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Coevolution of Environmental 
Perception and Cooperative 
Behavior in Evacuation Crowd
Zehua Dong1, Maoyin Chen1,2, Yuan Cheng1 & Xiaoping Zheng1

For the evacuation crowd of social agents, environment plays a big effect on the behavior and decision 
of the agents. When facing the uncertain environment, the behavior and decision of agents depend 
heavily on the perception of environment. Therefore, the cooperation between agents and their 
perception of environment may coexist during evacuation. Here we establish a mechanism to analyze 
the coevolution between the cooperation of agents and the perception of environment. In detail, we 
use a regular square lattice with periodic boundaries, where two payoff matrices are used to describe 
two kinds of games between neighbors in the safe and dangerous environments. For individual 
agent, its perception can be adjusted by interacting with neighboring agents. When the environment 
is generally considered dangerous, the fraction of cooperative agents keeps at a high level, even if 
the value of b is very large. When all the agents think that the environment is safe, the fraction of 
cooperation will decrease as the value of b increases.

It is known that the cooperation can be easily observed in nature and human society. For example, ants will share 
food and information with others, badgers and coyotes prey together, the human work together, and so on. It 
learns that cooperation may make a group play a great power, and get more reward than working alone. However, 
according to Darwin’s theory of natural selection, cooperation and individual selfish nature is contradictory. 
Therefore, how to understand the emergence and evolution of cooperative behavior remains a challenging task.

In order to understand how cooperative behavior evolves, the pioneering work is to establish the evolutionary 
game theory1–5, which provides a theoretical framework to address the conflict between cooperation and self-
ishness. In the past decades, the prisoner’s dilemma (PD) game6 was regarded as a paradigm for expressing the 
human relations in society and analyzing the cooperation. In a PD game, two players interact with each other each 
time. Both of them can choose to cooperate or defect. They get different rewards according to their choices. The 
reward for mutual cooperation is R, while the reward for mutual defection is P. If one player chooses cooperation 
and the other chooses defection, the cooperator receives the sucker’s payoff S, and the defector gets the defector 
temptation T. In the PD game, T > R > P > S. Hence one player can get maximum payoff by defecting. But if all 
the players choose defection, the total reward will be very small. On the contrary, cooperation can make the total 
reward increase, although cooperation is not an optimal choice for one player.

In addition, the spatial structure can also affect the evolution of cooperative behavior. In 1992, Nowak and 
May showed that structured populations via nearest neighbor interactions can promote cooperation, while the 
mixed populations lead to defection7. After that, some works placed PD into networks such as small-world8,9, 
scale-free world10–12, etc. Besides the spatial complex networks, many researches put forward different mech-
anisms that can promote the evolution of cooperation. For example, Nowak reviewed five rules (namley kin 
selection, direct reciprocity, indirect reciprocity, network reciprocity, and group selection) for the evolution of 
cooperation13. Additionally, evolutionary game with coevolutionary rules initiated by Zimmermann et al.14,15 
offers a new way to promote the cooperation in a social dilemma. Coevolutionary rules may conform to realistic 
situations, where the strategies can evolve in time. However, some other factors such as links16–19, size20,21, mobil-
ity22–24, and age25,26, update at the same time, which can affect back the evolution of strategies.

Recently, coevolutionary multigames with different rules and structures have been discussed. Motivated by 
the fact that the same social dilemma can be perceived differently by different players, Wang et al.27 studied evo-
lutionary multigames in structured populations. Chen and Wang28 adopted a stochastic learning updating rule 
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to investigate the evolution of cooperation in the PD game on the small-world networks with different payoff 
aspiration levels. Wu et al.29 studied the evolution of cooperation in spatial PD games with and without extor-
tion by adopting the aspiration-driven strategy updating rule. Traulsen et al.30 analyzed a cooperative game on 
the similarity between the players. Szolnoki and Perc31 introduced coevolutionary success-driven multigames in 
structured populations.

