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Abstract: The homeodomain-leucine zipper (HDZIP) is an important transcription factor family,
instrumental not only in growth but in finetuning plant responses to environmental adversaries.
Despite the plethora of literature available, the role of HDZIP genes under chewing and sucking
insects remains elusive. Herein, we identified 40 OsHDZIP genes from the rice genome database.
The evolutionary relationship, gene structure, conserved motifs, and chemical properties highlight
the key aspects of OsHDZIP genes in rice. The OsHDZIP family is divided into a further four
subfamilies (i.e., HDZIP I, HDZIP II, HDZIP III, and HDZIP IV). Moreover, the protein–protein
interaction and Gene Ontology (GO) analysis showed that OsHDZIP genes regulate plant growth and
response to various environmental stimuli. Various microRNA (miRNA) families targeted HDZIP III
subfamily genes. The microarray data analysis showed that OsHDZIP was expressed in almost all
tested tissues. Additionally, the differential expression patterns of the OsHDZIP genes were found
under salinity stress and hormonal treatments, whereas under brown planthopper (BPH), striped
stem borer (SSB), and rice leaf folder (RLF), only OsHDZIP3, OsHDZIP4, OsHDZIP40, OsHDZIP10,
and OsHDZIP20 displayed expression. The qRT-PCR analysis further validated the expression of
OsHDZIP20, OsHDZIP40, and OsHDZIP10 under BPH, small brown planthopper (SBPH) infestations,
and jinggangmycin (JGM) spraying applications. Our results provide detailed knowledge of the
OsHDZIP gene family resistance in rice plants and will facilitate the development of stress-resilient
cultivars, particularly against chewing and sucking insect pests.

Keywords: homeodomain-leucine zipper; transcriptomic analysis; brown planthopper; small brown
planthopper; jinggangmycin

1. Introduction

The static nature of plants entails the frequent endurance of various environmental
stresses. In response, plants have developed various mechanisms to adjust to the constantly
changing environment [1]. These developmental processes are frequently regulated by
numerous transcription factors (TFs) [2]. TFs spreads throughout the genome and can bond
with certain functional cis-elements, facilitating the plant’s response to various environ-
mental stimuli. The homeodomain–leucine zipper (HDZIP) is a transcription factor family
that plays a vital role in plant growth, developmental processes, and stress response [3].
The HDZIP is a class of homeobox proteins containing the homeodomain (HD) and leucine
zipper (LZ) motifs [3,4]. These two motifs are the signatures of the HDZIP family and have
been found in all eukaryotic species. However, their interaction with a single protein is only
found in plants and, therefore, HDZIP in Plantae is different than in other organisms [5].
Based on their structure, sequence composition, functional characteristics, and phyloge-
netic relationship, the HDZIPs are divided into four subfamilies (i.e., HDZIP I, HDZIP II,
HDZIP III, and HDZIP IV). Additionally, each subfamily has a unique function and forms
a complex interactive network throughout the plant’s developmental phases [6–8].
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The HDZIP subfamily I was found to be highly responsive in the developmental stages
and regulates host plant resistance to several abiotic stresses [9,10] and biotic stresses such
as pathogens and chilling injury [11]. Previously, the vital role of subfamily II members
was reported to be a very light responsiveness to regulating the shade avoidance response
and participating in auxin signaling and leaf polarity [12–14]. The transcription factors of
subfamily III have an obvious effect on plant development through the transportation of
various hormones, such as meristem initiation, the formation of microtubule tissues, vascular
system development, and the differentiation of apical provinces [15], whereas the subfamily
IV members promote the differentiation of epidermal cells in various plant organs, trichome
and anthocyanins formation, and attributes in fruit postharvest to abiotic stresses [8,16,17].

In the recent decades, rice consumption has increased globally. A statistical analysis
of rice consumption showed a high increase: in the 2008/2009 crop year, 437.18 million
metric tons (MMTs) of rice was consumed; in comparison, in 2021/2022, 509.87 MMTs
of rice was consumed worldwide. [18]. However, rice crops are targeted by many insect
pests in, which the most prominent, BPH Nilaparvata lugens Stål and Laodelphax striatellus
(Hemiptera: Delphacide), are recognized as key pests [19,20]. Both BPH and SBPH directly
affect rice through infestations and, in the process, transmit numerous viral pathogens
(RGSV) [21–23]. Host plant resistance is the most efficient strategy for controlling BPH;
however, pesticide preferences are on the top of the list because of their easy availability and
prompt results [24]. Furthermore, the recently developed fungicide, jinggangmycin (JGM),
is usually applied 2–3 times in rice fields to control rice sheath blight disease (Rhizoctonia
solani) [25]. However, the JGM is reported to induce rice physiology and biochemistry
leading to enhanced BPH flight capacity, body weight, thermotolerance, protein and lipids
contents, and fecundity [26,27].

Previously, the plant hormone jasmonic acid (JA) is reported to play the main role in
host plant defense against numerous herbivores. Herbivore damage elicits a rapid and
transient JA burst in the wounded leaves, and JA functions as a signal to mediate the
accumulation of various secondary metabolites that confer resistance to herbivores [28].
Brassinosteroids (BRs) are steroid hormones essential for plant growth and development.
These hormones control the division, elongation, and differentiation of various cell types
throughout the entire plant life cycle. Over the past few decades, studies on BRs caught the
attention of plant scientists due to their versatile ability to mitigate various environmental
stresses. Additionally, BRs is also involved in maintaining the quality of postharvest
produces by enhancing their resistance to abiotic and biotic stress [29]. However, the
research is missing highlighting the potential role of these crucial hormones under BPH
and SBPH infestations and JGM applications.

Considering the potential role of the HDZIP gene family associated with growth and
development, physiological and various defense responses, and the diversity of HDZIP
gene family members in many plant species, it is critical to investigate the global status and
evolution of the HDZIP gene family in rice [27]. Herein, we, for the first time, investigated
the response of the OsHDZIP gene family against BPH and SBPH infestations. Additionally,
an expression analysis was also performed in rice plants treated with JGM fungicide.
Comprehensive in silico analyses were also performed by exploring the rice genome and
expression databases. We believe our results will facilitate future research work in the field
of rice stress biology, particularly in response to BPH.

2. Materials and Methods
2.1. Investigation of the HDZIP Gene Family Members and Sequence Analysis in Oryza sativa

To obtain insightful knowledge of the OsHDZIP gene family regarding sequence anal-
ysis in Oryza sativa and their counterparts, we retrieved the OsHDZIP proteins from the
Arabidopsis thaliana genome “TAIR” (https://www.arabidopsis.org/) (accessed on 18 Febru-
ary 2022) [30], the Cucumis sativus genome (http://cucurbitgenomics.org/) (accessed on
20 February 2022) [31], and the rice genome database (http://rapdb.dna.affrc.go.jp/) (ac-
cessed on 20 February 2022) [32]. To avoid the possible loss of a HDZIP protein due to
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the fact of missing domain, a local BLASTP with a 1E-5 cutoff was performed. The Con-
served Domain Database (CDD) of the National Center for Biotechnology Information (NCBI)
(http://www.ncbi.nlm.nih.gov/cdd/) (accessed on 20 February 2022), SMART database
(http://smart.embl-heidelberg.de/) (accessed on 18 February 2022) [33], Inter Pro Scan
program (https://www.ebi.ac.uk/interpro/) (accessed on 21 February 2022), and Scan Prosite
(https://prosite.expasy.org/scanprosite/) (accessed on 18 February 2022) were used to con-
firm the HDZIP family-specific leucine-zipper (LZ) domain. Additionally, the physiochemical
properties of the HDZIP proteins in the studied plants were discovered using the ExPASy
online server (http://web.expasy.org/protparam/) (accessed on 21 February 2022) [34].

