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A B S T R A C T

Mitochondria possess reserve bioenergetic capacity, supporting protection and resilience in the face of disease. Approaches are limited to understand factors that
impact mitochondrial functional reserve in humans. We applied the mitochondrial stress test (MST) to platelets from healthy subjects and found correlations between
energetic parameters and mitochondrial function. These parameters were not correlated with mitochondrial complex I-IV activities, however, suggesting that other
factors affect mitochondrial bioenergetics and metabolism. Platelets from African American patients with sickle cell disease also differed from controls, further
showing that other factors impact mitochondrial bioenergetics and metabolism. To test for correlations of platelet metabolites with energetic parameters, we
performed an integrated analysis of metabolomics and MST parameters. Subsets of metabolites, including fatty acids and xenobiotics correlated with mitochondrial
parameters. The results establish platelets as a platform to integrate bioenergetics and metabolism for analysis of mitochondrial function in precision medicine.

1. Introduction

The susceptibility to a broad range of diseases including diabetes
and aging-related neurodegenerative pathologies such as Alzheimer's
Disease have been shown to be linked to mitochondrial metabolism
[1–7]. In addition to the potential direct contribution of dysfunctional
bioenergetics to the mechanism of these diseases, the failure to main-
tain adequate mitochondrial quality to protect against oxidative or
metabolic stress also appears to be important [8,9]. It becomes of in-
terest, from a precision medicine perspective, to develop diagnostic and
prognostic indices of bioenergetic health. For example, it has been
shown that mitochondria-related biomarkers and metabolites can pre-
dict the clinical outcome for sepsis patients [10–12].
Interestingly, it is now becoming clear that platelets can serve as

biomarkers for mitochondrial dysfunction [1]. Changes in platelet
bioenergetics or mitochondrial function have been linked to sickle cell
disease (SCD), asthma, Alzheimer's and Parkinson's disease [3,13,14].
Recent advances in the measurement of platelet bioenergetics allow the
determination of parameters, which reflect metabolism in the intact
platelet and assignment of oxygen consumption to ATP synthesis and
the overall capacity of oxidative phosphorylation [2,15]. This assay,
known as the mitochondrial stress test (MST), is based on the sequential

addition of mitochondrial inhibitors and the concomitant measurement
of oxygen consumption and extracellular acidification rates (OCR and
ECAR) [9,16]. The recent application of this method using platelets,
monocytes and lymphocytes to clinical samples has revealed the po-
tential of the MST for diagnostic and prognostic translational research
[1,2,7,13,14,17,18]. Platelet metabolism has a high level of metabolic
plasticity with fuel utilization switching to fatty acids as a requirement
for both oxidative phosphorylation and aggregation [19–21]. In the
present study with intact human platelets, we show a significant var-
iation in oxygen consumption rates for key parameters such as ATP-
linked respiration between individuals. This potential variation in mi-
tochondrial efficiency should also be reflected in the metabolome and
potentially contribute to the susceptibility to stressors. For example, we
have shown that platelets respond to the toxicity of the lipid perox-
idation product 4-hydroxynonenal by stimulation of glycolysis but in-
hibition of the TCA cycle and mitochondrial function [22].
In platelets from patients with SCD, a pathology characterized by

hemolytic anemia due to a mutation in the beta-globin gene of he-
moglobin, the MST showed decreased basal and oligomycin-sensitive
oxygen consumption, with no significant change in maximal capacity
compared to platelets from healthy matched controls [14]. We de-
monstrated that this bioenergetic alteration was due to significant
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inhibition of complex V (ATP synthase) in SCD subjects, and resulted in
increased membrane potential and oxidant production. Notably, this
inhibition of platelet complex V was due to exposure of platelets to
plasma free hemoglobin, which is increased by hemolysis. Additionally,
the resulting mitochondrial oxidant production stimulates platelet
thrombotic activation and susceptibility to aggregation [14]. This me-
chanism may underlie the increased basal platelet activation in SCD
patients and contribute to the increased incidence of thrombotic disease
in this population [23–25].
Our previous studies have suggested that the parameters revealed

by the MST are inter-dependent [9]. The bioenergetic parameters
measured by the MST reflect the ability of the platelet to provide the
fuel necessary to drive oxidative phosphorylation. We have shown that
in the platelet, there are contributions from glycolysis, fatty acids, and
glutamine to the MST profile, which also varies with thrombin-depen-
dent aggregation [19,20]. However, whether the capacity of the mi-
tochondrial complexes that compose the oxidative phosphorylation
pathway are limiting is not known. By developing an integrated assay in
which both oxidative phosphorylation and bioenergetics in the intact
platelet can be measured in parallel samples from the same individual
donor we were able to address this question. It is expected that mi-
tochondrial metabolism will vary between healthy individuals and will
be reflected in both the metabolome and the MST which is a measure of
the integration of the components of oxidative phosphorylation and
cellular metabolism. In the present study, we tested these hypotheses
using untargeted metabolomics in platelets from healthy donors and
found that regulation of bioenergetic parameters derived from the MST
are well correlated with over one hundred metabolites.

2. Materials and methods

2.1. Chemicals

All reagents were purchased from Sigma-Aldrich (St. Louis, MO,
USA) unless otherwise specified. A mixture of internal standard stable
isotopic chemicals [26,27] from Cambridge Isotope Laboratories, Inc.
(Andover, Pennsylvania).