Except for the above mentioned factors, the environment is another factor strongly affecting the cooperative 
behavior. Note that human beings are actually in the environment all the time. Even for the same person, his/
her behavior and decision may be differentially affected by different environments. In fact, the impact of the 
environment on people can not be ignored in the game. Some studies suggest that the environment will have a 
positive impact on the evolution of cooperation in the PD32–35. However, these studies only considered the objec-
tive environmental factors, such as links, mobility as mentioned above. What we want to know is whether people’s 
subjective perception of the environment will affect the evolution of cooperation. If the individual thinks that the 
current environment is dangerous, will he/she still be in a PD game?

In realistic situations, the ability of agents to perceive the environment is also different. This kind of heteroge-
neity may lead to the difference of the perception of environment. Even in the same scene, some agents consider 
that the current environment is relatively safe, but some consider it dangerous. This makes different agents take 
different strategies and show different behaviors in a game. In turn, the interaction between neighbors and their 
behavior can also affect their perceptions. This implies that there may exist some kind of coevolution between the 
environmental perception and the cooperative behavior. If it actually exists, but how to coevolve?

In this report, we consider this kind of coevlolution. We establish a mechanism of the coevolution of per-
ception and cooperative behavior based on evolutionary game theory, where agents update their strategies and 
perceptions from more successful neighbors at the same time. From the evolutionary game theory and the coev-
olution mechanism, we study the cooperative behavior in a regular square lattice with periodic boundary con-
ditions. First, we place the population in the lattice. Based on their current strategies and perceptions of the 
environment, agents choose payoff matrix to calculate their utilities. Then, each agent updates its strategy and 
perception from its random successful neighbors at a certain probability. Finally, using the Monte Carlo simula-
tion, we record the proportion of cooperation and the proportion of agents who consider that the environment is 
safe. We find that when the environment is dangerous, the fraction of cooperation keeps at a high level.

Results
In order to observe cooperation and perception in the population, we count the proportion of cooperation (c) 
and the proportion of safe agents (s) who consider that the environment is safe. From ‘Method’ section, the agents 
whose perception (θ) is less than the threshold (θth) may think that the current environment is safe; otherwise, the 
current environment is considered to be dangerous.

To begin with, we take a look at the effect of the threshold on the proportion of cooperation. Figure 1 shows 
the curve, where the cooperative proportion c changes with θth at different temptation parameter b. It is clear that 
for each curve, the cooperative proportion c is keeping at 1, and then gradually reduced to a stable value. The 
stable value decreases as the value of b increases, which is consistent with the traditional case7. Therefore, when 
the current environment is considered safe, people tend to do their own things, and do not care about others. This 
can be seemed as a typical PD game. On the contrary, when the current environment is considered dangerous, 
the person may think that his/her strength is limited, he/she can’t get much reward by himself/herself, and more 
people will choose cooperation to solve the difficulties together.

Second, the relationship between s and θth is plotted in Figure 2. In the case of b = 1, two payoff matrices are 
very similar, and the game between agents is almost unaffected by their perceptions. When the threshold is small, 

Figure 1.  (Number of neighbors: 8). Relationship between the fraction of cooperation c and the threshold for 
parameter of b.
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all agents consider that the environment is dangerous. This may promote the cooperation between agents, which 
is consistent with Figure 1. When the difference between temptation b and 1 is small (for example, b = 1.05), 
compared with b = 1.1 and b = 1.15, the change of s is more similar to the case of b = 1, except that the sudden 
rise at θth = 0.63. This abrupt rise also appears when b = 1.1 and b = 1.15. In the case of b = 1, as previously men-
tioned, the game between agents is almost unaffected by their perceptions, so the whole system is insensitive to 
the threshold. However, when b > 1, the system is sensitive, and has a critical point. When θth = 0.63, there is a 
sudden increase of s. Figure 2 shows that that the less b is, the more s increases when the s is just increasing from 
0 (θth = 0.30). When b = 1, the growth of s with respect to θth is almost linear, which implies that the whole system 
has little relationship to environmental perception. When θth is small, s is approximately equal to 0. In this case, 
almost all the agents agree that the environment is dangerous, which can assimilate the agents who consider the 
environment is safe. The closer to 1 the value of b is, the less difference between danger and safety has, θth has little 
effect on the system, and thus we observe the monotonicity. When b is large (for example, b = 1.2 and b = 1.25), 
the defection temptation makes more agents to choose to defect. Even if the threshold is not large (0.5–0.6), the 
agent who consider environment safe will be the majority. However, we observer that s ≈ 0 at b = 1.1 and b = 1.15. 
Therefore, the agents’ behavior indeed has an influence on their perceptions.

