gene
expression, it will be important to elucidate their roles in cancer
metabolism. DNMT inhibitors may be useful in reversing DNA
methylation induced by metabolic alteration. IDH1/2-mutant
cancers, which exhibit DNA hypermethylation, are sensitive to

5-azacytidine and 5-aza-2′-deoxycytidine. 5-Azacytidine induced
tumor regression in a patient-derived IDH1 mutant glioma
xenograft model;198 while 5-aza-2′-deoxycytidine effectively sup-
pressed growth in IDH-mutant glioma cells in vitro and in vivo.199

DNMT inhibitors reversed the hypermethylator phenotype and
resulted in cell differentiation and slowed growth. In the latter
study, 5-aza-2′-deoxycytidine was actually shown to be more
effective than IDH inhibitors in inducing the differentiation of IDH-
mutant glioma cells. Hence, targeting the methylome may be a
complementary approach to counteract the effect of oncometa-
bolites in cancers.

HDAC inhibitors. HDAC inhibitors represent a diverse class of
compounds that inhibit HDACs activity. Two HDAC inhibitors
Vorinostat and Romidepsin have been approved for cutaneous
T-cell lymphoma, and their use in solid tumors is an area of active
investigation (Table 2). HDAC inhibitors induce histone acetylation
and reverse gene silencing by HDACs in human cancers. Emerging
evidence suggests that inhibition of HDACs may impact cancer
metabolism. In HT29 colorectal cancer cells, treatment with HDAC
inhibitors butyrate or trichostatin A was associated with a
significant reduction in glucose uptake, glycolysis flux and lactate
production.200 In multiple myeloma cells, Vorinostat or valproic
acid treatment suppressed GLUT1 expression and inhibited
hexokinase I activity.201 In H460 lung cancer cells, butyrate or
trichostatin A treatment suppressed glycolysis and triggered a
shift in metabolism away from glycolysis by activating mitochon-
drial metabolism.202 Butyrate also attenuated glycolysis in breast
cancer cells.203 These results suggest that inhibition of HDAC may
promote the reversion of glycolytic phenotype in cancer cells.

Sirtuin activators and inhibitors. Despite their importance in
metabolic regulation in cancers, limited attention has been paid to
the potential use of sirtuin activators and inhibitors to influence
cancer metabolism. Sirtuin 6 (SIRT6), a tumor suppressor that
opposes glycolysis, has been shown to be activated by free fatty
acids (myristic, oleic and linoleic acids) up to ⩽ 35-fold.204

Discovery of small molecule activators of SIRT6 may unveil a
novel approach to target tumor metabolism. On the other hand,
several inhibitors that block oncogenic Sirtuin 2 (SIRT2) has been
described.205 Further investigations are required to define the
effect of sirtuin activators and inhibitors on cancer metabolism
and their role in cancer management.

miRNA. Modulation of miRNAs holds promise as therapeutic
targets, given its regulatory roles in the dysregulation of
metabolism in carcinogenesis. Currently, there are two approaches
to target miRNAs. Aberrantly silenced miRNAs can be restored
using synthetic miRNA mimics; although overexpressed
miRNAs can be silenced using miRNA sponges or antisense
oligonucleotides.206–208 Both approaches have been utilized to
manipulate metabolic genes in cancer. As an example, the re-
expression of miR-143, which targets hexokinase II 3′-untranslated
region, overturned the glycolytic phenotype and inhibited cancer
growth.154 On the contrary, oncogenic miRNAs that target LKB1/
AMPK or PTEN tumor suppressive pathways may represent
attractive targets for the design of therapeutic anti-miRNAs. For
instance, anti-miR-21-mediated inhibition (which targets PTEN
tumor suppressor), restored PTEN expression in hepatocellular
cancer and contributed to treatment.209 One major challenge
facing miRNA-targeting focuses on the safe and efficient delivery
of miRNA mimics and anti-miRNAs.210 Advances in delivery
technology will accelerate realization of miRNA-based therapeu-
tics in the clinical practice.

Epigenetic and metabolic crosstalk in cancer
CC Wong et al

3367

Oncogene (2017) 3359 – 3374



Ta
bl
e
2.