2.2. Platelet isolation

Platelets used for these studies were between day 6 and 8 after
collection or freshly isolated as described previously [14–16]. Based on
our previous studies platelets were isolated and assayed within 4–6 h of
collection of the blood sample over which time the bioenergetic func-
tion is stable(15). Platelet concentrates from 11 to 13 individual donors
were obtained from the University of Alabama at Birmingham blood
bank at day 6–8 as described in Ref. [28] or isolated from fresh blood
samples from healthy donors (85 samples) [15]. For the healthy donors
a screening survey was used to select for healthy patients to ensure they
were disease free at the time the blood sample was taken. Exclusion
criteria were pregnancy, smoking, active diseases or surgical proce-
dures within one month, medications (antibiotics, steroids, HIV medi-
cations, anti-depressants, anti-inflammatory drugs within 48 h, BMI
over 40 etc.) or alcohol within 48 h of collection. The demographics for
this group are reported in Table 1a. Collection and use of these samples
were approved by the University of Alabama at Birmingham Institu-
tional Review Board (Protocol #X110718014). Platelets from sickle cell
disease (SCD) patients and healthy subjects (n=35 in each group)
were freshly isolated from blood collected after informed consent on
Protocol# PRO08110422, which was approved by the University of
Pittsburgh Institutional Review Board. All subjects were African
American and between 25 and 45 years of age and the detailed de-
mographics are reported in Table 1b. Subjects with SCD were homo-
zygous SCD (HbSS) and in steady state. African American subjects had
no known hemoglobinopathy. Subjects were excluded if they were on
any anti-coagulant medication or had received a blood transfusion in

the three months prior to blood draw. In brief, platelets were pelleted
by centrifuging at 1500 g for 10min then washed with PBS containing
prostaglandin I2 (1 μg/ml) and the platelet number was determined by
turbidimetry [29]. Platelet aggregation using the 96-well plate reader
was measured as previously described [30].

2.3. Treatment and assessment of platelet bioenergetics and mitochondrial
function

The 96-well format Seahorse extracellular flux analyzer (Seahorse
Bioscience, MA, USA) was used to measure bioenergetics [16]. Platelets
were diluted to a concentration of 1× 107 in XF DMEM assay buffer
(DMEM with 1mM pyruvate, 5.5 mM D-glucose, 4 mM L-glutamine, pH
7.4) and were seeded onto Cell-Tak coated XF96 microplates and mi-
tochondrial stress test was performed as described [14,31]. The mi-
tochondrial complex assay is performed using Plasma Membrane Per-
meabilizer (PMP) with an injection of respiratory substrates with ADP
or FCCP [32].

2.4. High-resolution metabolomics (HRM)

Untargeted metabolomics was performed using previously estab-
lished HRM methods [33–36]. Washed platelets were diluted to a
concentration of 100×106/well in 0.75ml DMEM assay buffer (DMEM
with 1mM pyruvate, 5.5 mM glucose, 4 mM glutamine, pH 7.4) and
treated with oligomycin (1 μg/ml) for 30min at 37 °C in a non-CO2
humidified incubator in 6-well plates (9 cm2/well). Platelets were then
washed with cold PBS and the proteins precipitated using acetonitrile
(50 μl) containing a mixture of stable isotope-labeled internal standard
[26,27]. Pooled platelets (300× 106 platelets from 3 wells) in 150 μl of
acetonitrile containing internal standard were incubated on ice for
30min, metabolic extracts were centrifuged to remove proteins, ran-
domized, and 10 μL aliquots were analyzed with three technical re-
plicates using reverse-phase C18 liquid chromatography (Targa C18
2.1 mm×50mm x 2.6μm, Higgins Analytical) combined with a High
Field Q-Exactive mass spectrometer (Thermo Fisher). Mass spectral
detection completed in negative mode electrospray ionization (ESI) at
120,000 (FHWM) resolution over a mass-to-charge ratio (m/z) range of
85–1250. A quality control pooled reference plasma sample (Q-Std3)
was included at the beginning and end of each batch of 25 samples for
quality control and quality assurance [37]. Raw data files were ex-
tracted using apLCMSv6.3.3 [38] with xMSanalyzerv2.0.7 [39],

Table 1a
Healthy subject demographics.

Characteristic N=85 (%)

Age (years):
Median 33
Range 18–64
Gender:
Female 43 (50.6)
Male 42 (49.4)
Race:
Asian 19 (22.4)
African American 22 (25.9)
Caucasian 42 (49.4)
Hispanic 1 (1.2)
Unknown 1 (1.2)

Table 1b
Demographics of sickle cell and healthy African American subjects.

African American Controls
(n= 35)

Sickle Cell (n= 35)

Age Range (median) 26-45 [37] 25-45 [36]
Gender (Male: Female) 17: 18 15: 20
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followed by batch correction with ComBat [40]. Uniquely detected ions
consisted of m/z, retention time (RT) and ion abundance, referred to as
metabolic features.

