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with genetic selection for high- and low-
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Abstract

Background: Fish gut microbial assemblages play a crucial role in the growth rate, metabolism, and immunity of
the host. We hypothesized that the gut microbiota of rainbow trout was correlated with breeding program based
genetic selection for muscle yield. To test this hypothesis, fecal samples from 19 fish representing an F2 high-
muscle genetic line (ARS-FY-H) and 20 fish representing an F1 low-muscle yield genetic line (ARS-FY-L) were chosen
for microbiota profiling using the 16S rRNA gene. Significant differences in microbial assemblages between these
two genetic lines might represent the effect of host genetic selection in structuring the gut microbiota of the host.

Results: Tukey’s transformed inverse Simpson indices indicated that high muscle yield genetic line (ARS-FY-H)
samples have higher microbial diversity compared to those of the low muscle yield genetic line (ARS-FY-L) (LMM,
χ2(1) =14.11, p < 0.05). The fecal samples showed statistically distinct structure in microbial assemblages between
the genetic lines (F1,36 = 4.7, p < 0.05, R2 = 11.9%). Functional profiling of bacterial operational taxonomic units
predicted characteristic functional capabilities of the microbial communities in the high (ARS-FY-H) and low (ARS-
FY-L) muscle yield genetic line samples.

Conclusion: The significant differences of the microbial assemblages between high (ARS-FY-H) and low (ARS-FY-L)
muscle yield genetic lines indicate a possible effect of genetic selection on the microbial diversity of the host. The
functional composition of taxa demonstrates a correlation between bacteria and improving the muscle accretion in
the host, probably, by producing various metabolites and enzymes that might aid in digestion. Further research is
required to elucidate the mechanisms involved in shaping the microbial community through host genetic
selection.
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Background
Aquaculture is one of the fastest-growing industries and
plays a vital role in fulfilling the global requirements for
human protein consumption [1]. Growth rate and
muscle yield are key traits affecting the profitability of
aquaculture. Understanding the mechanisms for fast and
efficient muscle growth is beneficial for developing strat-
egies that improve these characteristics. Muscle growth
in farmed fish is influenced by host genetics and factors
such as nutrition and environmental condition [2]. Trad-
itional phenotype-based genetic selection is used to im-
prove fish production traits. However, it is not possible
to apply this muscle-yield selection strategy on potential
breeding candidates since measuring this trait requires
sacrificing the fish prior to sexual maturation [3].
Family-based selection procedures have been undertaken
by the United States Department of Agriculture at the
National Center for Cool and Cold Water Aquaculture
(NCCCWA) to improve growth rate and muscle yield in
rainbow trout. The 5th-generation fast-growth line fam-
ilies were the base population for the fillet yield selection
lines [4]. A family-based selection for muscle yield in a
closed, pedigreed population was used to develop high-
muscle yield (ARS-FY-H), randomly mated control
(ARS-FY-C), and low- muscle yield (ARS-FY-L) genetic
lines.
The gastrointestinal compartments of fish contain

large microbial communities that play an essential role
in homeostasis, physiology, and gut development [5–7].
Microbiota residing in the host gut act as a barrier for
the colonization of pathogenic bacteria [8]. These bac-
teria can produce vitamins B and K, short-chain fatty
acid, butyric acid, and different antimicrobial metabo-
lites, which may improve the host growth rate and
muscle percentage [9]. Host genetics also play a crucial
role in shaping the gut microbiome [10]. In addition to
host genotype, diet alteration (plant- and animal-based
meal) can change the population of the host microbiota
as fish subsequently obtain their microbiota from the
first-feed they eat [11, 12]. In humans, previous studies
showed an influence of gut microbiota on muscle fitness
and degradation [13, 14]. Symbiotic microbial communi-
ties residing in humans supply short-chain fatty acids
(SCFAs) to the skeletal muscle resulting in improved
muscle percentage and fitness, whereas, dysbiosis (imbal-
ance in microbiota) results in muscle degradation due to
increased intestinal permeability and liberation of endo-
toxin into circulation [14–16]. Muscle constitutes about
50–60% of the fish body weight [17] and plays a signifi-
cant role in the regulation of nutrient metabolism,
growth, and inflammation in humans and fish [18–20].
Similarly, Lahiri et al. reported a correlation between the
gut microbiota and the skeletal muscle mass in mice.
Mice lacking gut microbiota showed muscle atrophy,