2.2. Phylogenetic Tree, Motif, and Digital Expression Analysis

To obtain detailed knowledge regarding the evolutionary relationship of the HDZIP
gene family in rice with the developed genome species. Here, we investigated the phy-
logenetic relationships of the HDZIP gene family members of rice with model plants.
Firstly, the HDZIP amino acid sequences were downloaded from their corresponding
genome database and were then aligned through ClustalW software (version 2.1) (http:
//www.genome.jp/tools/clustalw/) (accessed on 22 February 2022) following the default
parameters to examine the evolutionary relationships among the sequences and construct
the maximum likelihood phylogenetic tree using MEGA (version 7.0) [35]. Furthermore,
the conserved protein motifs of the HDZIP family of O. sativa were predicted using the
MEME online server (Version 4.12.0) (http://meme-suite.org/) (accessed 10 March 2022)
with the default settings. The details of the top 10 predicted motifs were obtained from
the MEME suite. The conserved domains of the HDZIP gene family of O. sativa were
predicted using the NCBI-CDD (http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi)
(accessed 10 March 2022). The conserved domain and motif distribution were drawn via
Microsoft PowerPoint 365 software. Finally, for the visualization of the heatmap, TBtools
(Version 1.098765) was used, and the transcriptomic data were retrieved from the rice
genome database and GEO dataset platform from the NCBI [27,32].

2.3. Cis-Elements and Gene Ontology of the OsHDZIP Genes

To determine the cis-regulatory elements in each OsHDZIP gene, 1.5 kb of an upstream
genomic DNA sequence with the starting codon (ATG) was obtained from the rice genome
sequence database. Further, we used the plantCARE database (http://bioinformatics.
psb.ugent.be/webtools/plantcare/html/) (accessed on 26 February 2022) to identify the
cis-elements in the promoter regions of 40 OsHDZIP genes of O. sativa. Furthermore, for
the GO analysis, the OsHDZIP protein sequences were downloaded from the iTAK-Plant
Transcription Factor and Protein Kinase Identifier and Classifier (http://itak.feilab.net/cgi-
bin/itak/index.cgi) (accessed on 5 March 2022). The obtained OsHDZIP protein sequences
were implied in the “CELLO2GO” online server to determine the predicted functions, such
as molecular functions, biological processes, and cellular components, and finally, the GO
classifications were recovered using Microsoft Excel 365 software.

2.4. Interactive Protein Analysis of the OsHDZIP Genes

The online server String (https://string-db.org) (accessed on 8 February 2022) was
used for the interactive protein network analysis (accessed on 8 March 2022), using the
O. sativa OsHDZIP2 protein as a reference following the default advanced settings [36].
Furthermore, pathway enrichment analysis was carried out by searching for OsHDZIP
genes in the rice genome database’s online pathway enrichment tool [32].

2.5. Prediction of Putative MicroRNAs Targeting OsHDZIP Genes

To predict putative miRNA target sites in the OsHDZIP genes in the rice plants under
BPH and SBP infestations and JGM spraying applications (briefly described in Section 2),
the sequences of rice miRNAs were downloaded from the rice genome database. Moreover,
the OsHDZIP CDS sequences were submitted to the online psRNA Target (Server18) with
the default parameters for predicting potential miRNAs in OsHDZIP genes. The interactive
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network between the predicted miRNAs and OsHDZIP targeted genes were constructed
and visualized using Cytoscape software (version 3.919) by the Institute for Systems Biology
(Seattle, Washington 98103, USA) following the same procedure by Rizwan et al. [37].

2.6. Insect Rearing and Chemical and Stress Treatment

The insects (i.e., BPH and SBPH) and the rice variety used in the study, Ninjing4, were
initially obtained from the China National Rice Research Institute insect repository (Hangzhou,
China). The Ninjing4 rice variety, known to be resistanceless to these insect infestations, was
used for insect rearing. Initially, the BPH and SBPH colonies were reared on the rice seedlings
in cement tanks covered with fine mesh outdoors (i.e., natural conditions) for six months
(i.e., April to October) and overwintered in lab-controlled conditions. First, we soaked the
seeds for 24 h in a water dip plastic tray with a standard size of one-quarter (60 cm H_100
cm W_200 cm L) in standard conditions of 26 ± 2 ◦C with the 16 h L:8 h D in relative
humidity of 80 ± 10% in the ecological laboratory of Yangzhou University. The germinated
seeds were transferred to cement tanks covered with fine mesh in an outdoor natural
environment and were grown until the six-leaf seedling stage. Secondly, the seedlings were
then transferred into plastic pots (dimensions = R 1

4 16 cm). Finally, the stress treatments
proceeded at the tillering stage (40 ± 2, 40 ± 4, and 40 ± 8 days).

The JGM technical grade of 61.7% used in this study was obtained from the Qianjiang
Biochemistry Co., Ltd. (Haining, Zhejiang, China). Following the protocol of in a previous
report by Ahmad et al. (2022), the two hundred parts per million (PPM) solution was Tween
20 obtained from the Sinopsin Group Chemical Reagent Company (Shanghai, China). The
fungicide was then sprayed on the rice seedlings, following the procedure in a previous
study [27,38].

2.7. Expression Profiling of HDZIP Genes in Oryza sativa

Forty day-old (40 ± 2) rice plants were exposed to BPH and SBPH stress, and samples
were collected at 2, 4, and 8 days after infestation. Similarly, JGM was sprayed on the rice
plants, and samples were taken 2, 4, and 8 days after treatment. The samples were then stored
at −80 ◦C degrees until further experiments. After that, the total RNA was extracted from
the samples using kits (Vazyme, Nanjing, China). First, the DNA was removed using DNase
I, the concentration and purity were measured with a NanoDrop 1000 spectrophotometer
(Thermo Fisher Scientific, Rockford, IL, USA), and the integrity was checked using 1.5%
agarose gel electrophoresis. Finally, the resulting cDNA was used as a template for qPCR
(quantitative real-time PCR) analysis using SYBR Green real-time PCR master mix (Vazyme,
Nanjing, China). The qPCR assays were performed in triplicate using a real-time PCR
system (Bio-Rad, Hercules, CA, USA) following the manufacturer’s protocol [27].