2.5. Data processing and metabolic feature selection

Prior to data analysis, triplicate injections were averaged and only
m/z features with at least 80% non-missing values in either of the
groups and more than 40% non-missing values across all samples were
retained. After filtering based on missing values, data were log 2
transformed and quantile normalized [41]. Selection of differentially
expressed m/z features was performed based on one-way repeated
measures ANOVA, using the limma package in R [42]. Benjamini-
Hochberg false discovery method was used for multiple hypothesis
testing corrections at a FDR<0.2 threshold [43]. Visualization of the
data, which was based on similarity in expression, was performed using
unsupervised two-way hierarchical clustering analysis (HCA) utilizing
the hclust() function in R to determine the clustering pattern of selected
m/z features and samples. Principal component analysis (PCA) was
performed using the pca() function implemented in R package pca-
Methods.

2.6. Pathway enrichment analysis

To evaluate systemic metabolic alterations a metabolome-wide as-
sociation analysis was performed for discriminatory metabolites at
p < 0.05 and characterized for pathway enrichment using mummichog
software [44]. For this analysis, features differing at p < 0.05 were
selected to protect against type 2 error, and permutation testing
(p < 0.05) was used in pathway enrichment analysis to protect against
type 1 error [45]. Pathways including minimum 5 matched metabolites
in total size were selected and annotated using the criteria described
below.

2.7. Metabolite annotation

Metabolic features were annotated using xMSannotator [46]; con-
fidence scores for annotation by xMSannotator are derived from a
multistage clustering algorithm. Identities of selected metabolites were
confirmed by co-elution relative to authentic standards and ion dis-
sociation mass spectrometry (Level 1 identification by criteria of
Schymanski et al. [47]. Supplemental annotations were made based on
high or medium confidence (≥2) with M-H adducts detected in the
negative mode. Lower confidence annotations were made using KEGG,
(Kyoto Encyclopedia of Genes and Genomes) [48]; HMDB (Human
Metabolome Database) [49]; and Lipid Maps [50] databases at 5 ppm
tolerance.

2.8. xMWAS

Bioenergetic and HRM data from the same set of samples were in-
tegrated by using xMWAS based on the sparse partial least-squares
(sPLS) regression method for data integration [51]. sPLS is a regression-
based modeling approach which performs simultaneous variable

selection and data integration, and is designed for problems where the
sample size (n) is much smaller than the number of variables (p) and
the variables are highly correlated [52]. In addition, the software per-
forms community detection using the multilevel community detection
algorithm [53] to identify groups of nodes that are heavily connected
with other nodes in the same community, but have sparse connections
with the rest of the network. The input for xMWAS included the cellular
bioenergetics (13 samples× 6 energetic parameters) and the metabo-
lome (13 samples× 2705 metabolic features which had been quantile
normalized and log-transformed) data matrices. Thresholds for de-
termining significant associations must have met the correlation
threshold criteria (|r| > 0.5) and p < 0.05 as determined by Student's
t-test.

2.9. Statistical analysis

The data reported in the metabolomics analyses are derived from
platelets isolated from 11 to 13 different donors. Each platelet group
was comprised of 3–5 technical replicates, and the data is presented as
mean ± SEM. Statistical significance was determined using either a T-
TEST or ANOVA with Tukey's post hoc test for data with more than 2
groups, and p < 0.05 was considered significant. The linear correla-
tion between multiple pairs of bioenergetic parameters were de-
termined using the multivariate function of the JMP statistical program
(JMP®, Version 13, SAS Institute Inc., Cary, NC). A correlations (r-va-
lues) table that summarizes the strength of the linear relationships
between each pair of bioenergetic parameters and a table with corre-
sponding p-values were generated to identify significant dependencies
between parameters. An r-value ≥0.4 with a p≤ 0.01 are considered
significant.

3. Results

3.1. Platelet bioenergetics and mitochondrial function in healthy subjects

Platelets isolated from 85 healthy volunteers (demographics in
Table 1a,b) were analyzed for the MST and mitochondrial function as
we described previously [14,16,19,28]. Fig. 1A–C shows examples of
these assays for an individual donor and the calculation of the energetic
parameters associated with MST and assessment of oxidative phos-
phorylation in intact and permeabilized platelets. This approach allows
the measurement of bioenergetics from intact platelets and the activity
of the key components of oxidative phosphorylation in parallel samples
from the same donor [28]. The age range in this healthy population was
18–64 (Table 1a). To determine whether in this cohort age had any
impact on bioenergetic or mitochondrial parameters a regression ana-
lysis was performed (Table 1b). As can be seen no correlations were
observed for any of the parameters and age but this does not preclude
the possibility that in older age groups a decrease in bioenergetics oc-
curs as has been reported for blood mononuclear cells in older adults
[54]. We also examined the effects of gender and found no significant
differences (result not shown). The study is not sufficiently powered at
this stage to determine differences in bioenergetics between Caucasian
and African American healthy subjects.

