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Abstract
Objectives: Metabolic dysfunction is a common hallmark of the aging process and
aging-related pathogenesis. Blood metabolites have been used as biomarkers for
many diseases, including cancers, complex chronic diseases, and neurodegen-
erative diseases.
Methods: In order to identify aging-related biomarkers from blood metabolites,
we investigated the specific metabolite profiles of mouse sera from 4-month-old
and 21-month-old mice by using a combined flow injection analysisetandem mass
spectrometry and liquid chromatographyetandem mass spectrometry.
Results: Among the 156 metabolites detected, serum levels of nine individual
metabolites were found to vary with aging. Specifically, lysophosphatidylcholine
(LPC) acyl (a) C24:0 levels in aged mice were decreased compared to that in
young mice, whereas phosphatidylcholine (PC) acyl-alkyl (ae) C38:4, PC ae
C40:4, and PC ae C42:1 levels were increased. Three classes of metabolites
(amino acids, LPCs, and PCs) differed in intraclass correlation patterns of the
individual metabolites between sera from young and aged mice. Additionally, the
ratio of LPC a C24:0 to PC ae C38:4 was decreased in the aged mice, whereas the
ratio of PC ae C40:4 to LPC a C24:0 was increased, supporting the aging-related
metabolic changes of glycerophospholipids.
Conclusion: The ratios of the individual metabolites PC and LPC could serve as
potential biomarkers for aging and aging-related diseases.
1. Introduction

Aging is an irreversible and progressive, multidi-

mensional, complex process that includes the accumu-

lation of cellular and organ damage, leading to a decline

in function [1,2]. Aging is also known to be a risk factor
ted under the terms of the C
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for many prevalent diseases such as diabetes, cancers,

and cardiovascular and neurodegenerative diseases (e.g.

Alzheimer’s and Parkinson’s diseases) [3]. Therefore,

the discovery of aging and aging-related disease bio-

markers is important for the early diagnosis and therapy

of diseases.
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Recent metabolomic studies have primarily attemp-

ted to understand the underlying biological process to

develop disease biomarkers [4]. In particular, metab-

olomic analysis is suitable for the discovery of aging-

related biomarkers because it has been shown that

metabolic dysfunction is a common hallmark of the

aging process [5]. The utility of targeted metabolomics

for the discovery and validation of disease biomarkers

has been recently established [6]. Although metab-

olomic studies have resulted in the identification of

aging-related biomarkers from human samples [7e9]

and animal models [5,10,11], consistent blood bio-

markers of the aging process still need to be identified.

Phospholipids can function as pathogenic indicators

of many diseases such as Alzheimer’s disease [12e15],

ovarian endometriosis [16], and rheumatoid arthritis

[17]. Phosphatidylcholine (PC) is a major component of

phospholipids. It was reported that rat plasma phos-

pholipids consist of PCs (w70% of total phospholipids),

very low-density lipoproteins with sphingomyelin (SM;

11%), lysophosphatidylcholine (LPC; 3%), phosphati-

dylethanolamine (4%), and phosphatidylinositol (3%)

[18]. LPCs are generated by the hydrolysis of PCs by

phospholipase A2, which plays an important role in in-

flammatory responses [19].

The purpose of this study was to examine aging-

related changes in serum concentrations of metabolites

in young and aged mice to further increase our under-

standing of the metabolite-related aging process. We

found the ratios of LPC acyl (a) C24:0 to PC acyl-alkyl

(ae) C38:4 and PC ae C40:4 to LPC a C24:0 were

significantly different among sera from young and aged

mice. These results suggest that the ratios of PC and

LPC levels could provide aging-related metabolic in-

formation from blood as well as provide clues for the

identification of antiaging molecular targets.
2. Materials and methods

2.1. Animals
C57BL6/J mice were purchased from The Laboratory

Animal Resource Center, Korea Research Institute of

Bioscience & Biotechnology (KRIBB; Ochang,

Chungcheongbuk-do, Korea). All mice were maintained

in a specific-pathogen free area, according to standard

animal care protocols. Whole blood was collected via

heart puncture following euthanasia by cervical dislo-

cation. Collected blood was incubated for 20 minutes at

room temperature in Serum Separator Tubes (BD

Bioscience, Franklin Lakes, NJ, USA), and clots were

then removed by centrifugation at 1500 � g. Sera were

stored at �70�C until needed.