Figure 3 shows the dynamical changes for c and s in a run in the case of b = 1.2. It also shows that the larger 
the threshold θth is, the smaller cooperative proportion c is, and the larger s is. In this figure, we notice the neg-
ative feedback mechanism in the network16. The value of c decreases before 100 steps, and then increases. At 
the beginning, the numbers of cooperators and defectors are equal. In this PD game, the agent will choose to 
defect to get more payoff. After 100 steps, the proportion of defectors is so much that they can no longer earn 
more. At this time, both the cooperators and the defectors get the same reward when they play the game with 

Figure 2.  (Number of neighbors: 8). Relationship between the safe proportion s (namely the proportion of safe 
agents who consider that the environment is safe) and threshold for parameter of b.

Figure 3.  The fraction of cooperation C (left) and the safe proportion s (right) dynamics in 60000 steps for 
threshold (b = 1.2).
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a defector (P = S = 0). However, the reward for mutual cooperation R = 1, so the fraction of cooperation will 
gradually increase, and finally stabilize. When θth is moderate, we also observe the phenomenon of the decrease 
after the increase of s in Figure 2. For the agents who consider the environment dangerous, their best choice is to 
cooperate, while the others choose to defect. Hence, the greater the threshold θth is, the more the proportion of 
cooperation c decreases at the beginning. When b = 1.2 and θth ≥ 0.71, all agents consider that the environment is 
safe. This is actually the traditional case, that is, the proportion of cooperation c will be at a low level in the final.

Similar to Figure 3, Figure 4 also shows the negative feedback mechanism in the network. From left to right, 
Monte Carlo simulation steps are 0, 100, 1000 and 60000, respectively. From top to bottom, the thresholds are 0.67 
and 0.69, respectively. Agents considering the environment safe (s) and agents considering the environment dan-
gerous (d) are randomly distributed in the grid. At the 100th step, it is clear that d is reduced. At the 1000th step, 
the yellow area expanded again. Finally, at the 60000th step, the network is in a stable state. At t = 0.69, we notice 
that d = 0 in the population, implying all the agent consider that the current environment is safe. At t = 0.67, s and 
d coexist. As Figure 4 shows, the distributions of s and d are dispersed, that is, there is no obvious cluster of s and 
d. This increases the interaction area between s and d, and agents can switch between the two kinds of states, and 
the case in which d is surrounded and destroyed by s will not appear.

To check the robustness of the results, we also did the experiments on the square lattice with degree = 4 
and degree = 8. Figures 5 and 6 show the results when the number of neighbors is 4. They are consisitent with 
Figures 1 and 2, which shows the robustness of this mechanism.

Discussion
In this report, we study the coevolution of environmental perception and cooperative behavior, specially their 
impact on the proportion of cooperation and agents who consider the environment safe. We find that the propor-
tion of cooperation will increase greatly when the environment is dangerous. The agent’s perception of environ-
ment affects the strategy it will take, and in turn, the agent’s strategy and payoff also affect its perception. In fact, 
this kind of coevolutionary mechanism could be more realistic. In addition, we also discuss the negative feedback 
mechanism16 in this mechanism, explaining the evolution of the cooperative behavior. However, the ideal coev-
olution mechanism we build can’t reveal the essential relationship between perception and behavior. Moreover, 
all agents are assumed to follow the same rules in the simulation, which can’t reflect individuals’ diversity within 
the crowd.

We believe that studying the role of individual subjective factors in the evolution of cooperation is also neces-
sary. In the literature, many works focus mainly on the objective factors such as link, age, mobility, network struc-
ture and so on. However, the impact of environment on its subjective perception is also a vital part that we can’t 
ignore during the crowd evacuation. In different circumstances, the individual’s subjective feelings are different, 
and then the decisions maybe not the same. In addition, even in the same environment, the subjective feelings of 
different individuals are not exactly identical. Being concerned about the subjective feelings of the individual can 
better understand the individual’s motivation to choose cooperation. When the individual makes a decision, the 
environment is one of the most important factors affecting the individual. Individuals may be persuaded by their 
neighbors in order to get greater earnings, or they may choose their own strategies based on the urgency of the 
current environment. Therefore, the study of the impact of environmental perception on cooperation may reveal 
the secret of the cooperation evolution.