Fig. 1. Defining cellular bioenergetics and mitochondrial function in human platelets. (A) The mitochondrial stress test (MST) is shown for a typical platelet
sample from a healthy donor with the sequential addition of mitochondrial inhibitors (oligomycin, FCCP, and antimycin. The measurement of Basal, ATP-linked,
proton leak, maximal, reserve capacity and non-mitochondrial OCR are shown Mitochondrial complex activities were determined in permeabilized cells by providing
an excess of substrates. (B) After establishing a steady state of oxygen consumption, PMP (plasma membrane permeabilizer), succinate, rotenone, and ADP were
injected to stimulate CII activity to couple to ATP production, then oligomycin, FCCP, and antimycin to completely inhibit mitochondrial respiration. State 3 and
state 4 respiration of cells in the presence of succinate/ADP followed by oligomycin allows measurement of both complex II and the respiratory controls ratio (RCR).
(C) PMP, pyruvate, malate, and FCCP were injected to stimulate maximal respiration through complex I. This is followed by rotenone to inhibit complex I and then
ascorbate/TMPD to assess the activity of Complex IV, then azide as an inhibitor of complex IV. This figure shows the assay design which allows for the measurement
of cellular energetics and mitochondrial respiratory complexes from the same platelet sample. (D) Bioenergetic parameters calculated from the MST, and (E)
Calculation of C-I, CII, and CIV with FCCP for maximal activity and C-II with ADP. Data is shown for technical replicates of 3–5 wells as mean ± S.E.M. for each
platelet preparation.
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Fig. 2. Relationships between bioenergetic parameters from the mitochondrial stress test (MST) and Oxidative Phosphorylation Assays. Using the data
shown in Fig. 1 multivariate analysis was performed using the JMP statistical package to assess relationships between parameters from the MST and oxidative
phosphorylation between healthy platelet donors. Each symbol (n= 85) represents the mean of data from a single individual (3–5 technical replicates) and the
dotted line represents the regression. The r-values shown and the results of the significance tests for these data are reported in Table 2.
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To establish the relationships between parameters from the MST
and activity of mitochondrial complexes in the same platelets, we col-
lected data from the healthy subjects as shown in Fig. 1A–C and sub-
jected them to a multivariate analysis as reported in Table 2 and gra-
phically in Fig. 2. Applying a minimum threshold r-value of 0.4 and
p < 0.01, highly significant relationships were evident between basal
OCR and ATP-linked OCR, proton leak, and maximal OCR, but not re-
serve capacity and non-mitochondrial OCR. ATP-linked OCR was po-
sitively correlated with maximal OCR but more weakly with proton
leak. Reserve capacity was positively correlated only with maximal
respiration. Mitochondrial Complex activities were not strongly corre-
lated with each other with the exception of Complex II/FCCP vs Com-
plex II/ADP and a weak association of Complex I and IV. The re-
spiratory control ratio (RCR) is frequently used as a measure of
mitochondrial efficiency and in these protocols is measured with
complex II-linked substrates as the ratio of activity in the presence of

ADP (complex V dependent) or the uncoupler FCCP (ATP synthase in-
dependent). The values for RCR were positively correlated with each
other consistent with ATP synthase activity placing a limit on the
maximal flux through mitochondrial electron transport in coupled mi-
tochondria. Interestingly, the RCR measured with complex II-linked
substrates with ADP was negatively correlated with basal, proton leak
and maximal OCR.
We reasoned that the lack of correlation of mitochondrial para-

meters with the intact platelet bioenergetics could arise if mitochon-
drial capacity is in excess of bioenergetic demand in the intact platelet.
To test this we show the comparison of the maximal OCR values for
complexes I, II and IV compared to the basal and maximal OCR in the
same platelets from the MST (Fig. 1D–E). As we suspected the sum of
the maximal activity of complexes I, II and IV are well in excess of the
mitochondrial oxygen consumption needed to sustain energy demand
in the normal intact platelet.

3.2. Relationships between MST parameters in the intact platelet in healthy
subjects and patients with SCD

The analysis of the MST test in healthy subjects revealed a number
of strong associations between key bioenergetic parameters such ATP-
linked respiration with basal and maximal (Fig. 2, Table 2). Using data
from an established cohort of SCD patients [14] we hypothesized that
the relationships between the MST parameters would be compromised.
The demographics for this patient population is reported in Table 1c.
The result of this analysis is shown in Fig. 3 and Table 3. Applying a
minimum threshold r-value of 0.4 and p < 0.01, highly significant
relationships in the African American population were evident between
Basal OCR and ATP-linked OCR, proton leak, and maximal. In this co-
hort, strong correlations between maximal, reserve capacity and non-
mitochondrial OCR were also noted. ATP-linked OCR was positively
correlated with maximal OCR but more weakly with proton leak. In the
SCD patients, the relationship with maximal OCR and basal and ATP-
linked OCR was no longer evident. In addition, the correlation between
maximal and non-mitochondrial OCR evident in the African American

Table 1c
Influence of Age on mitochondrial parameters.

Correlations Correlation Probability

Basal 0.1948 0.2284
ATP-Linked 0.1944 0.2295
Proton Leak 0.237 0.1408
Maximal 0.181 0.2638
Reserve Capacity 0.0898 0.5816
Non-Mitochondrial −0.1406 0.387
BHI 0.0578 0.723
Basal ECAR 0.1378 0.3963
Glycolytic Reserve 0.065 0.6903
Complex I −0.1696 0.2954
Complex II-ADP −0.0002 0.9989
Complex II-FCCP −0.06 0.7132
Complex IV 0.0283 0.8622
RCR-ADP −0.0508 0.7555
RCR-FCCP −0.0917 0.5737

The relationship between the mitochondrial parameters were analyzed by
correlation studies (n=70–85) using JMP 13 statistical software. Correlation
probability of< 0.05 were considered significant.

Table 2
Correlation between Platelet Bioenergetic parameters.