2.2. Metabolite quantification
Targeted metabolite concentrations were measured

using the Absolute IDQ p180 Kit (Biocrates Life
Sciences AG, Innsbruck, Austria). The assay procedures

have been previously described in detail [20]. Serum

metabolites were quantified using appropriate internal

standards included in the kit. The 186 metabolites tar-

geted included 40 acylcarnitines (ACs), 21 amino acids

(AAs), 19 biogenic amines (BAs), 14 LPCs, 38 PC

diacyl, 38 PC ae, 15 SMs, and the sum of hexoses (H1).

In brief, AAs and BAs were measured by liquid chro-

matographyetandem mass spectrometry, and ACs,

phospho- and sphingolipids, and hexoses were measured

by flow injection analysisetandem mass spectrometry

on API 4000 QTRAP (ABSCIEX, Framingham, MA,

USA). To ensure data quality, metabolites coefficient of

variance (CV) that was under 20% and above the limit

of detection (LOD) were selected. The CV and LOD

criteria were passed by 156 metabolites. Concentrations

of all detected metabolites are reported as mM.

2.3. Statistical analysis
Statistical analysis was performed using three

different methods, including t test and additional

BiomarkeR and limma packages in Bioconductor (http://

www.bioconductor.org), to identify statistically powerful

biomarkers. The BiomarkeR package in Bioconductor

has a network-based approach to identify biomarkers in

metabolomics research [21]. It provides the biomarker

identifier (BI) score by measuring the change of each

metabolite and connectivity of the metabolites within the

network. The measured metabolite data were imported

into the BiomarkeR package and analyzed with the un-

paired BI method. The selected biomarkers were plotted

with the unpaired BI Graph method. Next, for the linear

modeling approach, the concentration of each metabolite

was transformed by log and normalized with the quantile

normalization method. Then, we employed the limma

package in Bioconductor that is designed to stabilize the

analysis with linear modeling. The p-values were

adjusted for multiple tests. Volcano plots were con-

structed using an empirical Bayes method in the limma

package. The metabolite serum concentrations were

normally distributed as indicated by the Kolmogor-

oveSmirnov test. All statistical analyses were carried

out using SPSS version 20 (SPSS Inc., Chicago, IL,

USA) and R program (http://www.R-project.org).
3. Results

We used a targeted metabolomic analysis to identify

aging-related biomarkers and specific profiles of serum

metabolites in the aging process. We investigated seven

classes of metabolites (ACs, BAs, AAs, LPCs, PCs,

SMs, and hexoses) from young and aged mice. Of these

186 metabolites, 156 were detected in mouse sera at

levels above the LOD. Via statistical analysis, we found

changes in serum concentrations of 23 metabolites in the

young (4-month-old) and aged (21-month-old) mice

http://www.bioconductor.org
http://www.bioconductor.org
http://www.R-project.org


Table 2. Top 10 ranked metabolites selected by

biomarker identifier (BI) scores.

Metabolite BI score

Glutamate 275.9

Kynurenine 195.3

LPC a C17:0 167.8

C0 159.3

PC ae C42:1 143.2

Spermidine 135.5

PC ae C38:4 133.4

Sarcosine 128.4

Hexose 127.8

C14 125.1

a Z acyl; ae Z acyl-alkyl; LPC Z lysophosphatidylcholines;

PC Z phosphatidylcholines.
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(Table 1). These 23 metabolites consisted of five classes:

ACs (n Z 6), BAs (n Z 4), LPCs (n Z 2), PCs (n Z 8),

and SMs (n Z 3). Of these five classes of metabolites,

ACs, LPCs, and SMs were all decreased in sera from

aged mice, compared with sera from young mice. By

contrast, members of the BA and PC classes were either

increased or decreased in aged mice, compared with

young mice, thus not displaying intraclass consistency.

For aging biomarker identification, we employed a

recently published statistical biomarker discovery strat-

egy, the BiomarkeR algorithm [21,22]. The BiomarkeR

software was utilized for biomarker identification using

a BI score and connectivity strength within the

biochemical network of metabolites. The top 10 ranked

metabolites and their BI scores are listed in Table 2.

