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Magnetic resonance spectroscopic imaging (SI) is a unique imaging technique that

provides biochemical information from in vivo tissues. The 1H spectra acquired from

several spatial regions are quantified to yield metabolite concentrations reflective of

tissue metabolism. However, since these metabolites are found in tissues at very low

concentrations, SI is often acquired with limited spatial resolution. In this work, we test

the hypothesis that deep learning is able to upscale low resolution SI, together with

the T1-weighted (T1w) image, to reconstruct high resolution SI. We report on a novel

densely connected UNet (D-UNet) architecture capable of producing super-resolution

spectroscopic images. The inputs for the D-UNet are the T1w image and the low

resolution SI image while the output is the high resolution SI. The results of the D-UNet

are compared both qualitatively and quantitatively to simulated and in vivo high resolution

SI. It is found that this deep learning approach can produce high quality spectroscopic

images and reconstruct entire 1H spectra from low resolution acquisitions, which can

greatly advance the current SI workflow.

Keywords: super-resolution, magnetic resonance spectroscopic imaging (SI), deep learning (DL), magnetic

resonance spectroscopy (1H MRS), artificial intelligence

1. INTRODUCTION

Magnetic resonance imaging (MRI) continues to be a versatile modality capable of providing
anatomical, metabolic, and functional information from various regions of the body in vivo.
In particular, magnetic resonance spectroscopic imaging (SI) (1) is able to yield important
data regarding the metabolism of different tissues, and has been especially useful for studying
the metabolism of the human brain (2). Some important biochemicals, or metabolites, in the
brain include N-acetyl aspartate (NAA), glutamate (Glu), glutamine (Gln), creatine (Cr), choline
(Ch), and myo-Inositol (mI) (3). Each metabolite plays an important role in regulating energy
consumption in the brain, and some metabolites also play critical functional roles, including roles
as neurotransmitters (4). It is well-known that metabolic changes occur in parallel with anatomical
changes for a myriad of pathologies (2), and these metabolic changes may even occur before
structural changes are detected.While SI has continued to be an active area of research over the past
several decades, there are still major roadblocks into standardizing this technique and including it
into clinical protocols.
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One of the major disadvantages of SI is the long acquisition
duration associated with obtaining spectra from several voxels
of interest. This is primarily due to the fact that many of
the important metabolites are found in the brain at low
concentrations; these metabolites are typically present in the
brain at 1–12 mM concentrations (3). Therefore, in order to
accurately detect these biochemicals, several signal averages have
to be obtained or larger voxel volumes have to be acquired to
improve the signal to noise ratio (SNR) for the experiment.
As a result, spatial resolution tends to be coarse for many SI
sequences. This low resolution, coupled with other technical
problems such as partial volume effects, hinders the overall
diagnostic capabilities of the SI technique.

There have been many advances in the technological
implementation of SI that allow for faster acquisition and better
spatial resolution. One of the primary acceleration methods is
echo planar spectroscopic imaging (EPSI) (5, 6), which collects
spectral data from an entire line of k-space in a single repetition
time (TR) utilizing an echo planar readout. This spatio-spectral
acquisition approach has also been applied in non-cartesian
SI methods, such as spiral acquisitions (7), concentric circular
acquisitions (8), and rosette acquisitions (9). In addition, parallel
imaging (10–12) can also be used to accelerate the collection
of SI data. Sensitivity encoding (SENSE) has been applied in
combination with EPSI (13) to facilitate even faster acquisition
times. Recently, research has also focused on the application of
various sampling schemes that allow for reduced scan time (14–
18). Some studies (19, 20) have even demonstrated protocols
capable of obtaining spectroscopic images at 64x64 or 128x128
resolution in less than 20 min. Although these advances have
improved the field significantly, SI is still understandably seen as
a low SNR, low resolution technique.

In order to combat the limits of the experimentally
acquired resolution, many post-processing methods have been
developed for super-resolution SI (21–27). These methods
have mainly focused on model-based reconstruction methods
and regularized reconstruction approaches. While many super-
resolution methods are independent of the acquisition protocols,
there are some techniques, such as the spectroscopic imaging
by exploiting spatio-spectral correlation (SPICE) method (18),
that show reconstruction benefits by employing inter-dependent
sequences. Unfortunately, the majority of super-resolution
methods either tend to be very complicated to implement, or
generally show poor reconstruction results. Since experimental
acquisitions have many technical challenges, there is also a large
concern over the true gold standard for these super-resolution
techniques. Without a true standard of comparison, which is a
large problem in the spectroscopic imaging field, many studies
qualitatively and quantitatively compare their methods with less
ideal standards such as bicubic interpolation.