Furthermore, the 2 µL aliquots of cDNA were amplified by qPCR in 20 µL reaction
volumes using the SYBR Premix Ex TaqTM II (TaKaRa, Dalian, China). The cDNAs were
amplified at 95 ◦C for 2 min, followed by 35 cycles of 10 s at 95 ◦C, then for 30 s, and at
72 ◦C for 30 s, with a final extension step of 72 ◦C for 10 min in a CFX96 real-time PCR
system (Bio-Rad Co., Ltd., CA, USA). The mRNA amounts of all genes were separately
quantified with the stable expression of the constitutive reference gene, actin. The specific
primers are listed in (Table S1). After amplification, the target gene cycle threshold (Ct)
values were normalized to the reference gene by the 2−∆∆CT method [39]. The data’s mean
values of three biologically independent replicates were used for the final graphs [27].

2.8. Statistical Analysis

The data presented in this paper were analyzed using the SPSS software (version
25.0, SPSS Inc., Chicago, IL, USA) for statistical analysis (ANOVA), statistical significance,
and a 95% confidence interval (p ≤ 0.05). The data were analyzed and are expressed as
the mean ± standard deviation (SD) of three biologically independent replicates in all
measured parameters, and finally, GraphPad Prism (Version 8.0.2) (GraphPad Software,
Inc., LA Jolla, CA, USA) was used for graphical representation [27].
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3. Results
3.1. Identification and Sequence Analysis of OsHDZIP Genes in Oryza sativa

We retrieved 40 rice OsHDZIP transcription factors from the rice genome database.
All genes had a nomenclature of OsHDZ1 to OsHDZ40 (Table 1). Among the 40 OsHDZIP
genes family members, 35 OsHDZIP genes resided in the nucleus, whereas OsHDZIP3,
OsHDZIP7, OsHDZIP13, and OsHDZIP40 were in the plasma membrane, while 2 genes,
OsHDZIP28 and OsHDZIP37, resided in the cytoplasm. Other features of Oryza sativa
OsHDZIP protein were identified, such as locus ID, subfamilies, chromosomal coordinates,
molecular weight, chemical properties, and isoelectric point (PI), and tabulated.

Table 1. The gene and protein features of HDZIP genes family members in Oryza sativa.

Name Locus ID Subgroups Chr Start End AA Mw (kDa) PI SL

OsHDZ1 LOC_Os01g45570 II 1 25,883,718 25,880,204 229 229 9.00 N

OsHDZ2 LOC_Os01g55549 IV 1 32,009,784 32,006,374 816 88,638.79 6.43 N

OsHDZ3 LOC_Os01g57890 IV 1 33,471,900 33,478,535 709 78,179.26 6.97 P

OsHDZ4 LOC_Os02g05640 II 2 2,757,693 2,758,714 237 25,593.73 9.34 N

OsHDZ5 LOC_Os02g35770 II 2 21,489,894 21,487,595 349 37,437.65 5.65 N

OsHDZ6 LOC_Os02g43330 I 2 26,143,309 26,144,731 261 28,537.38 4.84 N

OsHDZ7 LOC_Os02g45250 IV 2 27,494,914 27,487,865 804 86,047.24 5.55 P

OsHDZ8 LOC_Os02g49700 I 2 30,381,303 30,383,661 343 37,614.24 4.70 N

OsHDZ9 LOC_Os03g01890 III 3 549,823 557,909 839 91,828.58 5.74 N

OsHDZ10 LOC_Os03g07450 I 3 3,786,933 3,784,283 366 39,623.72 6.40 N

OsHDZ11 LOC_Os03g08960 I 3 4,652,927 4,654,824 311 33,612.78 4.68 N

OsHDZ12 LOC_Os03g12860 II 3 6,931,709 6,933,328 292 30,516.17 8.64 N

OsHDZ13 LOC_Os03g43930 III 3 24,657,650 24,651,800 862 93,747.56 6.19 P

OsHDZ14 LOC_Os04g45810 I 4 27,124,166 27,125,512 276 30,653.13 5.19 N

OsHDZ15 LOC_Os04g46350 II 4 27,479,717 27,477,579 247 27,291.10 9.06 N

OsHDZ16 LOC_Os04g48070 IV 4 28,607,038 28,600,698 813 86,758.01 5.59 N

OsHDZ17 LOC_Os04g53540 IV 4 31,907,122 31,899,718 784 85,259.35 5.59 N

OsHDZ18 LOC_Os06g04850 II 6 2,123,398 2,124,787 256 27,016.66 9.12 N

OsHDZ19 LOC_Os06g04870 II 6 2,137,450 2,139,101 308 32,084.86 9.14 N

OsHDZ20 LOC_Os06g10600 IV 6 5,502,411 5,499,342 697 75,491.69 6.19 N

OsHDZ21 LOC_Os06g48290 II 6 29,199,356 29,198,270 256 27,590.97 9.13 N

OsHDZ22 LOC_Os08g04190 IV 8 2,037,504 2,034,454 749 80,854.03 5.97 N

OsHDZ23 LOC_Os08g08820 IV 8 5,109,238 5,116,781 784 84,615.36 5.50 N

OsHDZ24 LOC_Os08g19590 IV 8 11,702,603 11,711,044 786 86,649.10 8.34 N

OsHDZ25 LOC_Os08g32080 I 8 19,888,358 19,884,012 349 37,386.74 4.59 N

OsHDZ26 LOC_Os08g32085 I 8 19,888,358 19,884,012 349 37,386.74 4.59 N

OsHDZ27 LOC_Os08g36220 II 8 22,831,125 22,829,282 354 36,889.29 7.02 N

OsHDZ28 LOC_Os08g37580 I 8 23,805,452 23,803,380 269 28,928.92 4.64 C

OsHDZ29 LOC_Os09g21180 I 9 12,783,649 12,780,659 333 35,698.53 5.08 N

OsHDZ30 LOC_Os09g27450 II 9 16,676,359 16,674,571 362 37,833.06 6.22 N

OsHDZ31 LOC_Os09g29460 I 9 17,903,164 17,905,338 277 29,392.27 4.62 N

OsHDZ32 LOC_Os09g35760 IV 9 20,574,897 20,567,982 872 91,720.25 5.75 N

OsHDZ33 LOC_Os09g35910 I 9 20,671,754 20,673,282 249 27,300.31 5.62 N

OsHDZ34 LOC_Os10g01470 II 10 286,941 284,701 247 27,178.62 8.15 N

OsHDZ35 LOC_Os10g23090 I 10 12,041,604 12,043,235 305 32,734.71 5.05 N

OsHDZ36 LOC_Os10g26500 I 10 13,804,811 13,806,732 355 36,848.13 6.05 N

OsHDZ37 LOC_Os10g33960 III 10 18,085,536 18,092,500 840 92,132.16 5.58 C

OsHDZ38 LOC_Os10g41230 II 10 22,152,631 22,154,163 311 33,143.22 9.09 N

OsHDZ39 LOC_Os10g42490 IV 10 22,916,203 22,910,460 882 94,667.18 5.63 N

OsHDZ40 LOC_Os12g41860 III 12 25,927,353 25,920,639 855 93,109.96 5.97 P

Amino acid: AA; molecular weight: MW; nuclear: N; plasma membrane: P; cytoplasmic: C; isoelectric point: PI;
subcellular location: SL.
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3.2. The OsHDZIP Genes Conservative Domain Analysis