Basal AL PL Max. RC NM Comp I Comp II-A Comp II-F Comp IV RCR-A

Basal
AL 0.982
PL 0.623 0.514
Maximal 0.793 0.771 0.466
RC 0.255 0.239 0.104 0.791
NM −0.103 −0.070 −0.272 −0.071 −0.004
Comp I 0.187 0.151 0.217 0.243 0.197 0.115
Comp II-A 0.032 0.077 −0.049 −0.034 −0.076 0.512 0.228
Comp II-F −0.019 0.046 −0.142 −0.014 −0.007 0.389 0.351 0.849
Comp IV 0.221 0.187 0.316 0.359 0.346 −0.046 0.456 0.036 0.216
RCR-A −0.433 −0.362 −0.417 −0.420 −0.244 0.394 −0.206 0.594 0.393 −0.295
RCR-F −0.238 −0.191 −0.299 −0.187 −0.068 0.0002 −0.055 −0.284 0.069 -.0771 0.859
Correlation Probability
Basal
AL < .0001
PL < .0001 0.0006
Maximal < .0001 < .0001 0.0021
RC 0.1070 0.1321 0.5163 < .0001
NM 0.5203 0.6627 0.0858 0.6616 0.9786
Comp I 0.2406 0.3466 0.1722 0.1262 0.2174 0.4751
Comp II-A 0.8415 0.6341 0.7632 0.8339 0.6349 0.0006 0.1513
Comp II-F 0.9059 0.7765 0.3756 0.9311 0.9635 0.0119 0.0246 <.0001
Comp IV 0.1646 0.2410 0.0441 0.0212 0.0269 0.7745 0.0028 0.8231 0.1757
RCR-ADP 0.0047 0.0202 0.0067 0.0063 0.1239 0.0109 0.1962 <.0001 0.0111 0.0618
RCR-FCCP 0.1333 0.2319 0.0572 0.2409 0.6716 0.9990 0.7550 0.0719 0.6701 0.6319 <.0001

The top portion of the table contain R-values above for the correlations in each cell. The bottom portion of the table provides the corresponding p-values. Parameters
marked in bold met threshold criteria of r-value> 0.4 and p < 0.04. Bioenergetic parameters were determined for individual donors as described in Fig. 1. AL (ATP-
linked), PL (proton leak), Max. (maximum), RC (reserve capacity), NM (non-mitochondrial).
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Fig. 3. Relationships between bioenergetic parameters from the mitochondrial stress test (MST) for Healthy African American Subjects and Patients with
Sickle Cell disease. Using the MST assay shown in Fig. 1 multi-variant analysis was performed using the JMP statistical package to assess relationships between
parameters from the MST and in African American (AA) healthy subjects (n= 35) and those with SCD (n=35). Each symbol (blue dots=AA and red dot= SCD)
represents the mean of data from a single individual (3–5 technical replicates) and the dotted line represents the regression. The r-values shown and the results of the
significance tests for these data are reported in Table 3.
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healthy subjects was also lost.

3.3. Integrating the platelet metabolome with bioenergetics

The data in Fig. 2 showing a several-fold change in the ATP-linked
vs basal OCR parameters between individuals suggests that the under-
lying metabolome should also differ significantly between individuals.
To test this we used platelets isolated from healthy individuals and
performed both the MST and HRM. The values for the stored platelets
were super-imposable on the data from the healthy donor cohort except
for proton leak, which was elevated due to increased levels of fatty
acids as we have reported previously [28]. The stored platelets show no
other metabolic or functional differences compared to those that are
freshly isolated and we have previously shown that the increased
proton leak was reversed with the addition of albumin to the medium
and with no significant effect on other bioenergetic parameters [28].
This suggests the increase in proton leak is reversible and unlikely to
significantly affect the overall metabolome. Bioenergetic or metabo-
lomic assessments were not made in the presence of Albumin since this
could potentially bind low molecular weight metabolites and prevent
detection by mass spectrometry. As a positive control to assess meta-
bolic plasticity in response to metabolic stress, we also treated the same
samples with oligomycin, which is an inhibitor of the mitochondrial
ATP synthase, and used in the first step of the MST (Fig. 1).
Over 3500 metabolic features were detected of which 3150 were

present in 8 out of 13 donors in control and oligomycin treated samples.
To identify the metabolic pathways in these donors, we analyzed 3150
metabolites using the KEGG pathway database (Table 4). The results
show that 924 features were matched with KEGG-identified metabolites
representing 58 metabolic pathways including arachidonic acid meta-
bolism, glycolysis and fatty acid metabolism, critical for platelet func-
tion (Supplementary Table 1). Next, we examined metabolic responses
of the platelets to oligomycin treatment. Mass spectral data processing
yielded 2572 features in two groups after processing. ANOVA on these
features revealed 89 metabolites were changed by oligomycin
(p < 0.05 at FDR of 0.2) and are presented by HCA (hierarchical
clustering analysis)-heat map (Fig. 4A) and PCA plots (Fig. 4B). Man-
hattan plots, based upon RT, m/z and abundance of metabolites show