Deep learning is an advancing field that has shown
extraordinary results for image processing (28–30).
Convolutional layers and networks are capable of extracting
valuable features from images, and can further process
these features into labels or other images for classification,
segmentation, and other uses. One network that has been
extremely beneficial for the field of automated medical imaging

segmentation is the UNet (31), which allows for a pixel-wise
transformation of an input image into an output image.
Essentially, deep learning excels at computing an unknown
transformation by using a large example dataset, often referred
to as a training set. We hypothesize that UNet, or some other
deep neural networks are able to upscale low resolution SI (LRSI),
together with the T1-weighted (T1w) image, to produce high
resolution SI (HRSI). To test this hypothesis the biggest challenge
is that a large, publicly available SI dataset is unavailable and
difficult to acquire experimentally. In order to create this data
set, HRSI (128x128 pixels) and LRSI (16x16 pixels or some other
low resolution) experiments would have to be performed on
thousands of diverse patients with different pathologies, which
is not feasible. Thus, it is seemingly impossible to perform deep
learning for super-resolution SI.

In this paper, we report a novel work on the development of a
deep learning technology capable of producing super-resolution
spectroscopic images. An SI generator is used to produce LRSI
and HRSI data in order to train and test a deep learning model.
Using this data, a UNet taking advantage of densely connected
layers (D-UNet) is built and trained. The inputs for the D-
UNet are the T1w image and the low resolution SI image
while the output is the high resolution SI. The results of the
D-UNet reconstruction are compared both qualitatively and
quantitatively to simulated and in vivo high resolution SI data.

2. METHODS

2.1. Spectroscopic Imaging Dataset
Two different MRI data sets were utilized to produce synthetic SI
data for developing the deep learning model. The first MRI data
set comprised of 27 axial slices from the MATLAB MRI dataset.
MR images as well as white matter (WM) and gray matter (GM)
masks from the open access series of imaging studies (OASIS)
project (32), which contained 416 axial images from subjects
ranging in age from 18 to 96 years old, were also used. From
these limited data, 102,169 SI datasets were synthesized using an
SI generator, the details of which are found below.

2.2. Spectroscopic Imaging Generator
The SI generator was designed to address the lack of T1w images,
as well as the lack of paired LRSI and HRSI data. First, the
generator created augmented T1w (aT1w), white matter (WM),
and gray matter (GM) images from an input T1w image. Then,
the generator would produce a matched LRSI and HRSI for the
aT1w image.

2.2.1. Augmenting T1w Images
An input T1w image is first segmented into WM and GM
images via an intensity based approach. First, the maximumWM
intensity (WMmax), and theminimumGM intensity (GMmin) are
determined from the image. Then,WMandGM images aremade
by applying the following:

WM =

(S− GMmin

WMmax

)

·M (1)

GM =

(

1−WM
)

·M (2)
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Above, S is the original signal intensity of the input T1w image,
andM is a mask for the brain region only, and is applied through
an element-wise multiplication. The above equations ensure that
the elements of both the WM and GM images range from zero
to one, and are representative of the percentage of WM or GM
present in any voxel.

Then, the SI generator modifies the input T1w image to
produce an aT1w image. The contrast of the T1w image is altered
by the following:

aT1w = R
(

Sr1n + L
)

(3)

Here, Sn is the normalized input T1w signal and r1 is a random
number between 0.5 and 2.5. R() is a rotation and field of
view (FOV) truncation transformation that rotates the image
randomly in the range of –15◦ to 15◦ and randomly truncates the
image in the range of 0 to 40 pixels in any direction. L is a matrix
that represents up to 6 lesions of varying intensity, location, and
size. Since this lesion matrix is random, the aT1w image may or
may not contain any hyper-intense or hypo-intense regions. The
same transformation used in Equation (3) is also applied to the
WM and GM images.

2.2.2. Production of Matched LRSI and HRSI Maps
In order to produce data useful for clinical applications, the SI
generator operated under an assumption that is biologically valid:
WM and GM regions of the brain have metabolism associated
with biochemical concentrations (33). With this assumption, a
given metabolite could be more concentrated inWM vs. GM, less
concentrated inWM vs. GM, or equally concentrated inWM and
GM regions.