The HDZIP gene family consisted of two functional domains: homeodomain (HD) and
leucine zipper (LZ). Based on their sequence conservation and functional properties, the
HDZIP gene family was divided into four subfamilies (i.e., HDZIP I, HDZIP II, HDZIP III,
and HDZIP IV). The HDZIP I subfamily contains the HD and LZ domains among the four
subfamilies; HDZIP II contains a similar HD and LZ domain with an additional CPSCE
motif; HDZIP III and HDZIP IV contain HD and LZ with an additional START and SAD
domain. Only HDZIP III possesses the highly conserved MEKHLA domain (Figure 1).
The domain distribution and structure of the OsHDZIP genes in Oryza sativa are shown in
Table S3.
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3.3. Evolutionary Relationship of Oryza sativa HDZIP Genes

After alignment, a maximum likelihood phylogenetic tree was constructed to gain
insightful knowledge regarding the evolutionary relationship of the homeodomain-leucine
zipper in Arabidopsis thaliana [30], Cucumis sativus [8], and O. sativa [32] (Figure 2). The
protein sequence of the rice (40 OsHDZIP), A. thaliana (47 AtHDZIP) [40], and cucumber
(40 CsHDZIP) [8] were downloaded from their respective databases and through the
maximum likelihood method, the phylogenetic tree was constructed. Following the same
procedure as our previously published article, first, all sequences were aligned using
ClustalX software with default parameters, then the phylogenetic tree was constructed
using MEGA6 software, and the final tree was programmed using Interactive Tree Of Life
(iTOL) (version 5) (accessed on 20 March 2022) [41]. Additionally, the OsHDZIP proteins
were clustered into four subfamilies based on their phylogenetic relationships: HDZIPI,
HDZIPII, HDZIPIII, and HDZIPIV, and the number of OsHDZIP proteins was measured
in each subfamily. Subfamily I accounted for 13 proteins, followed by subgroup II with
12 proteins, subfamily IV with 11 proteins, and subfamily III with the least number proteins
at 4.
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Figure 2. Phylogenetic analysis of HDZIP: the phylogenetic tree was generated using the amino-acid
sequences of selected HDZIPs via the maximum likelihood tree method. All Oryza sativa HDZIPs,
Arabidopsis thaliana, and Cucumis sativus, with their counterparts, were classified into four subfamilies,
and the final tree was displayed using the Interactive Tree Of Life (iTOL) (version 5).

3.4. An Interactive Network of OsHDZIP Protein

The protein interaction analysis revealed various other proteins interacting with
the OsHDZIP orthologous gene OsHDZIP2 (Figure 3). The OsHDZIP2 protein from the
homeodomain-leucine zipper gene family plays a crucial role in plant growth and stress
response. For instance, the YUCCA pathway is the most important and well-characterized
pathway that plants deploy to produce auxin, which is the essential hormone in plant
development and stress response [42]. In addition, our reference protein, OsHDZIP2, was
found to be highly interactive with rice LAZY1 proteins and had an essential role in auxin
biosynthesis, the predicted functional partners of OsHDZIP proteins (Table S4).
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3.5. Prediction of the Potential MicroRNAs Targeting OsHDZIP Genes

MicroRNAs are a class of small noncoding regulatory RNAs that control gene expres-
sion by directing target mRNA cleavage or translational repression [43]. In recent decades,
several investigations have reported that the miRNAs regulate numerous stresses, plant
development, and signal transduction. Therefore, to better understand the regulatory
mechanism of miRNAs involved in the regulation of OsHDZIP genes, 56 putative miR-
NAs targeting four OsHDZIP genes were identified, as shown in the network illustration
(Figure 4).
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Figure 4. Targeted miRNA sites of the OsHDZIP subfamily III genes in rice represents the functional
network assembly of the HDZIP genes in Oryza sativa. The subfamily III (i.e., OsHDZIP9, OsHDZIP13,
OsHDZIP37, and OsHDZIP40) were mapped to the co-expression database. This analysis revealed 56
unique miRNAs that exhibited various physical/functional interactions, and a network was then
assembled based on these interactions.

The schematic diagrams indicating the OsHDZIP genes targeted by miRNAs sites
are presented in (Figure 5). Detailed information regarding putative miRNA targeting
sites and the OsHDZIP genes is provided in the Supplementary Materials (Table S5). The
results revealed that among the subfamily III members, OsHDZIP9 was targeted by 15
miRNAs families (i.e., osa-miR5538, osa-miR535-3p, osa-miR395f, osa-miR2093-5p, osa-
miR1850.2, osa-miR159a.1, osa-miR815c, osa-miR815b, osa-miR5158, osa-miR159f, osa-
miR444c.2, osa-miR444b.2, osa-miR1854-3p, osa-miR5154, and osa-miR815a). This was
followed by OsHDZIP13, which was targeted by 11 miRNAs families, including osa-miR414,
osa-miR1429-3p, osa-miR164a, osa-miR164b, osa-miR164d, osa-miR164e, osa-miR169r-
3p, osa-miR2877, osa-miR2927, osa-miR2794, and osa-miR164f. Furthermore, the same
subfamily member, OsHDZIP37, was targeted by five miRNAs families (i.e., osa-miR408-
5p, osa-miR5832, osa-miR1883a, osa-miR1883b, and osa-miR6246), and OsHDZIP40 was
targeted by only four miRNA families (i.e., osa-miR5144-3p, osa-miR5340, osa-miR444b.1,
and osa-miR444c.1). However, from the OsHDZIP subfamily III, four members were
targeted in combination by 21 miRNAs families including osa-miR5075, osa-miR1865-3p,
osa-miR5075, osa-miR166f, osa-miR2275d, osa-miR444c.1, osa-miR444b.1, osa-miR166e-3p,
osa-miR1661-3p, osa-miR166k-3p, osa-miR166i-3p, osa-miRg-33p, osa-miR166h-3p, osa-
miR166j-3p, osa-miR444e, osa-miR444d.2, osa-miR444a-3p.2, osa-miR5508, osa-miR166a-3p,
osa-miR166b-3p, and osa-miR444d.2. Noticeably, the miRNA165/166 family targeted all
the genes in the OsHDZIP subfamily III and could be involved in the post-transcriptional
regulation of these genes in rice plants.
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3.6. Gene Ontology (GO) Analysis

The Gene Ontology (GO) enrichment pathway analysis showed various key functions
of the OsHDZIP genes in Oryza sativa. Three functional predictions were analyzed into
biological, molecular, and cellular processes [27]. According to the predicted biological
processes, OsHDZIP genes play a crucial role in growth-related activities via hormonal
and metabolic modulation (Figure 6). Additionally, the response to external stimuli and
the cellular analysis proved that 36 of the OsHDZIP genes were located in the nucleus,
4 genes resided in the plasma membrane, whereas OsHDZIP28 and OsHDZIP37 resided in
the cytoplasm and may be involved in many cellular-based activities. At the same time,
many molecular predictions regarding OsHDZIP genes indicated that they are involved in
DNA-binding activities.
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3.7. Identified cis-Regulatory Elements in OsHDZIP Genes