that of the 89 metabolites, 45 metabolites were higher and 44 meta-
bolites were lower in oligomycin-treated platelets compared to the
vehicle group (Fig. 4C and D). Supplementary Table 2 shows detailed
information on 34 annotated features. To examine the metabolic
pathways associated with 89 metabolites altered by oligomycin,
pathway enrichment analysis was performed using mummichog. The
results showed that the pyrimidine, glycolysis and gluconeogenesis and
de novo fatty acid pathways were altered by oligomycin treatment
(Fig. 4E). The detailed information on metabolites associated with these
pathways is provided in Supplementary Table 3.
Because the platelets have a broad range of bioenergetic parameters

at basal level (Figs. 1 and 2) we examined whether this is also reflected
in the metabolome in the vehicle group. The unsupervised HCA-heat
map for the metabolome profiles for all 11 donors shows two distinct
clusters in the vehicle group (labeled groups 1 and 2 in Fig. 4A). To test
whether the two groups differed in their basal metabolism, we analyzed
the 2705 processed metabolic features. ANOVA shows that 110 features
differed in two vehicle groups as shown in HCA-heat map and PCA plots
(Fig. 5A and B). Annotation and the details of these features are pro-
vided in Supplementary Table 4. The results of pathway enrichment
analysis show that 12 metabolic pathways were different in the two
groups, including fatty acid metabolism, pentose phosphate, TCA cycle,
branch chain amino acids and vitamin B3 were the 5 metabolic path-
ways showing the most prominent differences (Fig. 5C, see
Supplementary Table 5 for the detailed information of features).
Next, to examine the association between the basal metabolome and

bioenergetic parameters, we correlated the 6 bioenergetic parameters
shown in Fig. 1 with the 2705 metabolic features from the vehicle
group using xMWAS [40]. The result of xMWAS analysis yielded 4
distinct communities encompassing over 100 features and 6 bioener-
getic parameters with the number of positive and negative associations
between metabolites and bioenergetics parameters (r > 0.3–0.5,
p < 0.05, Fig. 6, see Table 5 for summary and the details and for an-
notation details see Supplementary Table 6). Of these metabolites, 42
were further analyzed for annotation and categorized by their function
as shown in the pie chart (Fig. 6B). Communities 1 and 2 have the
strongest number of interactions with Reserve Capacity and Maximal
OCR, whereas community 4 has a stronger influence over ATP-linked

Table 3
Correlation between Platelet Bioenergetic parameters for HV and SCD.

Basal AL PL Maximal Res Cap

AA SCD AA SCD AA SCD AA SCD AA SCD

CORRELATIONS
Basal
AL 0.7727 0.8740
PL 0.6435 0.7777 0.0113 0.3743
Maximal 0.6935 0.0920 0.6712 0.1320 0.2830 0.0049
Res Cap −0.1982 −0.3951 0.0309 −0.2977 −0.3496 −0.3688 0.5687 0.8784
Non-Mito 0.1701 0.6522 0.1100 0.5049 0.1353 0.5915 0.6069 0.0938 0.6314 −0.2266
CORRELATION PROBABILITY
Basal
AL < 0.0001 < 0.0001
PL < 0.0001 < 0.0001 0.9494 0.0292
Maximal < 0.0001 0.6046 < 0.0001 0.4567 0.1048 0.9782
Res Cap 0.2611 0.0207 0.8622 0.0872 0.0427 0.0318 0.0004 <0.0001
Non-Mito 0.3362 < 0.0001 0.5356 0.0023 0.4456 0.0002 0.0001 0.5979 < 0.0001 0.1976

Table 4
Platelet metabolome.

Group Average No. features per subject± SEM Total No. features present in 8/11 donors Feature hits using KEGG±5 ppm Pathway Mapping > 4 hits in pathway

Vehicle 3175 ± 25 3150 924 58
Oligomycin 2980 ± 39 3099 940 58

The table represents features that were found for platelets before and after treatment with oligomycin (n= 11).
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and Basal OCR. Community 3 has the smallest number of interactions
and is associated with non-mitochondrial OCR and proton leak.

4. Discussion

It is well recognized that human metabolism varies between in-
dividuals and may contribute to the severity or susceptibility to en-
vironmental or pathological stress. From a precision medicine per-
spective, understanding these relationships will be critical in
developing personalized approaches to interventions designed to
change metabolism appropriately including lifestyle modifications and
therapeutics. The challenge is then to develop platforms in which un-
targeted metabolomics data, as a measure of metabolic responses, can
be integrated with measures of bioenergetic performance.
Using a panel of healthy donors, we developed a protocol to mea-

sure both the mitochondrial activity of the intact platelet and the per-
formance of the oxidative phosphorylation pathway in the same in-
dividual (Fig. 1). This approach allows us to make a quantitative
estimate of the variability of metabolic and bioenergetic functions using
readily accessible platelet samples as a platform. The MST in combi-
nation with the measurement of oxidative phosphorylation in per-
meabilized platelets generates a number of parameters, which can be
directly compared without confounding artifacts introduced by the
disruptive procedures used to isolate mitochondria. Maximal respira-
tion is determined in the presence of the uncoupler FCCP and it is then
possible that this does not truly represent the maximal capacity due to
differences in the sensitivity to the uncoupler between individuals.
Although the FCCP concentration was optimized when the methods
were established there is not sufficient sample to perform an FCCP dose
response for each subject so this remains a possibility. A further con-
straint on the interpretation of the FCCP-dependent OCR as re-
presenting maximal respiration is the possibility that ATP synthase may
be limiting. This is not the case for platelets since we have shown that
the reserve capacity (maximal-basal OCR) is fully utilized in thrombin
activated platelets for the purpose of ATP synthesis [19]. Interestingly,
we found that the mitochondrial function required for the intact pla-
telet is substantially below the potential capacity for oxidative phos-
phorylation evident in the permeabilized platelets (Fig. 1). It follows
that the platelet bioenergetic demand is not limited by the capacity of
oxidative phosphorylation and in this case, no association of mi-
tochondrial complex activities with intact platelet bioenergetics would
be expected.
Since both the genetic and biogenesis programs vary between in-