Working with this biological assumption, a high resolution
metabolite map is generated by adding a random ratio of theWM
and GM images together:

HRSI = r2 ∗WM + (1− r2) ∗ GM + B+ r3 ∗ L (4)

In Equation (4), r2 is a random number between 0 and 1. B is a
matrix that adds a random signal bias into the metabolite map,
which helps to simulate the presence of more metabolite signal
from the anterior or posterior, as well as the left or right brain
regions. L is the same lesion matrix used in Equation (3), and r3
is a random number between –1 and 1.

Finally, the HRSI is downsampled to the desired low
resolution via k-space truncation. Random noise is also added to
this low resolution k-space data before a Fourier transformation
is used to bring this data back to the spatial domain. Next, the
low resolution image is upscaled to the same resolution as the
HRSI using nearest-neighbor interpolation to yield the final low
resolution SI.

It is important to note that because of the variables r1, r2, r3,
and L, it is possible to produce several different matched aT1w
images, HRSI, and LRSI from the same input T1w image. In
addition, the same aT1w image can give rise to a large number
of matched HRSI and LRSI, and thus this transformation is a
one tomany transformation. Therefore, a single input T1w image
can produce hundreds of unique datasets for training a deep
learning model.

2.3. Densely Connected UNet (D-UNet)
Architecture and Training
The UNet architecture (31) is typically implemented for
segmentation purposes, however it primarily operates by
performing pixel-wise transformations on input images,
which is applicable to the SI super-resolution problem. Using
standard convolutional and max pooling layers, the UNet first
continuously convolves and pools the input image until the image
reaches a small size, which aids in extracting valuable global
features. Next the image is scaled up through a combination of
up-pooling, transpose convolutions, and feature concatenations.
This second process helps to identify vital local features so that
the UNet can refine the image at a finer resolution. However, due
to the number of features necessary for this process, the classical
UNet suffers from extremely long training times, overfitting
issues, and potential inefficiencies when tuning the weights.
Therefore, this study utilized densely connected convolutional
layers (34) to develop the novel densely connected UNet (D-
UNet) architecture, and the workflow for training is shown in
Figure 1. Densely connected networks carry over features from
layer to layer, allowing for all previous information to be used
for determining important features. The general architecture of
the D-UNet used in this study is shown in Figure 2. The D-UNet
utilized 32 feature maps at every max pooling layer. In addition,
all convolutional layers made use of the ReLU activation function
(30) and used a dropout (35) of 0.1. Certain features, shown in
green and orange in Figure 2, were copied over to the following
layers, and were also concatenated later on in the network. In
total, three max pooling layers were used for the D-UNet. Since
low resolution SI experiments can have diverse resolutions,
three identical D-UNets were made to upscale low resolution
spectroscopic images for acquisitions with 16x16, 24x24, and
32x32 spatial points.

The D-UNet required two inputs: a rescaled (128x128 points)
T1w image and the corresponding LRSI image (16x16, 24x24,
or 32x32 points) upscaled using nearest-neighbor interpolation
(128x128 points). The predicted output of the D-UNet was a
denoised HRSI image (128x128 points). For training, aT1w,
HRSI, and LRSI were created from the SI generator, as described
above. The Adam optimizer (36) was used with a learning rate set
to 1× 10−3, and mean squared error (MSE) was used as the cost
function, which determined the difference between the D-UNet
output and the desired output:

MSE =
∑∑ (O−HRSI)2

m2
(5)

Above,O is the output of the D-UNet,HRSI is the true simulated
high resolution SI, andm is the output dimension of the network,
which in this case is 128. The summations are performed over
both dimensions to yield a single value. The network was trained
on an 8GB Quadro K5200 graphical processing unit (GPU) using
the Keras (37) and Tensorflow (38) packages in Python 3.6.

Two datasets were made for the development and evaluation
of the three D-UNets: a training dataset and a testing dataset. The
training dataset comprised of 102,000 data from the SI generator
using 135 axial images. The testing dataset used 169 different
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FIGURE 1 | The workflow for training the D-UNet model is shown. The SI generator provides a dataset consisting of an augmented T1w image, a low resolution

spectroscopic image, and a ground truth high resolution spectroscopic image. The spectroscopic images already show the distribution of a particular metabolite (or

the distribution of a particular spectral point), such as choline, and therefore do not contain a spectral dimension. Then, the network transforms the aT1w (128x128

pixels) and LRSI (128x128 pixels after nearest-neighbor interpolation) into an initial HRSI reconstruction (128x128 pixels). In the example above, the LRSI and HRSI

reconstruction have in-plane spatial resolutions of 1.4 × 1.4 cm2 and 1.7 × 1.7 mm2, respectively. This reconstruction is compared to the ground truth, and the mean

squared error is calculated. Utilizing this error, the model changes the weighting parameters for the features, and continues training by using a different dataset. After

training on 102,000 datasets, the model weights are refined and the reconstruction errors are minimized.