decreased expression of insulin-like growth factor 1, and
reduced transcription of genes associated with skeletal
muscle growth and mitochondrial function [21], suggest-
ing a potential role of the gut microbiota in improving
muscle yield and reducing muscle atrophy.
Microbiota transmit nutrient signals to their hosts,

which might shape the gut microbiome in every stage of
life based on diet intake, behavioral change, and environ-
mental influence [22]. Research had shown that trans-
plantation of gut microbes in an animal may improve
the muscle mass percentage, function, and reduction in
muscle atrophy markers [21]. Few studies have investi-
gated the correlation of gut microbial composition in
muscle development and metabolic profile in fish.
Therefore, the overall objective of our research was to
study the gut microbiota in two genetic lines of rainbow
trout selected for high- and low-muscle yield. We postu-
lated that microbial diversity is associated with genetic
selection for improved muscle yield.

Results and discussion
Divergent selection was practiced for fillet yield to de-
velop high (ARS-FY-H) and low (ARS-FY-L) yield gen-
etic lines of rainbow trout. The two fish groups used in
this study were collected after two generations of selec-
tion and were statistically different in their average
muscle yield as indicated by a one-way Mann-Whitney
U test (p < 0.05; Fig. 1). The mean muscle yield of the
high (ARS-FY-H) genetic was 0.53 ± 0.01%, and that of
the low (ARS-FY-L) genetic line was 0.51 ± 0.02%.

Comparison of gut assemblages in high-(ARS-FY-H) and
low-(ARS-FY-L) muscle yield genetic lines
Fish were reared and harvested under identical condi-
tions, however, there was a significant difference in gut
microbes between the two harvest days in the high-
(ARS-FY-H; F1,15 = 8.24, p < 0.05, R2 = 37.06%) but not
low-muscle yield genetic lines (ARS-FY-L; F1,17 = 0.85,
p > 0.05). Therefore, harvest day was treated as a random
effect in all models to test for the main effect of genetic
line. Using a linear mixed model, we tested for differ-
ences in gut alpha diversity between fish genetic lines
and found that diversity was greater in high (ARS-FY-H)
genetic line (LMM, χ2(1) = 14.11, p < 0.05, Fig. 2) when
controlling for the harvest day effect. Both nMDS ordin-
ation and PERMANOVA results (F1,36 = 4.7, p < 0.05,
R2 = 11.9%) indicated that the muscle-yield genetic line
was predictive of gut microbial assemblages in rainbow
trout (Fig. 3a). There were no significant differences in
multivariate dispersion between gut assemblages of low
(ARS-FY-L) and high (ARS-FY-H) genetic line samples.
A total of 468 OTUs were shared between the two gen-
etic lines (Fig. 3b). The high (ARS-FY-H) muscle-yield
genetic line samples had almost double the number of
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unique OTUs compared to the low (ARS-FY-L) muscle-
yield genetic line.
Together, these results indicate that the muscle-yield

genetic lines are predictive of gut microbial assemblages
and suggest that host genetic selective breeding might
help curate a particular gut microbial assemblage. This
notion is supported by recent studies in tilapia, showing
host genetic selection for cold thermal tolerance has an
effect on the microbiome [23]. Similarly, studies in

stickleback fish identified an association between gut mi-
crobial differences and host genetic divergence [24]. Pre-
vious work from our lab group revealed significant
variation in beta diversity of the bacterial communities
of rainbow trout families showing variation in growth
rate [25]. Together, these studies indicate a substantial
impact of host selection or genetics in predicting host-
associated microbial assemblages.