The OsHDZIP in silico analysis revealed that the upstream region of HDZIP genes
possesses various stress, hormonal, and growth receptive cis-regulatory elements. Here,
we identified twenty-two cis-regulatory elements. Among these 22 cis-elements, 13 were
related to stress and growth changes, and 9 were responsive to hormonal changes (Table
S2). Further, the hormonal responsive cis-regulatory elements, such as AuxRR-Core (auxin-
responsive), the GCTCZ-motif (MeJA responsive), and the TCA-salicylic acid element,
were responsive. Moreover, ABRE (abscisic acid responsive) was found in most of the
OsHDZIP genes; meanwhile, the GARE-motif and P-box (a gibberellin-responsive cis-
element) were identified in several gene’s upstream regions. Following a drought, the
anaerobic induction-responsive cis-elements, MYB and ARE, and the light-responsive cis-
elements, such as the ZTCT-motif, G-box, and ACE, were also found in the majority of
OsHDZIP genes. In addition, various stress- and growth-responsive cis-elements, such as
CAT-box (involved in meristem expression), TC-rich repeats (stress- and defense-responsive
cis-regulatory elements), MBS1 (regulates flavonoid biosynthesis gene expression), and
LTR (low-temperature responsive), were observed in the promoter region of OsHDZIP
genes. These clustering cis-regulatory elements in the promoter region of OsHDZIP genes
imply their role in regulating gene expression during different growth stages and under
environmental stimuli; the same results were reported in [8].

3.8. Gene Structure, and Motif Patterns of OsHDZIP Genes

We identified the exons–introns distribution using the CDS and genomic sequence
of OsHDZIP genes. The OsHDZIP family genes contain multiple exons and have varied
intron lengths (Figure 7). Among these, the OsHDZIP subfamily IV and subgroup III were
observed with the highest number of intron and exon distribution in which all members
(i.e., OsHDZIP9, OsHDZIP13, OsHDZIP37, and OsHDZIP40) had 20 exons and 17 introns;
followed by subfamily IV in which the OsHDZIP3 and OsHDZIP17 had 13 exons and
10 introns; OsHDZIP16, OsHDZIP20, OsHDZIP32, and OsHDZIP39 had 11 exons and
8 introns in total. However, OsHDZIP2 had 10 exons and 9 introns, and with OsHDZIP24,
10 exons and 7 introns were observed. Furthermore, the third-highest number of exons and
introns was recorded in subfamily II, in which the OsHDZIP1, OsHDZIP15, OsHDZIP25,
OsHDZIP27, and OsHDZIP30 had six exons and three introns, followed by OsHDZIP34 and
OsHDZIP38 with five exons and two introns; meanwhile, OsHDZIP18, OsHDZIP19, and
OsHDZIP30 had four exons and two introns; OsHDZIP21 had three exons and two introns;
only OsHDZIP4 had the least number with two exons and a single intron. Additionally,
the OsHDZIP subfamily I was counted as having the least number of introns and exons
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distributed in which OsHDZIP11, OsHDZIP25, OsHDZIP26, OsHDZIP28, OsHDZIP29, and
OsHDZIP31 accounted for five exons and two introns; followed by OsHDZIP6, OsHDZIP10,
OsHDZIP14, OsHDZIP33, OsHDZIP35, and OsHDZIP36 with four exons and a single intron;
a single gene OsHDZIP8 was observed with six exons and three introns.
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Figure 7. Schematic representation of the HDZIP gene structures in Oryza sativa.

A total of 40 conserved motifs were discovered using the MEME online server (Ver-
sion 5.4.1) (accessed on 10 April 2022) [44], and they were found to be appropriate for
explaining the HDZIPs gene’s structure (Figure 8). Among the 40 OsHDZIP genes, the
OsHDZIP7, OsHDZIP8, OsHDZIP9, OsHDZIP16, OsHDZIP17, OsHDZIP22, OsHDZIP23,
and OsHDZIP32 were counted as having the highest number with 10 motifs; followed
by OsHDZIP2 with 8 motifs and OsHDZIP3 with 7 motifs. Furthermore, OsHDZIP9,
OsHDZIP13, OsHDZIP24, OsHDZIP34, OsHDZIP37, and OsHDZIP40 had five motifs.
However, the OsHDZIP1, OsHDZIP4, OsHDZIP5, OsHDZIP12, OsHDZIP15, OsHDZIP18,
OsHDZIP19, OsHDZIP21, OsHDZIP27, OsHDZIP30, and OsHDZIP38 in addition to all
subfamily I members (i.e., OsHDZIP6, OsHDZIP8, OsHDZIP10, OsHDZIP11, OsHDZIP14,
OsHDZIP25, OsHDZIP26, OsHDZIP28, OsHDZIP29, OsHDZIP31, OsHDZIP33, OsHDZIP35,
and OsHDZIP36) counted has having three motifs in total.
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3.9. Microarray Expression Analysis of OsHDZIP Genes in Rice Tissues in Developmental Stages
under Abiotic/Biotic Stresses and Hormonal Applications
3.9.1. Microarray Expression Analysis of HDZIP Genes in Developmental Stages

We examined the different developmental stages and tissue-specific expressions to
study the biological roles of OsHDZIP genes in plant growth and development based on a
set of microarray data obtained from the RiceXPro expression database (version 3.0) (ac-
cessed on 13 April 2022) [45]. The microarray expression data analysis of the rice OsHDZIP
genes family is presented as a heatmap, with blue to red colors reflecting the expression
pattern. In twelve tissues (i.e., leaf blade, leaf sheath, roots, stem, inflorescences, anther,
pistil, lama, plea, ovary, embryo, and endosperm), the OsHDZIP gene family members
showed moderate to high expressions, respectively (Figure 9). Among the twelve tissues,
OsHDZIP27 showed dominant expression in leaf blade, leaf sheath, and roots, followed
by OsHDZIP18, which showed high transcription in roots. Furthermore, OsHDZIP1, Os-
HDZIP3, OsHDZIP5, OsHDZIP13, OsHDZIP33, OsHDZIP34, OsHDZIP35, OsHDZIP39,
and OsHDZIP40 showed moderate expression in leaf blade, root, inflorescences, and en-
dosperms. All developmental stages were observed with no or extremely low transcripts,
particularly in embryos and endosperm. On the contrary, the leaf blade, root, inflores-
cence, and anther had high transcription levels. Additionally, the developmental stages,
including pistil, lama, and plea, revealed the response of many OsHDZIP gene expres-
sions. This expression analysis revealed the essential role of the OsHDZIP gene family in
developmental stages.
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after 5 DAP, pre-emergence inflorescence (Pro-EI), and post-emergence inflorescence (Post-EI) in vari-
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3.9.2. Expression Analysis of OsHDZIP Genes under Salinity