According to BiomarkeR algorithm analysis, glutamate,

kynurenine, LPC a C17:0, and carnitine (C0) exhibited

the top four BI scores, but these metabolites were not

represented as significant in the t test (glutamate, LPC a

C17:0, and C0) or volcano plot (kynurenine, LPC a

C17:0, and C0; Table 3). In addition to the BI score

method, we also used a volcano plot to analyze
Table 1. Changes in serum metabolite concentrations between

Metabolite Younga

AC

C14 0.09 � 0.01 0.

C16 0.24 � 0.01 0.

C18 0.06 � 0.01 0.

C18:1 0.21 � 0.00 0.

C2 26.88 � 1.29 19.

C5-OH 0.10 � 0.01 0.

BA

Kynurenine 0.89 � 0.11 1.

Sarcosine 5.49 � 0.62 3.

Spermidine 6.79 � 0.85 3.

Spermine 1.05 � 0.08 0.

LPC

LPC a C16:0 424.54 � 1.86 399.

LPC a C24:0 0.73 � 0.07 0.

PC

PC aa C28:1 0.17 � 0.01 0.

PC aa C34:3 18.06 � 0.30 20.

PC aa C42:6 1.96 � 0.03 1.

PC ae C34:1 6.01 � 0.21 5.

PC ae C38:4 4.70 � 0.47 5.

PC ae C38:6 3.75 � 0.12 3.

PC ae C40:4 2.11 � 0.12 2.

PC ae C42:1 0.53 � 0.10 0.

SM

SM C16:1 6.15 � 0.12 4.

SM C18:0 3.21 � 0.14 2.

SM C24:0 14.34 � 0.33 10.
aMetabolite concentrations are expressed as the mean� standard deviation in mM

in aged mouse serum samples compared to the young mouse serum samples. *

BA Z biogenic amines; C14 Z tetradecanoylcarnitine; C16 Z hexadecanoyl

C2 Z acetylcarnitine; C5-OH Z hydroxyvalerylcarnitine; LPC Z lysophospha
metabolite profiles by log transformation of the p-value

and fold-change (Figure 1). Thirteen metabolites dis-

played significantly different serum concentrations be-

tween young and aged mouse sera (Table 3). Finally, our

three different statistical analyses allowed for the
young and aged mice.

Ageda Up or downb p*

07 � 0.01 Y 0.035

16 � 0.02 Y 0.006

05 � 0.01 Y 0.048

19 � 0.00 Y 0.001

53 � 1.75 Y 0.004

07 � 0.01 Y 0.003

09 � 0.05 [ 0.040

29 � 1.20 Y 0.048

61 � 0.57 Y 0.006

72 � 0.06 Y 0.004

76 � 13.25 Y 0.033

56 � 0.06 Y 0.039

22 � 0.02 [ 0.017

08 � 1.19 [ 0.046

40 � 0.15 Y 0.004

18 � 0.44 Y 0.042

78 � 0.38 [ 0.037

03 � 0.31 Y 0.020

76 � 0.29 [ 0.024

75 � 0.08 [ 0.040

79 � 0.78 Y 0.041

72 � 0.18 Y 0.021

06 � 1.44 Y 0.007

; bUp or down indicates increase or decrease in metabolite concentrations

t-test comparison between young and aged mice. AC Z acylcarnitines;

carnitine; C18 Z octadecanoylcarnitine; C18:1 Z octadecanoylcarnitine;

tidylcholines; PC Z phosphatidylcholines; SM Z sphingomyelins.



Table 3. Statistical selection of age-related metabolites.

Metabolite p* BI scorea Adjusted p**

AC

C0 NS 159.3 NS

C14 0.035 125.1 0.025

C5-OH 0.003 123.4 0.036

AA

Glutamate NS 275.9 0.019

BA

kyneurenine 0.040 195.3 NS

Sarcosine 0.048 128.4 0.044

Spermidine 0.006 135.5 0.041

LPC

LPC a C17:0 NS 167.8 NS

LPC a C24:0 0.039 112.4 0.002

PC

PC ae C38:4 0.037 133.4 0.001

PC ae C40:4 0.024 117.9 0.022

PC ae C42:1 0.040 143.2 0.005

SM

SM C24:0 0.007 120.8 0.013
aBiomarker identifier (BI) score results from BiomarkeR algorithm.

*t test comparison between the groups. ** Results from limma package.