Taxonomy and functional diversity correlate with
selection for fish muscle yield
A total of eight phyla, 12 classes, 36 families, and 64
genera had significant differences in abundance between
the two genetic lines (Kruskal-Wallis test; p < 0.05, Add-
itional file 1). Phyla Bacteroidetes, Fusobacteria, Denio-
coccus, Acidobacteria, Patescibacteria, and Nitrospora
had higher abundance in the high (ARS-FY-H) muscle
yield genetic line, whereas, the phylum Tenericutes had
higher relative abundance in the low (ARS-FY-L) muscle
yield genetic line (Fig. 4). Using a genus-level compari-
son, some unclassified genera belonging to family Bur-
kholderiaceae and Gammaproteobacteria had higher
abundance in high (ARS-FY-H) muscle yield genetic
line. The genera Bacteroides, Deniococcus, Lutelibacter,
Nitrosomonas, Pasteurella, and Negativibacillus were
present only in the high (ARS-FY-H) muscle yield gen-
etic line.
Higher abundances of the phyla Bacteroidetes, Fuso-

bacteria, Deniococcus might be associated with higher
muscle percentage, as these taxa are known symbionts
and produce metabolites such as SCFAs that are benefi-
cial to the host [26–29]. For example, genera in the
phylum Bacteroidetes are associated with degradation of
complex protein polymers and these are responsible for
the formation of SCFAs like succinic acid, propionic
acid, and acetic acid as the end products [28]. Similarly,
genera in the phylum Fusobacteria, a phylum reported
to be abundant in freshwater fish guts [30, 31], may pro-
duce butyrate, which supplies energy to gastrointestinal
cells and inhibits pathogens in freshwater fish [32]. Fuso-
bacteria are known to colonize the gut of zebrafish,
synthesize vitamins, excrete butyrate, and metabolites
associated with improving fish health [33]. Similarly,
bacteria in the phylum Deinococcus can metabolize glu-
cose [34]. Conversely, phylum Tenericutes had higher
abundance in the low (ARS-FY-L) muscle yield genetic
line samples. This phylum is found in the gut of Fathead
minnows [35], however, the functional role of this
phylum is not well studied in fish. A study on crabs
showed that the Tenericutes phylum is correlated with
Hepatopancreatic necrosis disease [36].
There are 64 taxonomic groups with significant differ-

ential abundances between the two muscle yield lines.
Among them, 21 groups have > 10% and 4 had > 15%

Fig. 2 Alpha diversity of ARS-FY-H (high) and ARS-FY-L (low) genetic
lines. The box plots indicate higher microbial diversity in the ARS-FY-
H samples (p < 0.05). Boxplots show the median value as a bold
black bar, the upper and lower limits of the box being the third and
first quartile of the data, the whiskers extend up to 1.5 times the
interquartile range, and open circles are outlier points

Fig. 1 Significant differences in the muscle yield among samples
collected from the ARS-FY-H (high yield) and ARS-FY-L (low yield)
rainbow trout genetic lines. The statistical significance of the
differences in muscle yield between the two groups was tested by a
one-way Mann-Whitney U test (p = 0.0029)
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differential abundances. These 21 taxonomic groups in-
clude Arcicella, unclassified Clostridiaceae, unclassified
Burkholderiaceae, Pedobacter, Absconditabacteriales,
Arsenicibacter, Chiinophagaceae, Cloacibacterium, Hydro-
genophaga, Rhizorhapis, Rhodoferax, unclassified Sphingo-
monadaceae, Sphingorhabdus, unclassified Spirosomaceae,
Thermomonas, Thiothrix, Undibacterium, unclassified Veil-
lonellaceae, Chryseobacterium. All of these taxonomic
groups have greater abundance in the high (ARS-FY-H)
muscle yield genetic line, whereas, the genus Mycoplasma
(with differential abundance 16.8%), and

unclassified Firmicutes (with differential abundance 7.9%)
have higher abundance in the low (ARS-FY-L) muscle yield
genetic line (Additional file 1).
A study in rainbow trout showed that the genus Clos-

tridium butyricum in the family Clostridiaceae, enhances
the disease resistance in the host against the pathogen
Vibrio by increasing the phagocytic activity of leucocytes
[37]. Inhibiting pathogenic bacteria from colonizing
the host might help to improve host health, including
growth rate and metabolism. In addition, these genera
have been used as a probiotic to improve immune

Fig. 3 A. nMDS ordination of microbial assemblage structure in the ARS-FY-H (high) and ARS-FY-L (low) genetic lines. B. Venn-diagram showing
numbers of shared and unique OTUs between the two genetic lines