dividuals we reasoned that the need to meet specific energetic demands
would result in adaptive metabolic plasticity between individuals. For
example, one could predict that differences in mitochondrial efficiency
between individuals would result in varying proportions of the oxygen
consumption being directed towards ATP synthesis when individuals
are compared. Using a multi-variate analysis we confirm that the ability
of platelets to meet bioenergetic demand through oxidative phosphor-
ylation varies substantially between individuals (Fig. 2). The plot of
ATP-linked OCR vs basal OCR shows a remarkably tight correlation
consistent with this wide range of plasticity in human metabolism in
normal resting platelets. This ATP-linked OCR makes a substantial
contribution to the Basal OCR so this relationship might be expected on
this basis alone. However, Proton leak-dependent OCR can be measured

with the same precision as ATP linked-OCR but is much more weakly
correlated suggesting that alternative interpretation that these bioe-
nergetic parameters are independently regulated. The finding that
maximal respiration is well correlated with reserve capacity is expected
since this parameter is derived from subtracting the basal OCR from the
maximal. Interestingly, maximal OCR is strongly correlated with ATP-
linked OCR but only weakly with proton leak suggesting that changes in
mitochondrial efficiency between individuals are not strongly influ-
enced by proton leak in normal subjects. The negative correlation of
RCR with proton leak and maximal respiration suggests that as RCR
increases (equivalent to increased efficiency) maximal respiration and
proton leak decrease so allowing energy demand to match overall ca-
pacity. This is also consistent with the strong correlation of maximal
respiration with ATP-linked OCR. Non-mitochondrial OCR is measured
after the addition of antimycin A and shows a positive correlation with
Complex II in the presence of ADP but not FCCP or other mitochondrial
complexes. This is particularly interesting as reverse electron transport
from Complex II through complex I is currently of great interest and
could be contributing to the antimycin A-insensitive OCR [11].
These data strongly support the concept that the bioenergetic pro-

gram in human subjects varies between individuals depending on ge-
netic, dietary and environmental factors. The program is plastic and
adaptable to meet the energetic demands of a particular cell type in
both quiescent conditions and during biological activation. For ex-
ample, platelets show a 2–3 fold variation in the amount of oxygen
needed to maintain ATP (Fig. 2) and both glycolysis and oxidative
phosphorylation contribute to the energy demands of platelet ag-
gregation(19,20). This concept suggests that under pathological con-
ditions in which metabolism or bioenergetics are targeted these re-
lationships may break down. We tested this hypothesis in a cohort of
African Americans with SCD which we have previously shown have a
bioenergetic defect in mitochondrial ATP synthase [14]. We found that
the strong relationship between ATP-linked and basal OCR was main-
tained although the dynamic range for the ATP-linked OCR was sig-
nificantly depressed as we have reported previously [14]. In the healthy
subject cohort, there are significant relationships between the para-
meters which contribute to basal respiration (ATP, proton leak) and
maximal which are lost in the SCD patients (Fig. 3, Table 3). This
suggests that the program, which links maximal respiratory capacity
with other respiratory parameters, is no longer functional and will then
constrain the overall bioenergetic plasticity for the SCD patients. Non-
mitochondrial respiration is calculated as the OCR that remains after
treatment with an inhibitor of mitochondrial electron transport. What
contributes to non-mitochondrial OCR healthy subjects is not clear but
in the SCD patients, it has been shown that xanthine oxidase is making
an important contribution [14]. In African American healthy subjects,
the non-mitochondrial OCR is positively correlated with maximal re-
spiration and this relationship is lost in the SCD patients. Clearly, fur-
ther studies are needed to determine how this relationship is estab-
lished in healthy platelets and whether xanthine oxidase is playing a
role.
Using unsupervised HCA-heat map analysis, vehicle and oligo-

mycin-treated platelets resulted in a metabolism-specific pattern
(Fig. 4A). The mechanism of oligomycin is to inhibit ATP synthesis and
inhibition of ATP stimulates glycolysis in platelets [19], and indeed
KEGG and pathway analysis indicated that among the major pathways