The p value is adjusted by Benjamini and Hochberg method. a Z acyl;

AC Z acylcarnitines; ae Z acyl-alkyl; AA Z amino acids;

BA Z biogenic amines; LPC Z lysophosphatidylcholines; NS Z not

significant (p > 0.05); PC Z phosphatidylcholines;

SM Z sphingomyelins.
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identification of age-dependent serum biomarkers

involving nine metabolites, namely, tetradeca-

noylcarnitine (C14), hydroxyvalerylcarnitine (C5-OH),

sarcosine, spermidine, LPC a C24:0, PC ae C38:4,

C40:4, C42:1, and SM C24:0.
Figure 1. Volcano plot of metabolite profiles. The volcano

plot was depicted as a log scaled axes of fold change (x-axis)

and p-value (y-axis) for visualization. Metabolites with a sig-

nificant difference (adjusted p < 0.05) are named in the plot.

a Z acyl; ae Z acyl-alkyl; LPC Z lysophosphatidylcholines;

PC Z phosphatidylcholines; SM Z sphingomyelins.
We calculated pair-wise correlation coefficients of

individual metabolites of either young or aged mice

(Figure 2). Higher intraclass correlation coefficients

were observed for AAs in young mouse sera, but not in

aged mouse sera. On the contrary, metabolite classes of

PCs and LPCs displayed higher pair-wise correlation

coefficients in aged mice relative to the young mice.

This suggests that the relative ratios of individual me-

tabolites within a particular intraclass may play an

important role in the aging process.

Next, we examined the pair-wise ratios of nine in-

dividual metabolites that were selected using the three

statistical methods and compared the difference of the

ratios between young and aged mice. It is likely that the

relative ratios of metabolite pairs within the sample may

reduce experimental bias due to sample variation, aiding

in the generation of more reliable results. The Bonfer-

roni correction was used for multiple comparisons. The

ratios of LPC a C24:0 to PC ae C38:4 and PC ae C40:4

to LPC a C24:0 were significantly different (9 � 8 Z 72

pair-wise ratios, p < 0.00069) between young and aged

mice (Table 4). The ratio of LPC a C24:0 to PC ae

C38:4 was decreased in aged mice whereas the ratio of

PC ae C40:4 to LPC a C24:0 was increased, relative to

the ratios observed in young mice.
Figure 2. Comparison of pair-wise correlation coefficients of

all of detected serum metabolites. Solid boxes indicate correla-

tion coefficients (>0.9) of pairs of twometabolites. AAZ amino

acids; AC Z acylcarnitines; BA Z biogenic amines;

LPCZ lysophosphatidylcholines; PCZ phosphatidylcholines;

SM Z sphingomyelins.



Table 4. Significant metabolite pairs between young and aged mice.

Ratio of pair metabolites

Concentration ratio

p*Young Aged

LPC a C24:0/PC ae C38:4 0.155 � 0.002 0.097 � 0.007 1.460E-04

PC ae C40:4/LPC a C24:0 2.916 � 0.225 4.918 � 0.006 1.044E-04

Data are expressed as concentration (mM) of relative ratios of paired metabolites, mean � standard deviation for three mice per group. * Results from

Bonferroni correction. a Z acyl; ae Z acyl-alkyl; LPC Z lysophosphatidylcholines; PC Z phosphatidylcholines.
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4. Discussion

We measured metabolite concentrations from young

and aged mouse sera by using targeted metabolomics

coupled with multiple statistical methods to identify

aging-related biomarkers. The ratios of both LPC a

C24:0 to PC ae C38:4 and PC ae C40:4 to LPC a C24:0

exhibited significant difference (p < 0.00069, after the

Bonferroni correction) between young and aged mice.

These results suggest that the relative concentrations of

PCs to LPCs may provide a clue for the development of

aging-related biomarkers in blood samples.

In this study, we successfully quantified the serum

concentrations of 156 out of 186 metabolites; detection

of the other 30 metabolites probably failed because the

kit used in this study was originally designed for the

range of metabolite concentrations from human sam-

ples. Among the metabolites quantified, 23 displayed a

significant difference (p < 0.05) in serum concentrations

between young and aged mice (Table 1).