Figure 4.  Distribution of s in step 0, 100, 1000, 60000 in 100 * 100 lattices (b = 1.2). From top to bottom, 
thresholds are 0.67 and 0.69, respectively. The yellow one represents the agent who considers the environment 
dangerous, the blue one represents agent who considers the environment safe.
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We are going to improve our work in future. In this report, the cognition level on the safe environment is fixed in 
each run. That is, for all agents, the threshold for perceiving the safety of the environment is the same. However, if each 
individual has the same threshold, the heterogeneity owing to agents’ knowledge or experience can’t be reflected. So 
the threshold should be determined by a certain strategy, and should be random that follows the binary distribution, 
uniform distribution or gauss distribution. In general, the threshold can also be represented by an interval θ θ[ , ]th th . 
If a neighbor’s perception is not in agent x’s threshold interval, then agent x will not choose to cooperate with this 
neighbor36. This is in line with the hypothesis of kinship selection, that is, when the individuals choose the cooperation 
object, they will give a preference to their similar individuals as much as possible to make their own genes can be 
passed. This is also consistent with the bounded confidence model in the opinion dynamics37,38.

Note that agents choose to cooperate with others because they can get the reward for mutual cooperation. 
However, some agents may show cooperative behavior without reciprocity36, and they help and donate to others 
even though they earn nothing, which can be called altruistic behavior. As far as we know, altruistic behavior in 
nature really exists. For example, male mantis will be eaten by the female mantis after mating. In human soci-
ety, because of the educative background, people’s moral standards, the love and so on, people may also choose 
altruistic behavior. Since cooperation with reciprocity and altruism coexist in evacuation, we will consider in the 
follow-up work. In the game, not all individuals choose to cooperate or defect, and there are also some individuals 
can’t determine their decision. At the beginning of the game, not all individuals immediately choose reciprocity, 
altruism, or defection, and they may not know what to choose. This is a zero status, that is, the agent should wait 

Figure 5.  (Number of neighbors: 4). Relationship between the fraction of cooperation c and the threshold for 
parameter of b.

Figure 6.  (Number of neighbors: 4). Relationship between the safe proportion s and the threshold for 
parameter of b.
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and see what happened. The individual with zero status may join in the game at any time. In addition, it may be 
possible for them to withdraw from the game at any time because of the diminishing payoff. This assumption is 
more realistic than the assumption that everyone is involved in the game.

In ‘Method’ section, the update rule of the environmental perception uses the Fermi function, and the strat-
egy’s update rule uses a linear rule. These two rules are generally accepted, in which Fermi function from the 
discrete selection model has some rationality. Note that update rules are very important for the model. However, 
except for the above two rules, are there other reasonable update rules that can optimize the system and make the 
model more reasonable? This question requires our future research.

Research on cooperation evolution is not only a fundamental problem, but also has a practical significance. 
For example, the crowd evacuation has always been an important part of social public security problem. In the 
evacuation process, the environment changes faster and more urgent, the environmental impact on people 
becomes more obvious. In addition, the behavior of the evacuated crowd is an important factor that affects the 
evacuation efficiency. Therefore, how to understand the evolution of the behavior is the key to solve the evacu-
ation problem. Therefore, the research about environmental perception’s impact on cooperative behavior has a 
guiding significance to solve the evacuation problem.

To conclude, the agent’s perception of environment is an important attribute that affects the agent’s behavior, 
and may explain the evolution of the agent’s behavior in evacuation. We hope to further consider the environ-
mental perception in the future.

Methods
Assume that each agent can perceive the environment in a quantitative way. Let θx(0 ≤ θx ≤ 1) be the quantitative 
perception value of environment by agent x. In order to study the effect of the environment, assume the agents’ 
cognition levels on the safe environment are identical. Here a constant cognition level on the safe environment 
is chosen to be θth > 0. For agent x, if its perception value of environment θx satisfies θx > θth, the environment is 
considered safe; otherwise, the environment is dangerous. Note that the smaller θth is, the more dangerous the 
current environment is considered by agents. Therefore, some problems arise naturally: (1) Is it possible for each 
agent to change its perception value when interacting with other neighboring agents? (2) What is the effect of the 
changing of the perception values on the behavior of each agent?