Salinity is an important stress that hinders plant growth and yield. The injurious
effects of salinity can be noted over the whole plant. To obtain insightful knowledge re-
garding HDZIP genes’ responsiveness to high salinity, the transcriptomic expression data
were obtained from the publicly available in the NCBI (GSE102152) (accessed on 17 April
2022) [46]. In the heatmap, the dark orange color on the scale bar represents high expression,
whereas the light orange color is moderate, and the blue color genes have no expressions
(Figure 10A). Among 40 OsHDZIP genes, the dominant transcription was rescored under
SWR-NaCl of OsHDZIP7, OsHDZIP10, OsHDZIP16, OsHDZIP18, OsHDZIP19, OsHDZIP20,
OsHDZIP22, OsHDZIP27, OsHDZIP30, OsHDZIP32, OsHDZIP36 OsHDZIP37, OsHDZIP38,
and OsHDZIP40. In addition, OsHDZIP1, OsHDZIP3, OsHDZIP11, OsHDZIP12, Os-
HDZIP24, OsHDZIP28, OsHDZIP31, OsHDZIP35, and OsHDZIP39 were found to have
moderate expression, and the rest of the genes did not show a response. Meanwhile, under
SWR-CK, various OsHDZIP genes (i.e., OsHDZIP2, OsHDZIP6, OsHDZIP8, OsHDZIP13,
OsHDZIP14, OsHDZIP15, OsHDZIP21, OsHDZIP23, OsHDZIP25, OsHDZIP33, and Os-
HDZIP34) had high expression and moderate expression (i.e., OsHDZIP1, OsHDZIP3, Os-
HDZIP4, OsHDZIP8, OsHDZIP9, OsHDZIP11, OsHDZIP29, OsHDZIP31, and OsHDZIP35)
in comparison to CK. This expression analysis suggests that OsHDZIP genes play a crucial
role in the rice plant’s defense against high salinity.
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Figure 10. Heatmaps under salinity and biotic stresses: Heatmap (A) represents OsHDZIP genes’
expression under CK, SWR_CK, and SWR_NaCl; Heatmap (B) represents OsHDZIP gene expressions
in shoot tissues under BPH, SSB, and SSB_BPH; Heatmap (C) represents the response of Cnaphalocrocis
medinalis to stress at different time points in Oryza sativa. The log2 transformation method normalized
and converted the RPKM values displayed.

3.9.3. Expression Analysis of OsHDZIP Genes under BPH, SSB, and SSB_BPH

The transcriptomic expression data were obtained from the NCBI (GSE167872) (ac-
cessed on 11 May 2022) [47]. The analysis provided insightful predictions of OsHDZIP
genes involved in rice plant defense against brown planthopper (BPH), rice striped stem
borer (SSB), Chilo suppressalis, and combined SSB_BPH stresses (Figure 10B). However, in
response to BPH, SSB, and the combined stress of SSB_BPH, only two genes, OsHDZIP4
and OsHDZIP10, had dominant expressions. The expression analysis revealed the role of
the OsHDZIP gene family in plants’ defense against pest infestations.

3.9.4. Expression Analysis of OsHDZIP Genes under Cnaphalocrocis medinalis

The transcriptomic expression data were taken from the NCBI (GSE159259) (accessed
on 15 May 2022) [48]. The analysis provided insightful predictions of the OsHDZIP gene’s
role in rice plant defense against rice leaf folder (RLF) Cnaphalocrocis medinalis Guenée
(Lepidoptera: Crambidae) (Figure 10C). Further, the response of the HDZIP gene family
was moderate; among the 40 OsHDZIP genes, only OsHDZIP4 and OsHDZIP10 were highly
expressed at all time points (i.e., 0, 6, 12, and 24 h), and the rest of the genes did not show
transcription. This expression analysis suggests that the HDZIP gene family plays a role in
the rice defense system against biotic stress.

3.9.5. Expression Analysis of OsHDZIP Genes under Brassinosteroids and Jasmonic Acid

The expression data of the OsHDZIP genes family under Jasmonic acid (JA) and
brassinosteroids (BRs) were obtained from the RiceXPro expression database (version 3.0)
(accessed on 25 May 2022) [45]. The microarray expression data analysis of the rice HDZIP
genes family is presented as a heatmap, with blue to red colors reflecting the expression
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percentage. Under JA, the expression analysis of OsHDZIP genes at the 12 h timepoint,
OsHDZIP3, OsHDZIP10 and OsHDZIP28 and OsHDZIP11, OsHDZIP24, OsHDZIP25, Os-
HDZIP26, and OsHDZIP37 were found with high and moderate transcription, respectively
(Figure 11). Followed by the 6 h timepoint in which only OsHDZIP5 had high and Os-
HDZIP7, OsHDZIP9, OsHDZIP16, OsHDZIP19, OsHDZIP33, OsHDZIP37, and OsHDZIP40
had moderate mRNA levels. However, in the 3, 1, and 0 h, OsHDZIP2 had high, and
OsHDZIP10 and OsHDZIP11 were observed to have moderate expressions.
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Figure 11. Heatmap of OsHDZIP genes’ representation under jasmonic acid; the log2 transformation
method normalized and converted the RPKM values displayed.

Under BRs, the OsHDZIP genes showed moderate expressions at almost all time points,
except OsHDZIP15 and OsHDZIP20, which had high dominant expressions (Figure 12).
Further, OsHDZIP1, OsHDZIP2, OsHDZIP15, and OsHDZIP32 (0 h); OsHDZIP7 (1 h);
OsHDZIP7, OsHDZIP10, OsHDZIP21, OsHDZIP27, OsHDZIP30, OsHDZIP32, and Os-
HDZIP36 (3 h); OsHDZIP7, OsHDZIP12, OsHDZIP22, OsHDZIP23, and OsHDZIP39
(12 h); OsHDZIP12, OsHDZIP18, OsHDZIP26, OsHDZIP36, and OsHDZIP39 (24 h) were
found with moderate expressions. However, these findings suggest that OsHDZIP14 and
OsHDZIP15 showed no response at all given time points. In addition, various genes,
such as OsHDZIP1, OsHDZIP2, OsHDZIP3, OsHDZIP25, OsHDZIP30, OsHDZIP35, and
OsHDZIP32, were found with the least transcriptions, and the remaining genes were
not expressed.
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3.10. Differential Expression of OsHDZIP Genes in Response to Nilaparvata lugens, Laodelphax
striatellus Infestations, and JGM Spraying

To further investigate the response of OsHDZIP genes under BPH and SBPH infesta-
tions and botanical fungicide JGM applications, herein, we performed quantitative real-time
polymerase chain reaction (qRT-PCR) to analyze the expression patterns at three-time points
over 2 days (2D), 4D, and 8D long treatments during BPH and SBPH infestations and JGM
spraying (Figures 13–15). The results revealed that the response of ten candidate genes
were expressed under all stress conditions.