R
ev
er
sa
l
o
f
ca
n
ce
r
m
et
ab

o
lis
m

u
si
n
g
ep

ig
en

et
ic

d
ru
g
s

In
hi
bi
to
r

Ta
rg
et

en
zy
m
e

M
od

e
of

A
ct
io
n

O
ng

oi
ng

cl
in
ic
al

us
e/
tr
ia
ls

Re
f

D
N
M
T
in
hi
bi
to
rs

5-
A
za
cy
ti
d
in
e,

5-
A
za
-2
'-d

eo
xy
cy
ti
d
in
e

D
N
A
m
et
h
yl
tr
an

sf
er
as
es

B
o
th

d
ru
g
s
n
o
n
-s
el
ec
ti
ve

ly
in
ac
ti
va
te

D
N
M
T1

,D
N
M
T3

A
an

d
D
N
M
T3

B
D
N
M
T
in
h
ib
it
o
rs

re
ve
rs
ed

th
e
h
yp

er
m
et
h
yl
at
o
r

p
h
en

o
ty
p
e
in

ID
H
1-
m
u
ta
n
t
g
lio

m
a
ce
lls

A
za
ci
ti
d
in
e
an

d
5-
A
za
-2
′-d

eo
xy
cy
ti
d
in
e
(A
p
p
ro
ve
d
fo
r

m
ye
lo
d
ys
p
la
st
ic

sy
n
d
ro
m
e
an

d
ac
u
te

m
ye
lo
id

le
u
ke
m
ia
,P

h
as
e
I-I
II
fo
r
o
th
er

m
al
ig
n
an

ci
es
)

1
9
8
,1
9
9

H
D
A
C
in
hi
bi
to
rs

B
u
ty
ra
te
,R

o
m
id
ep

si
n
,T

ri
ch

o
st
at
in

A
,

Va
lp
ro
ic

ac
id
,V

o
ri
n
o
st
at

H
is
to
n
e
d
ea
ce
ty
la
se
s

(H
D
A
C
s)

H
D
A
C
in
h
ib
it
o
rs

in
d
u
ce

h
is
to
n
e
ac
et
yl
at
io
n
an

d
re
ve
rs
e

ab
er
ra
n
t
g
en

e
ex
p
re
ss
io
n
ca
u
se
d
b
y
H
D
A
C
s.
Tr
ea
tm

en
t

o
f
ca
n
ce
r
ce
lls

w
it
h
H
D
A
C

in
h
ib
it
o
rs

w
as

as
so
ci
at
ed

w
it
h
th
e
re
d
u
ct
io
n
in

g
lu
co

se
u
p
ta
ke
,g

ly
co

ly
ti
c
fl
u
x
an

d
la
ct
at
e
m
et
ab

o
lis
m

R
o
m
id
ep

si
n
an

d
Vo

ri
n
o
st
at

(A
p
p
ro
ve
d
fo
r

cu
ta
n
eo

u
s
T
ce
ll
ly
m
p
h
o
m
a,

Ph
as
e
I-I
II
fo
r
o
th
er

m
al
ig
n
an

ci
es
),
Va

lp
ro
ic

ac
id

(P
h
as
e
I-I
II)

2
0
0
–
2
0
3

Si
rt
ui
n
ac
tiv
at
or
s
an

d
in
hi
bi
to
rs

Li
n
o
le
ic

ac
id
,M

yr
is
ti
c
ac
id
,O

le
ic

ac
id

Si
rt
u
in

6
(S
IR
T6

)
Fr
ee

fa
tt
y
ac
id
s
ac
ti
va
te

SI
R
T6

,w
h
ic
h
fu
n
ct
io
n
s
as

a
tu
m
o
r
su
p
p
re
ss
o
r
to

in
h
ib
it
g
ly
co

ly
si
s

N
A

2
0
4

m
iR
N
A
m
od

ul
at
or
s

Sy
n
th
et
ic

m
iR
N
A
m
im

ic
s

m
iR
N
A
s

m
iR
N
A
m
im

ic
s
re
st
o
re
s
si
le
n
ce
d
m
iR
N
A
fu
n
ct
io
n
.
Fo

r
ex
am

p
le
,r
e-
ex
p
re
ss
io
n
o
f
m
iR
-1
43

,w
h
ic
h
ta
rg
et
s

h
ex
o
ki
n
as
e
II
3′
-U
TR

,s
u
p
p
re
ss
ed

g
ly
co

ly
si
s

N
A

1
5
4

m
iR
N
A
sp
o
n
g
es
,A

n
ti
se
n
se

o
lig

o
n
u
cl
eo

ti
d
es

m
iR
N
A
s

A
n
ti
-m

iR
s
si
le
n
ce
s
o
ve
re
xp

re
ss
ed

m
iR
N
A
.F

o
r
ex
am

p
le
,

an
ti
-m

iR
-2
1
re
st
o
re
d
PT

EN
ex
p
re
ss
io
n

N
A

2
0
9

A
b
b
re
vi
at
io
n
s:
H
D
A
C
,h

is
to
n
e
d
ea
ce
ty
la
se
;
m
iR
N
A
,m

ic
ro
R
N
A
;
N
A
,n

o
t
ap

p
lic
ab

le
;
3′
-U
TR

,3
′-u

n
tr
an

sl
at
ed

re
g
io
n
.