Now we consider the above problems by introducing different kinds of games for safe and dangerous environ-
ment. For the safe environment, agents always do their own things and don’t need much help, so Nowak’s weak 
PD game7 is adopted. In this case, the defector temptation T = b0 > 1, the reward for mutual cooperation R = 1, 
the sucker’s payoff S and the punishment for mutual defection P equal to 0. For the case of dangerous environ-
ment, assume the agents who consider the current environment dangerous tend to look for help, so cooperation 
can increase the probability of escape. Hence, we set T = b1 < 1, R = 1, S = P = 0, which is a harmony game (HG).

In this report, we use a L × L regular square lattice with moore neighbor and periodic boundary conditions to 
place all agents. For the case of safe or dangerous environment, the perception of environment and the strategy in 
corresponding game will be updated by interacting with their neighbors. Specifically, an agent x selects its payoff 
matrix according to its perception of the environment, and calculates its total utility Ux by playing the game with 
all of its neighbors.Then, randomly selecting a neighbor y of x, if Uy > Ux, x updates its perception by
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where δ ∈ [0, 1] denotes the perception, and Δx = |θx − θth|, Δy = |θy − θth|. In the first and second equations of Eq. 
(1), if the perception of x and y are both greater than the threshold, x and y both consider the current environment 
safe. Then their perception values of θx will continue to increase by a small δ. If the perception values of θx and 
θy are both less than the threshold, x and y both consider the current environment dangerous. Then perception 
values of θx will continue to decrease by a small δ. Under this Tag-based mechanism36, a pair of agents who have 
the same cognition will strengthen their perceptions. Here we set θx(k + 1) = 1 if θx(k + 1) ≥ 1, and θx(k + 1) = 0 if 
θx(k + 1) ≤ 0. If there exist the opposite perceptions, where one thinks the environment safe and the other thinks 
it dangerous, x will copy the perception of y with a certain probability. Here the noise k in Fermi dynamics is “tt” 
in equation, which is the max distance between θ and θth. When x thinks the environment safe and y considers it 
dangerous, we can calculate the distance(Δx, Δy) between the perception and threshold respectively, then discuss 
the difference between Δx and Δy. Because the difference is no more than tt, the exponent is between 0 and 1. If 
an agent’s cognition is different with another’s, he/she may change his/her mind.

In the third equation of Eq. (1), we use the Fermi function39 to calculate the copy probability, and k denotes the 
noise. From this rule, the exponential term is determined by the difference between δx and δy, where δx,y denotes 
the distance between the perception of agent x,y and the threshold θth. That is to say, the probability of x learning 
y is mainly determined by this difference. If δx is greater than δy, the probability is less than 0.5. Thus, x is not easy 
to be persuaded by y. If δx is smaller than δy, the probability of x learning y is greater than 0.5; if δx = δy, then the 
probability of x learning y is just 0.5.

Finally, agent x updates its strategy by comparing its utility with y. If Ux > Uy, x will keep its own strategy. If 
Uy > Ux, then x will copy the strategy of y with a certain probability16:
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where sx denotes the strategy of the agent x, and the same as sy.
The simulations are realized within the framework of Monto Carlo simulation. Initially, agents are equally 

divided into cooperators or defectors. Environmental perceptions are assigned to agents at random, uniformly 
sampled from [0, 1]. An agent’s perception determines its payoff matrix, and it is affected by its more successful 
neighbors. In addition, we use the asynchronous update method. At each time step, randomly select an agent x, 
and update its strategy and perception in accordance with the above rules at the same time. The Monte Carlo 
simulation steps are 61,000. In the program, in order to simplify the parameters, we only reserve θth and b0, set 
L = 100, b1 = 0.9, and choose the learning rate δ = 0.001.

By changing the cognition level θth, we observe the changes in the proportion of cooperation and safe agents 
who consider the environment safe. In order to reduce the disturbance, the program is replicated 10 times and 
the final result is averaged.
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