Fig. 4 Comparison of the bacterial phyla with > 5% abundances between the ARS-FY-H (high) and ARS-FY-L (low) genetic lines. Boxplots show
the median value as a bold black bar, the upper and lower limits of the box being the third and first quartile of the data, the whiskers extend up
to 1.5 times the interquartile range, and the closed colored circles are outlier points
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response and survival in Paralichthys olivaceus fish [38].
Arcicella, belonging to phylum Bacteroidetes has been
identified in freshwater environments, and these bacteria
can ferment carbohydrates [39]. Similarly, bacteria from
the genus Pedobacter is dominant in the gut of healthy
Atlantic Salmon [40].
The genus Bacteroides is an important group of bac-

teria colonizing the intestine of a wide variety of hosts,
including humans [41, 42], mice [43], and tilapia fish
[44]. These bacteria ferment carbohydrates and produce
short-chain fatty acids (SCFAs) like acetate, propionate
and butyrate. These SCFAs are key regulators of skeletal
muscle metabolism and function [45]. A recent study
showed that species of Cloacibacterium isolated from
the Abalone intestine can hydrolyze starch and ferment
sugars like glucose, galactose, fructose, maltose, man-
nose, and produce fatty acids [46]. Both the Bacteroides
and Cloacibacterium have greater abundance in high
(ARS-FY-H) muscle yield genetic lines and are associ-
ated with digestion, fatty acid metabolism, pathogen in-
hibition, which, are linked to host health and digestion.
Family Burkholderiaceae had a higher abundance in high
(ARS-FY-H), and genus Burkholderia belonging to this
family were reported as the most abundant genus in the
fish gut [47]. However, their role in muscle yield and or
host health in fish has not been reported before.
Taxa with significantly higher abundance in the low

(ARS-FY-L) muscle yield genetic line were Mycoplasma
(16.8%) and the unclassified phylum Firmicutes (7.9%).
A previous study showed that the genus Mycoplasma is
the most abundant taxon in adult Atlantic salmon [48].
Bacteria belonging to this genus have also been de-
scribed as pathogenic in gills of the fish Tinca tinca [49].
The lesser abundance of unclassified Firmicutes in
the low (ARS-FY-L) muscle yield genetic line might be
associated with decreased body weight or correlated with
a decrease in muscle percentage in fish. The ratio of Fir-
micutes to Bacteroides has been shown to correlate with
weight gain in humans [50] and this trend could exist in
fish as well. A previous study in our laboratory showed
that body weight of rainbow trout is moderately corre-
lated with muscle yield, regression coefficient (R2) values
of 0.56 [51].
Tax4Fun analyses were used in this study to enumer-

ate differential functional capabilities of microbial com-
munities in high (ARS-FY-H) and low (ARS-FY-L)
genetic lines (Fig. 5). Bacterial functional pathways
related to calcium signaling, pentose and glucuronate
interconversions, synthesis and degradation of ketone
bodies, linoleic acid metabolism, lysine degradation, and
arachidonic acid metabolism were enriched in most of
the high (ARS-FY-H) genetic line samples. Microbial
pathways involved in fatty acid metabolism are known to
supply energy to muscle cells, which is essential for

muscle growth [52], and was more abundant in the high
(ARS-FY-H) genetic line. Genus Bacteroides belonging
to phylum Bacteroidetes showed higher abundance in
the high (ARS-FY-H) genetic line, and is associated with
fatty acid metabolism thus producing SCFAs [53]. A
study in mice revealed that SCFAs produced by mi-
crobes in the gut supported muscle function by prevent-
ing muscle atrophy and boosting muscle strength [21].
Similarly, microbe mediated lysine degradation in-

creased production of SCFAs (butyrate and acetate) in
the human gut [54]. The genus Fusobacterium was more
abundant in the high (ARS-FY-H) muscle yield genetic
line and known to be involved in lysine degradation and
production of SCFAs [55]. Microbial synthesis and deg-
radation of ketone bodies (KB), identified in the ARS-
FY-H samples, were reported as associated with in-
creased muscle mass in humans [56, 57]. Ketone bodies
make an energy substrate that supplies energy to the
brain and muscles, contributing to the maintenance of
energy homeostasis through regulation of lipogenesis
[56]. Arachidonic acid metabolism is essential for the
functions of skeletal muscle and the immune system,
which might be associated with increased muscle mass
and host health [58, 59]. The family Clostridiaceae had
greater abundance in high (ARS-FY-H) muscle yield
genetic line fish and was reported as correlated with
enriched pentose and glucuronate interconversions [60].
Bacteria associated with this pathway are involved in the
breakdown of complex substrates in pig gut micro-
biomes and improved carbon and energy uptake in the
host [60].
Fish with low (ARS-FY-L) muscle yield had unique