The BPH is a severe rice pest and causes a huge loss in annual rice production. The
expression analysis revealed the important aspect of the O. sativa HDZIP transcription factor
through moderate and high expressions. Among the eight candidate genes (two genes
from each subfamily) at three different time points (Figure 13), moderate to high expression
patterns were found, particularly for OsHDZIP20, which had the highest expression of
six-fold over 2 days of infestation, followed by 4 days with four-fold expression and two-
fold after 8 days of BPH infestation. However, OsHDZIP03, OsHDZIP28, and OsHDZIP40
were found with low transcription; in addition, OsHDZIP04, OsHDZIP10, OsHDZIP15, and
OsHDZIP37 were found with moderate expressions.

The SBPH is the second most important pest of rice after BPH, which causes a drastic
loss to rice plants and their production. To validate the OsHDZIP transcription factor
response through qRT-PCR under SBPH infestation, we used eight candidate genes at three
time points (Figure 14). Among them, OsHDZIP03 displayed moderate expressions at 2 and
4 days of treatment and had the highest expression at 8 days of infestation up to 10-fold.
This was followed by OsHDZIP40, with a six-fold expression at eight days. Furthermore,
OsHDZIP04, OsHDZIP10, OsHDZIP15, OsHDZIP28, and OsHDZIP37 were found to have
moderate expressions; however, OsHDZIP20 was found to have the lowest expression pattern.
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JGM is a synthetic antibiotic applied to treat rice sheath blight disease, and it is also
reported to enhance BPH fecundity; herein, we performed qRT-PCR analysis to validate
the OsHDZIP gene family’s response under JGM treatment (Figure 15). The obtained
results revealed that OsHDZIP genes, such as OsHDZIP10, OsHDZIP20, and OsHDZIP40,
present upregulated expressions, whereas OsHDZIP04, OsHDZIP15, and OsHDZIP37 had
moderate expressions and a single gene, and OsHDZIP03, OsHDZIP04, and OsHDZIP10
had negligible expression patterns. These results suggest that the OsHDZIP participated in
rice immunity regulations against JGM spraying applications.
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Figure 13. Represents the differential expression analysis of OsHDZIP genes (i.e., OsHDZIP3, Os-
HDZIP4, OsHDZIP10, OsHDZIP15, OsHDZIP20, OsHDZIP28, OsHDZIP37, and OsHDZIP40) under
Nilaparvata lugens infestations in Oryza sativa.
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Figure 14. Represents the differential expression analysis of OsHDZIP genes (i.e., OsHDZIP3, Os-
HDZIP4, OsHDZIP10, OsHDZIP15, OsHDZIP20, OsHDZIP28, OsHDZIP37, and OsHDZIP40) under
Laodelphax striatellus infestation in Oryza sativa.
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Figure 15. Represents the differential expression analysis of OsHDZIP genes (i.e., OsHDZIP3, Os-
HDZIP4, OsHDZIP10, OsHDZIP15, OsHDZIP20, OsHDZIP28, OsHDZIP37, and OsHDZIP40) under
JGM spraying treatment in Oryza sativa.

4. Discussion

Plants counter various biotic and abiotic stresses during their life cycle, impairing
their biochemical and physiological processes. The plant develops its mechanism to tackle
these adverse conditions, such as activation of stress-related TFs and intensified metabolic
activities. HDZIP TFs are distributed widely across the plant kingdom and have been
recognized for their role in the growth and developmental activities and response to
environmental stimuli [7,8,49].

4.1. OsHDZIP Genes Are Widely Distributed in the Rice Genome

Phylogenetic trees represent an established method for determining evolutionary
changes and functional relationships [50]. The HDZIP protein family has been identi-
fied in many species, from mosses to higher plants, such as Ceratopteris richardii [51] and
Physcomitrella patens [52], angiosperms, and gymnosperms [53]. In our study, we con-
ducted a genome-wide survey to determine the phylogenetic relationships and investigate
their potential role via qRT-PCR expression analysis; there was a total of 127 HDZIP pro-
teins from rice (40 OsHDZIPs), Cucumis sativus (40 CsHZIPs) [8], and Arabidopsis thaliana
(47 AtHDZIPs) [40]. These proteins were further divided into four subfamilies (Figure 2).
The obtained results aligned with previously reported studies on Arabidopsis thaliana and
Cucumis sativus [8,40]. The HDZIP III subfamily was more highly conserved than the
other subfamilies. On the other hand, HDZIP I, HDZIP II, and HDZIP IV varied in the
numbers of different species [54–56]. The conserved number of motifs in OsHDZIP genes
was analyzed, and the results stated that the HDZIP III and HDZIP IV subfamilies exhibited
the highest number of motifs of the other two subfamilies (Figure 8). A motif’s position
in each subfamily was highly conserved, supporting their evolutionary classification into
different subfamilies [40,55,57].

4.2. OsHDZIP Genes Have Tissue Specificity and Play an Integral Role in the Development of
Oryza sativa

The HDZIP I TFs were documented for their involvement in plant developmental
processes such as root growth and stem elongation, leaf morphology, flowering induction,
and pollen hydration [8]. The OsHDZIP gene family members, including OsHDZIP18
and OsHDZIP27, displayed dominant expression in all tested organs of O. sativa in the
developmental stages. Similar results were reported for the OsHDZIP18, OsHDZIP27
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homologs CsHDZ02, and CsHDZ33, respectively. These results indicate the potential
importance of OsHDZIP18, OsHDZIP27, and other subfamily members in regulating the
growth and developmental activities of O. sativa [8].

Furthermore, the subfamily HDZIP II controls hypocotyl elongation, regulates the
development of cotyledon and leaves, and involves flower induction [5,8,58]. Here, the
OsHDZIP17 and OsHDZIP28 were expressed in all six tissues (i.e., root, stem, leaf, panicle,
pistil, and embryo) (Figure 9).

Members of the HDZIP III subfamily were shown to be important for appropriate
morphogenesis, embryo development, giving support during the commencement of lateral
organ development, control of the shoot apical meristem, and water and nutrient transport
throughout the plant’s overall body [6,8,59,60]. Similarly, all of the genes in the HDZIP
III subfamily showed transcription in practically all of the investigated tissues (Figure 9),
suggesting that they may be important in sustaining rice’s normal growth activities.

Members of the HDZIP IV subfamily have been implicated in developing root hairs,
trichome production, anthocyanin biosynthesis, and flowering regulation in plants. [49,61].
OsHDZIP11 and OsHDZIP37 were expressed in all the tissues (Figure 9), suggesting that
subfamily HDZIP IV plays a potential role in the developmental activity regulations of
O. sativa.

4.3. OsHDZIP Genes Regulate Plant Response to Chewing Insects and other Abiotic Stresses

The homeodomain-leucine zipper transcription factors play a potential role in a plant’s
growth and development and are highly responsive to the pronounced effects of stresses
including drought [62], cold [63], salinity [64], heat stress [65], heavy metal [66], flooding
stress [67], and nutrient stress (iron deficiency) [68].