Fig. 4. Metabolic separation of features after Oligomycin exposure in human platelets. (A) Unsupervised hierarchal clustering heatmap indicates that intensity
of 89 features which drive the separation between vehicle control and Oligomycin groups. (B) PCA plot showing separation of the vehicle control group (shown in
red) and Oligomycin exposed group (shown in green), through the 1st and 2nd principal components. (C) Type I Manhattan plot of m/z features plotted against the
–LogP value. Shown in gray are the 2572 features identified after filtering and normalization. 89 features were found to be different between the two groups using the
criteria (p < 0.05, FDR < 0.2) as indicated by the blue dotted line. Shown in red were features identified to be increased after exposure (45/89) and in blue features
which were decreased (44/89). (D) Type II Manhattan plot using retention time plotted against –LogP value. For a list of annotated features from the pathway
enrichment see Supplementary Table 2. (E) Pathway enrichment analysis of stored human platelets after Oligomycin exposure compared to vehicle control. A total of
3 enriched pathways were determined (Filled bars indicate significance and the cutoff (p < 0.05) is indicated by the dotted line). For a list of annotated features
from the pathway enrichment see Supplementary Table 3.
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Fig. 5. Metabolic separation of individuals into 2 clusters at baseline. (A). Unsupervised hierarchical clustering heatmap indicates that intensity of 110 features
driving the separation between metabolic groups 1 and 2. (B). PCA plot showing separation of the metabolic group 1 (shown in green) and metabolic group 2 group
(shown in red), through the 1st (59% variation) and 2nd (11% variation) principal components. For a list of annotated features from the pathway enrichment see
Supplementary Table 4. (C) Pathway enrichment analysis of stored human platelets at baseline. A total of 12 enriched pathways were determined (Filled bars indicate
significance and the cutoff (p < 0.05) is indicated by the dotted line). For a list of annotated features from the pathway enrichment see Supplementary Table 5.
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Fig. 6. Association of the metabolome with bioenergetics. Bioenergetics and HRM data from the same set of samples were integrated by using xMWAS in order to
conduct pairwise correlation analysis between the cellular bioenergetics and the metabolome. Four major metabolic communities were detected; community 1
(orange); Reserve capacity was found to be associated with 70 [23] m/z features; community 2 (blue); Maximal was found to be associated with 91 [23] m/z features;
community 3 (green); proton leak and non-mitochondrial was found to be associated with 8 [3] m/z features and; community 4 (yellow); Basal and ATP-Linked OCR
were found to be associated with 59 [17] m/z features with |r|> 0.5 at p < 0.05). See Table 4 and Supplementary Table 6 for the direction of correlations. Red lines
indicate positive associations, and blue lines indicate negative associations. The numbers in parenthesis indicate annotated associated features.
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glycolysis and gluconeogenesis are changing in response to oligomycin
(Fig. 4E, Supplementary Table 3). Other metabolic pathways, which are
showing differences, are also consistent with a switch to a more gly-
colytic phenotype including changes in fatty acid and pyrimidine me-
tabolism. In addition, several metabolites involved in de novo fatty acid
metabolism were decreased Fig. 4E and Supplementary Table 3. Pyr-
imidine metabolism was another pathway altered by decreased mi-
tochondrial function. Mitochondrial dysfunction is known to affect
nucleotide metabolism [55].
In analyzing the metabolomics data further, we found that an un-

supervised clustering of the untargeted metabolome of platelet donors
identified 2 metabolically distinct groups. We hypothesized that seg-
regation of the platelets from individuals into groups 1 and 2, revealed
after treatment with oligomycin, would be also correlated with para-
meters from the MST. To test this hypothesis, the relative amounts of
the metabolites identified in the metabolome were correlated with
parameters from the MST. Using an approach of unsupervised network
integration and clustering of the bioenergetic phenotype with meta-
bolomics, we visualized interactions between these two variables and
identified key modulators. As shown in Figs. 6A and 4 communities and
the strength of relationships between the MST parameters established
independently from the multi-variate analysis in Fig. 2, Table 2, are
recapitulated on the basis of the metabolome in the resting platelet. For
example, in the xMWAS, the proximity of the communities is propor-
tional to the closeness of the relationships. Proton leak, ATP-linked and
Basal OCR are all well correlated and are clustered whereas reserve
capacity is distant from these parameters and is linked only through
maximal respiration. From the xMWAS correlation summary in Table 4,
it is clear that there are both positive and negative correlations with
metabolic features and the MST parameters. This gives confidence in
the validity of the data set since one would expect that in comparing the
metabolome between different individuals that as one pathway de-
creases in relative activity (e.g. OXPHOS) then another (e.g. glycolysis)
may increase. The visual depiction of the data in Fig. 6A also illustrates
that the MST parameters have numerous metabolites that are

modulated independently from each other. Fig. 6B shows the assign-
ment of features identified as correlating with xMWAS data into dif-
ferent chemical classes. As expected fatty acids, amino acids and car-
bohydrates are present. Interestingly, approximately 41% of the
metabolites can be characterized as xenobiotics being derived from the
environment or pollutants. These findings are important since they
support the concept that exposure to environmental pollutants impact
bioenergetic function [56].
Taken together these data demonstrate how the metabolome in the

intact platelet is functionally integrated with bioenergetics. An im-
portant result is that the associations between parameters in the MST
are well correlated with nearly 200 metabolites measured in the resting
platelet. This suggests that selection of an appropriate stressor for a
defined pathological condition can be used in vitro to identify a meta-
bolome associated with increased susceptibility to disease. An intri-
guing aspect of this data is the finding that xenobiotics are correlated
with platelet bioenergetic parameters. This raises the interesting pos-
sibility that platelets energetics and metabolomics could be used to
assess the susceptibility of a population to environmental exposure and
the severity of the toxic response among individuals. This has important
implications for the application of precision medicine to metabolically
related disease including Alzheimers and other age-related pathologies.
Clearly, the platelet is a powerful platform for the linking disease me-
chanism to metabolomic profiling.
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