functional profiles that differed from high (ARS-FY-H)
muscle yield samples. For example, pyruvate metabo-
lism, amino acid metabolism, folate biosynthesis, glyco-
sphingolipid biosynthesis, glyoxylate and dicarboxylate
metabolism, adipocytokine signaling pathway, and two-
complement system were enriched in most of the low
(ARS-FY-L) genetic line samples (Fig. 5). Glycosphingo-
lipids act as negative regulators of skeletal muscle
differentiation and growth in rats [61–63]. Similarly, bile
secretion is associated with lipid digestive functions [64,
65] and may reduce adiposity in the host, which might
result in lower muscle mass. In spite of the differential
enrichment of pathways between the muscle yield
groups, further investigation should be done to validate
the role of these microbial pathways in the host.

Conclusion
In this study, the gut microbial assemblage (alpha and
beta) diversity correlated with selectively-bred muscle
yield genetic lines. Microbial differences between the two
genetic lines could be observed as a host genetic selection
signature on the gut microbiota. Both differences in
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taxonomic groups of microbes and their functional pre-
dictions correlated with muscle yield. Our results suggest
a role of specific microbial taxa in improving host muscle
growth and metabolism.

Methods
Fish husbandry and harvest
Fish were produced at the NCCCWA as a part of our
ongoing selective breeding program. Briefly, full-sibling
families (ARS-FY-H = 99; ARS-FY-L = 23) were produced
from single-sire × single-dam mating events. Each family
was reared separately from hatch through approximately
30 g (4months post-hatch) when 8 fish per family were
anesthetized (100mg/L tricaine methanesulfonate, M-
222) and uniquely tagged by inserting a passive integrated
transponder (Avid Identification Systems Inc., Norco, CA)
into the peritoneal cavity. After tagging, fish were
comingled and reared in a single, 1800-L tank that also
housed contemporary fish (n = 118) from the ARS-FY-C
line. The tank received identical water from a partial re-
use system and water temperature was maintained at ap-
proximately 13 °C for the entirety of the grow-out period.
Fish were split at random into a total of two 1800-L and
two 3800-L tanks as they grew to maintain biomass
densities below 100 kg/cubic meter. At approximately 13
months of age, fish used in the current study were split
into three replicate 800-L tanks (n = 46 fish per tank). One

week before harvest, the fish were split at random into
four 800-L tanks (34–35 fish per tank) to allow the harvest
of two complete tanks on each of two successive days and
thus minimize netting-associated stress associated with
harvesting of a partial tank. Fish were fed a commercial
diet (Finfish G, 42% protein, 16% fat; Ziegler Bros Inc.,
Gardners, PA) using automatic feeders (Arvotec, Huuto-
koski, Finland) that provided feed at a daily ration that
was considered as slightly below satiation.
At approximately 15 months post-hatch, fish were

euthanized using an overdose of anesthetic (300 mg/L
MS-222) and processed for analysis of the muscle yield
trait. Fish were not fed the day prior to and the day of
harvest. Twenty families were pre-selected from the high
(ARS-FY-H) and low (ARS-FY-L) genetic lines (40 fam-
ilies total within four tanks; n = 1 fish per family) for
fecal collection at harvest; selection was based on diver-
gent mid-parent breeding values and to maximize gen-
etic diversity within each line. Due to a mortality of a
high (ARS-FY-H) genetic line fish, 39 fecal samples were
collected for this study, 19 from the high (ARS-FY-H)
muscle yield genetic line (11 and 8 samples from the
first and second harvest dates, respectively) and 20
representing the low (ARS-FY-L) genetic line (13 and 7
samples from the first and second harvest dates, respect-
ively). Fecal samples were stripped manually into sterile
Eppendorf tubes (Eppendorf, Hauppauge, NY), then

Fig. 5 Heatmap showing metabolic pathways that statistically differed between the ARS-FY-H (high) and ARS-FY-L (low) genetic lines. Samples
and pathways are clustered based on Euclidean distances. The abundance of each pathway was scaled to a range (− 4, 4) with red and blue
colors representing higher and lower pathway abundance, respectively
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stored in a − 80 °C freezer until analysis. Fish were evis-
cerated and the carcasses were placed on ice and held in
a 4 °C refrigerator overnight for analysis of muscle yield
the following day.