The BPH and SBPH are serious rice pests inflicting damage on a massive scale across
Asia [19,21]. Their nymphs and adults cause direct damage by feeding on phloem sap from
the tillering to the milking stages of rice and, in the process, transmitting viral pathogens,
such as rice ragged stunt virus (RRSV) and rice grassy stunt virus (RGSV) [69,70]. Sev-
eral studies have identified the potential role of the HDZIP gene family. Until now, no
comprehensive study has been conducted to unfold the response of OsHDZIP genes to
BPH and SBPH infestations. Herein, we performed qRT-PCR on eight candidate genes
(two from each subfamily) to validate their expressions. The results revealed the potential
role of OsHDZIP genes. Furthermore, among these eight candidate genes, OsHDZIP20
was observed with dominant expressions, and the rest of the genes (i.e., OsHDZIP04, Os-
HDZIP10, OsHDZIP15, and OsHDZIP37) had moderate expressions, whereas OsHDZIP03,
OsHDZIP28, and OsHDZIP40 had low transcription (Figures 13 and 14). Collectively, the
response of these genes uncovered the crucial role of OsHDZIPs in rice plant immunity in
response to insect pest infestations. However, a functional study is required to investigate
the underlying mechanisms inducing the HDZIP gene family response against insect pests.

Numerous studies highlighted the involvement of HDZIP I and HDZIP II in regu-
lating plant response to abiotic stresses, in particular salinity stress [68]. In our study,
OsHDZIP40, OsHDZIP16, OsHDZIP22, OsHDZIP1, OsHDZIP3, OsHDZIP31, OsHDZIP19,
OsHDZIP10, OsHDZIP36, OsHDZIP32, OsHDZIP27, OsHDZIP18, OsHDZIP38, OsHDZIP30,
and OsHDZIP20 possessed the dominant expression under combined SWR-NaCl (Fig-
ure 10A). Similar expression patterns were observed under SWR-Ck for the OsHDZIP34,
OsHDZIP15, OsHDZIP6, OsHDZIP13, OsHDZIP2, OsHDZIP23, OsHDZIP25, OsHDZIP8,
and OsHDZIP33 genes in contrast with CK. Collectively, these analyses suggest the respon-
sive role of the HDZIP gene family; further study is required to investigate the role of the
HDZIP gene under salinity and chewing and sucking insect combined stress.

The antibiotic JGM was developed in recent decades in China, and it is usually applied
two to three times in rice fields to treat rice sheath blight disease (Rhizoctonia solani) and
fungal infections [25]. Moreover, JGM is reported to be an enhanced controlling agent of the
sheath blight disease; however, JGM also has consequences because of its potential role in
inducing BPH fecundity [25]. For instance, JGM was applied to the rice plants at the rate of
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200 parts per million (ppm), and the results revealed that JGM increased the rice’s resistance
to rice sheath blight disease by disrupting the fungal cell wall and reduced sporulation [25].
In addition, JGM was also reported to enhance BPH fecundity [25]. In the current study,
the OsHDZIP gene showed a differential expression pattern where the candidate genes
from each subfamily, including OsHDZIP40, OsHDZIP28, and OsHDZIP10, were domi-
nantly expressed, whereas the OsHDZIP3, OsHDZIP4, OsHDZIP15, and OsHDZIP37 were
moderately expressed (Figure 15). We speculate that these OsHDZIP genes are essential for
inducing plant immunity to fungal pathogens in rice plants. Further studies are required to
elucidate the underlying mechanisms of OsHDZIP genes boosting rice immune responses
under various insect pest infestations.

4.4. MicroRNAs in Plant–Insect Interaction and Insect Pest Control

Recently, different miRNAs have been identified in numerous species, including
Brassica napus [71], maize (Zea mays) [72], cowpea (Vigna unguiculata) [73], soybean (Glycine
max) [74], pathogen infection in Arachis hypogaea [75], and rice [76], and are involved in
different metabolism, development, and environmental stresses. In the present study,
fifty-six miRNAs belonging to twenty-eight different families were identified and targeted
four OsHDZIP genes (Table S1).

The osa-miR166 family targeted four OsHDZIP genes, and miR166 has been reported
to be involved in drought stress in maize [72], cowpea [73], soybean (Glycine max) seed
development [74], peanut disease-resistance [75], and plant growth, development, and
stress response in apple [77]. miR444 has been reported to be involved in the cadmium
stress regulation of rice [78]. Previously, Anca et al. (2012) reported that the expression
profiles of three miRNAs (i.e., osa-miR414, osa-miR408, and osa-miR164) targeting the
OsABP, OsDBH and OsDSHCT genes in rice enhanced the miRNAs response against salinity
stress [79]. Our results found that four OsHDZIP genes (i.e., OsHDZIP9, OsHDZIP13,
OsHDZIP37, and OsHDZIP40) were targeted by these miRNAs providing another aspect
of these miRNAs’ potential role in regulating rice response under salinity (Figure 4) and
their target sites (Figure 5). Collectively, these findings suggest that miRNAs may play vital
roles in numerous growth and developmental processes and stress regulation processes
by altering the transcriptional level of HDZIP genes in O. sativa. Among these 28 miRNAs
families targeting the HDZIP gene family, several miRNAs predicted expression levels and
functions have been identified, whereas various miRNAs targeting OsHDZIP genes that
regulate biotic/abiotic stress responses and other important agronomic traits remain to
be clarified.

4.5. Expression Analysis of HDZIP Gene Family under Hormonal Applications

JA is synthesized from linolenic acid through the action of several enzymes in plant
chloroplast membranes, and the current evidence indicates that it induces resistance against
necrotrophic pathogens and chewing herbivores [80,81]. In comparison, the microarray data
showed that the expression of OsHDZP3, OsHDZP9, and OsHDZP28 was enhanced, sug-
gesting their possible involvement in JA-mediated rice resistance against BPH (Figure 11).

BRs are a group of polyhydroxylated steroidal phytohormones that are mandatory
for plant development, growth, and productivity [82]. In addition to their significant
involvement in growth-related activities, BRs are a key stress hormone [27]. Herein, the
upregulated expressions of OsHDZIP15 and OsHDZIP20 suggest the essential role of
these genes and their possible participation in the immunity regulation of the rice plant;
however, functional studies are required to unfold the underlying mechanism of these
crucial hormones (Figure 12).

5. Conclusions

Forty OsHDZIP family TFs were identified in the rice genome database and classified
into four subfamilies based on their domain and structural properties. Furthermore,
heatmap analysis revealed the expression of OsHDZIP TFs in distinct O. sativa tissues.
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The expression of OsHDZIP genes under salinity and hormone stress indicated that they
might play a role in modulating O. sativa resistance. Furthermore, differential expression
patterns were found under JA and BR treatments, indicating that OsHDZIP genes may
be critical in hormonal-mediated rice immunity against BPH and SBPH. On the other
hand, stress control is a complicated system, and our results suggested the potential
application of HDZIP biomarkers in developing stress-resilient rice lines. These results
provide the missing role of HDZIP genes in regulating rice immunity against SBPH and
particularly BPH.
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