Decreased levels of ACs (excluding butyrylcarnitine

and valeryl-L-carnitine) and BAs (excluding histamine

and kynurenine) were observed in the sera from aged

mice. It was recently reported that plasma AC levels are

associated with diabetes [23], myocardial infarction

[24], and impaired muscle function in elderly men [25].

However, the relevance of alterations in blood AC levels

with aging are unknown. Polyamine (putrescine, sper-

midine, and spermine) levels were known to decrease

with aging in many organisms [26]. In this study,

spermidine and spermine levels were significantly

decreased in the sera from aged mice, relative to young

mice. Therefore, ACs and polyamines were worthy of

further investigation regarding their involvement in

aging.

After our comprehensive statistical analysis, nine

metabolites [tetradecanoylcarnitine (C14), hydrox-

yvalerylcarnitine (C5-OH), sarcosine, spermidine, LPC

a C24:0, PC ae C38:4, PC ae C40:4, PC ae C42:1, and

SM C24:0] were identified as aging-related serum

metabolites. With the exception of PC ae C38:4 and PC

ae C40:4, the concentrations of selected metabolites

were decreased in aged mice, relative to young mice.

Some metabolomics studies have reported that ratios of

metabolite pairs can be used to reduce experimental

bias and provide statistical power for biomarker
discovery from disease samples [12,16,27]. In human

serum [27] and pig plasma [28] samples, the ratios of

AAs were found to be useful as biomarkers for knee

osteoarthritis and asphyxia. The ratios of PC and LPC

have also been promising targets in biomarker discov-

ery for many diseases. For example, the PC/LPC ratio

in human plasma was useful for indicating the severity

of rheumatoid arthritis [17] and the LPC/PC ratio in

human cerebrospinal fluid is decreased in Alzheimer’s

disease [12].

In this study, although significant changes in AA and

sugar levels were not observed between young and aged

mice, AAs exhibited high correlation coefficients with

intraclass metabolites in young mouse sera (Figure 2).

By contrast, aged mice displayed higher correlations of

metabolite concentrations within PCs or LPCs than

young mice. These results revealed that global patterns

of correlation coefficients of intraclass metabolites of

AAs, PCs, and LPCs might be useful as age-dependent

fingerprints of potential metabolite biomarkers for the

aging process.

Glycerol-based phospholipids, glycerophospholipids

(GPs), are important not only to maintain neural mem-

brane structure but also to provide suitable environment,

fluidity, and ion-permeability [29]. Changes in the

phospholipid content of neural cell membranes may

contribute to neurodegenerative diseases. Many studies

have been conducted to reveal a relationship between

lipid metabolism and neurodegenerative diseases such

as Alzheimer’s disease. Recently, plasma PC and

phospholipid levels were identified as potential diag-

nostic biomarkers for Alzheimer’s disease [14] and

predictive biomarkers for the conversion of preclinical

Alzheimer’s disease [15]. PC is the major phospholipid

of cellular membranes [30]. In fact, SM and LPC are

synthesized from PC via SM synthases and phospholi-

pase A2, respectively. This study reveals that the cor-

relation coefficients of PC, LPC, and SM are altered

with aging in mice. Further studies are needed to un-

cover the biological significance of the changes in GP

content in neurodegenerative disease pathogenesis and

potentially revealing a link to aging-dependent metab-

olite changes.

Many studies have demonstrated that blood meta-

bolic profiles are altered by aging in humans and mice.

A recent report indicated that some ACs, SMs, and PCs
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increased with age, while histidine was decreased [7].

Recent metabolomics studies have shown that the

analysis of metabolic profiles of mouse sera could pre-

dict biological age [10]. Houtkooper et al [5] reported

that levels of long chain ACs and various AAs were

decreased in the plasma of aged mice while free fatty

acid levels were increased. Consistent with that report,

our results also revealed that long-chain ACs (C14, C16,

C18 and C18:1) were significantly decreased (Table 1)

and some amino acids tended to be decreased in aged

mice.

Our results suggest that PC/LPC ratios can be

developed as metabolic indicators of the aging process,

providing better targets for antiaging and aging-related

disease therapy. To our knowledge, this is the first report

to identify the PC/LPC ratio as a potential biomarker of

aging. Therefore, further studies should extend to human

samples to investigate the biological relevance of PC

and LPC serum concentrations and other metabolite

ratios in the aging process.
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