DNA extraction, library preparation and sequencing
To extract DNA, fecal samples from 19 high (ARS-FY-
H) and 20 low (ARS-FY-L) genetic line fish were sub-
jected to DNA isolation using a Promega Maxwell DNA
Isolation Kit (Promega Corporation, Madison, WI), as
we previously described [25] with a minor modification
where 20 μL of lysozyme was added in samples to facili-
tate cell wall lysis. Briefly, 200 mg of fecal sample was
added to a microtube containing 160 μL of incubation
buffer, 20 μL proteinase k solution, and 20 μL lysozyme.
The mixture was incubated at 70 °C overnight, and after
incubation, 400 μL of lysis buffer was added to the mix-
ture and the sample was vortexed briefly. The samples
were then subjected to the Maxwell 16 Automated DNA
purification machine and the DNA was collected in a
50-μL elution buffer.
Library preparations and sequencing were done based

on 16S rRNA sequencing strategy using the Illumina
16S Metagenomic Sequencing Library Preparation
Guide. Briefly, 10 μM of 515F and 10 μM of 806R
primers amplifying V4 regions were used to target
16S rRNA gene using McLAB HiFi master mix using
polymerase chain reaction (PCR). The final PCR reaction
consisted of 12.5 μL 2x HiFi, 1 μL of 10 μM 515F primer
and 1 μL of 10 μM 806R primer, 5 μL DNA and 5.5 μL
sterile nuclease-free water. The PCR product was then
subjected to size selection using a magnetic bead capture
kit (Ampure; Agencourt). After the first PCR clean up,
dual indexed primers were used to amplify the V4 region
as described by Kozich et al. [66]. After indexing, sam-
ples were again size selected using a magnetic bead cap-
ture kit (Ampure; Agencourt). PCR products were
quantified after amplification and indexing using a Qubit
fluorometer (Invitrogen, Carlsbard, CA) and fragment size
(approximately 450 bp) was visualized on a 1.5% gel elec-
trophoresis stained with SYBR safe, then normalized to 4
nM. Samples were loaded onto an Illumina MiSeq flow
cell and sequencing was done using 250 bp-paired end se-
quencing using a 500 cycle V2 reagent cartridge (Illumina,
Inc., San Diego, CA) according to the manufacturer’s
instructions [67].

Bioinformatics analysis
A total of 28,518,046 paired-end raw sequences were ob-
tained during the Miseq run. Sequencing data were ana-
lyzed using Mothur (v.1.40.2, www.mothur.org)
according to the Mothur Illumina Miseq standard oper-
ating procedure (SOP) [66, 68] with several modifica-
tions. After forming contigs, the total number of

sequences was 11,020,368, and pcr.seqs command was
used to trim primers and adaptors to the V4 region. The
median length of the sequences was determined as 253
by using the summary.seqs command [69]. Screen.seqs
command was used to remove sequences with length >
254 bp and < 251 bp containing homopolymers of > 8,
and with ambiguous base calls. The split.abund com-
mand was used to keep Operational Taxonomic Units
(OTUs) with more than two reads [70]. The SILVA v123
database [71] was used to align the sequences and those
that failed to align, or classified as Archaea, chloroplast,
Eukaryote, mitochondrial, or unknown were excluded
from the analysis. Chimeric sequences were detected by
chimera.vsearch and removed from the analysis. The
remaining sequences were clustered using cluster.split
[72] at a threshold of > 97% sequence similarity. Oper-
ational Taxonomic Units with relative abundance < 10
across all samples were removed from the analysis by
using the remove.rare command [73, 74]. The final data
set was subsampled at 2420 sequences to normalize the
data set for statistical analyses. DNA extraction and
library preparation blanks were included during sequen-
cing and bioinformatics, and all OTUs within these
samples were removed from the final analysis. The code
used during bioinformatics analysis, the taxonomy file,
and the shared sample × OTU matrix are all included in
Additional files 2, 3, and 4, respectively.