Epigenetic and metabolic crosstalk in cancer
CC Wong et al

3368

Oncogene (2017) 3359 – 3374



Impact of tumor microenvironment and metabolism on
epigenetic therapy
Epigenetic drugs, including DNMT and HDAC inhibitors, have been
approved by the FDA for use in hematological malignancies.
However, the use of these drugs has been met with limited
success in solid tumors thus far. Several Phase I clinical trials that
examined the pharmacodynamics of DNA demethylation drugs or
histone deacetylase inhibitors indicated the reversal of epigenetic
abnormalities in solid tumors following drug treatment.211–213

However, the therapeutic effects of epigenetic therapies towards
solid tumors has been disappointing. Solid tumors, unlike
hematological malignancies, are characterized by regions of
hypoxia (low oxygen), which has a key role in tumor progression,
aggressiveness and drug resistance.214,215 Hypoxic tumor cells
display epigenetic abnormalities.216–220 Hypoxia is associated with
DNA hypomethylation. Hypoxia has been shown to downregulate
the expression of DNMT1, DNMT3A and DNMT3B in human
colorectal cancer cells.217 On the contrary, hypoxia results in
HIF-dependent transcriptional activation of TET1.219,220 Given that
a hypoxic tumor microenvironment promotes DNA hypomethyla-
tion, efficacy of DNA demethylation agents, such as modulators of
DNMTs/TETs, are likely suppressed in solid tumors as compared to
hematological malignancies. On the other hand, hypoxia induces
histone hypoacetylation that may be potentially targeted by
inhibitors of HDAC.221 Indeed, HDAC inhibitors such as Vorinostat
and valproic acid have shown promising results in solid tumors,
especially given in combination with chemotherapeutic
agents.222–225 Therefore, approaches to target epigenetic mechan-
isms should take into consideration of the potential impact of the
tumor microenvironment and metabolism.

CONCLUSION AND 5-YEAR VIEW
Crosstalks between epigenetics and metabolism are fundamental
aspects of cellular adaptation to nutrition status. The human
epigenome is dynamically regulated by the metabolome. Altera-
tions in either the epigenome or metabolome arising from genetic
mutation may therefore coordinately drive aberrant gene expres-
sion, which in turn, contributes to tumor development and
progression. Here we have outlined potential strategies that target
crosstalks between epigenome and metabolome that might be
exploited to selectively inhibit tumorigenesis. At present, much of
our knowledge has been gathered in simplistic in vitro cell culture
systems that might poorly reflect the complex interaction of
epigenome and metabolome in vivo. In the future, preclinical
studies need to better define their crosstalk in context of the
tumor microenvironment that consists of stromal and immune
components and to validate potential targets using appropriate
in vivo models, which ultimately will contribute to development of
novel therapeutic targets for intervention.
With numerous drugs targeting metabolism in the drug

development pipeline, in the next 5 years we will be able to
effectively target these abnormalities in cancer. Novel drugs
targeting mutant IDH1/2, for example, are already undergoing
phase II/III trials with treatment of advanced leukemia harboring
these mutations. With the promising preliminary data, IDH1/2
inhibition represents a highly specific therapy for this subset of
cancers.183,184 Metabolic reprogramming in cancer cells might also
be targeted by epigenetic drugs such as DNMT and HDAC
inhibitors. However, targeting epigenetic machinery likely has a
broad impact on gene expression, and more studies are needed to
define their specific effects on tumor metabolism. A caveat of
targeted therapies, as exemplified by the development of tyrosine
kinase inhibitors, is that they are useful only when their target(s)
are the main drivers of carcinogenesis. To fully realize the
potential of metabolic/epigenetic modulators, future clinical trials
should incorporate analysis of biomarkers to unravel epigenomic

(DNA methylation and histone lysine acetylation) and metabo-
lomic (metabolites) markers that allow the selection of subsets of
patients that may benefit most from these treatments. Given the
extensive crosstalk between epigenetics and metabolism, perhaps
it is the development of combinatorial approaches involving
metabolism inhibitors and epigenetic modulators might achieve
synergistic tumor inhibition. Notably, mutant IDH1/2 inhibitors are
being evaluated in Phase I/II clinical trials with inhibitors of DNMTs
(Table 1), with the rationale being that they might promote active
DNA demethylation and suppress DNA methylation, respectively,
to reverse DNA methylation in IDH1/2-mutant cancers. Develop-
ment of rationale drug combinations involving metabolism
inhibitors, epigenetic modulators and traditional chemotherapeu-
tics will likely have the greatest impact on future cancer
management.
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