Statistical analysis
To test for the statistically significant differences of the
muscle yield between the two groups, a one-way Mann-
Whitney U test (Prism, GraphPad Software, Inc., La
Jolla, CA) was performed. Statistical analyses (alpha di-
versity, beta diversity, microbial functional profiling
pathways) were performed in R version 3.5.2 using the
packages vegan [75], plyr [76], dplyr [77], ggplot2 [78],
lmerTest [79], pheatmap, MuMIn [80], lme4 [81], Tax4-
Fun [82], DEseq2 [83], rcompanion [84], grid [85], and
TidyVerse [86].

Alpha and Beta diversity analysis of fecal samples
between high (ARS-FY-H) and low (ARS-FY-L) muscle yield
genetic lines
Sixteen fecal samples (that passed QC during bioinformat-
ics analysis) from the high (ARS-FY-H) and 18 fecal sam-
ples (that passed QC) from the low (ARS-FY-L) muscle
yield line were used for this analysis. A Tukey’s ladder of
power transformation was performed to fit inverse Simpson
values to a Gaussian distribution. Alpha diversity between
the genetic lines was compared using a linear mixed-effects
model (LMMs) with the genetic line as a fixed effect and
harvest day set as a random effect (package lme4) [87].
Beta diversity was calculated to test if muscle yield

genetic line was predictive of the gut microbiota. To do
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this, a Bray-Curtis dissimilarity matrix was generated
using the vegdist function in the Vegan package [88].
The betadisper function was used to test for the homo-
geneity of multivariate dispersion between gut assem-
blages from high (ARS-FY-H) and low (ARS-FY-L)
muscle yield genetic lines. The metaMDS function in
Vegan was used to generate a non-metric multidimen-
sional scaling ordination (nMDS), which was then plot-
ted using ggplot2 [89]. The adonis function in Vegan
was used to perform PERMANOVA on Bray-Curtis dis-
similarity values to determine if the genetic line was pre-
dictive of gut assemblages, while controlling for harvest
day effect (harvest day as strata, 999 permutations). An
indicator species analysis was performed in Mothur to
determine the microbial assemblages that were charac-
teristic of muscle-yield genetic lines [29]. A Kruskal-
Wallis test was used to assess differences in relative
abundances of taxa between the genetic lines. The
nMDS ordination showed a pattern suggesting a ‘harvest
day’ based effect; therefore, we subset our samples into
two data frames based on independent harvest days.
Both data frames had nearly equal numbers of gut mi-
crobial samples from the two genetic lines, including 10
samples from high (ARS-FY-H) and 11 samples from
low (ARS-FY-L) - in harvest day 1, and 6 from high
(ARS-FY-H) and 7 from low (ARS-FY-L) - in harvest
day 2. Separate Bray-Curtis dissimilarity matrices were
generated for each data frame, followed by nMDS ordin-
ation values calculated and plotted in ggplot2. PERM
ANOVA was used to test for differences in microbial
assemblages with genetic line set as a fixed effect.

Beta diversity analysis of the fecal samples, feed and
water
Feed and water samples were sequenced to determine
whether the fecal microbial assemblages of trout differed
from the environment. Beta diversity was calculated
based on a Bray-Curtis dissimilarity matrix representing
sample-to-sample pairwise distances using the vegdist
function, and non-metric multidimensional scaling
(nMDS) ordination was used for visualization using the
metaMDS function and plotting in ggplot2. The adonis
function was performed to determine if sample type
(gut, feed, water), set as a fixed effect, was descriptive of
microbial assemblages. The detailed methodology and
results for this experiment have been included in
Additional file 5.

Functional annotation of 16S rRNA sequence data
Phylotype based OTU clustering and classification was
performed using the phylotype command in Mothur to
investigate microbial functional and metabolic capacities
of OTUs. The shared file was then converted to the
biome format using the make.biom command in Mothur.

The Tax4FUN package in R was used to predict the
microbial functional and metabolic capacities by linking
16S rRNA gene-based taxonomic profiles to KEGG
reference profiles [82]. The normalized KEGG pathway
output was used to investigate the enrichment of micro-
bial pathways between the genetic line samples using
DESeq2. Informative pathways associated with host-
microbiome interactions with an average FTU score of
0.55 and an adjusted p-value less than 0.001 were se-
lected for heatmap visualization using the pheatmap R
package [90]. The R code used during the analysis has
been included in Additional file 6, and statistical results
for all analyses are included in Additional file 7.
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