FIGURE 2 | The general D-UNet architecture is displayed. Each forward convolution consisted of a convolutional layer and a concatenation process. This

concatenation carries over important features which can be used to make the next layer more intelligent. In addition to local concatenations, certain features were

concatenated to deeper layers in the network. More specifically, every feature map that is produced from a convolution is carried over to the end. Maxpooled features

are not, since a higher resolution of the feature already exists. This allows for prior information to improve the overall reconstruction quality. In order to use the most

information possible, the last convolutional layer contains all of the carried over features.
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axial images (independent from the training set) from the OASIS
project, and 169 matched aT1w, HRSI, and LRSI images were
produced via the SI generator. Each of the three D-UNets were
trained for a total of 102 epochs. For this study, an epoch was
defined as a new set of 1,000 matched HRSI and LRSI data.
The first two epochs were trained using a batch size of one to
ensure that the network would not fall into a local minimum.
The remaining 100 epochs were trained with a batch size of 10.
Varying batch size in this manner has been shown to help reduce
the number of epochs necessary for training, while also reducing
the need for hyper-parameter tuning (39).

2.4. D-UNet Evaluation and Comparison
Metrics
2.4.1. Testing Set Evaluation
The three D-UNets evaluated all 169 matched images (aT1w and
LRSI) to produce reconstructed high resolution spectroscopic
images (Recon16x16, Recon24x24, and Recon32x32). These
reconstructed images were compared to the ground truth
HRSI using mean squared error. This process was repeated
with varying noise levels inserted into the input LRSI in
order to determine the role of noise on the reconstruction
process. Example low resolution spectroscopic images can
be seen in Figure 3. The reconstructed images were also
compared to zero-filling and bicubic interpolation to assess the
improvement of the D-UNet results over standard methods.
For this comparison, both zero-filling and bicubic interpolation
were applied to an LRSI of 32x32 points to generate the 128x128
interpolated images.

2.4.2. Spectral Reconstruction Evaluation
In addition, the three D-UNets were used to reconstruct
magnitude spectra point-by-point from low spatial resolution to
high spatial resolution. Magnitude spectra were used because the
model was not trained for evaluating real and imaginary numbers
simultaneously. From the test set, a single subject was used to
generate high resolution chemical maps of the major metabolites,
including NAA, Glu, Gln, Cr, Ch, and mI. GAMMA simulation
(40) was used to simulate the spectra for these metabolites using
an echo time (TE) = 30 ms, spectral bandwidth of 2,000 Hz,
and time points = 512 for a magnetic field strength (B0) of 3T.
Also, the spectra were exponentially line broadened to roughly
8 Hz. These spectra were then distributed spatially based on
their respective high resolution maps, and were transformed to
produce LRSI. The T1w image and LRSI were input into the
three D-UNets to produce Recon16x16, Recon24x24, and Recon32x32
spectral data. Two example spectra were extracted from these
reconstructed images and compared to the simulated ground
truth using mean squared error.

2.4.3. In vivo Evaluation
Finally, high resolution spectroscopic images were acquired on
a 7T whole-body MR scanner (Magnetom, Siemens Healthcare,
Erlangen, Germany) using a previously published protocol (20).
The Institutional Review Board (IRB) at the Medical University
of Vienna approved the study and ten healthy volunteers (mean
age = 31.7 years old) signed written and informed consent

forms. All experiments were performed in accordance with
relevant guidelines and regulations. The protocol utilized free
induction decay based MR spectroscopic imaging (41) with TR
= 200 ms for a total scan time of 21 min. After acquisition,
residual lipids were removed using ℓ2 regularization (42) and the
spectra were quantified using the LCModel (43) package to yield
concentrations for several metabolites. Therefore, high resolution
(128x128 pixels, 1.7 × 1.7 mm2) metabolite maps for NAA, Cr,
Ch, Glu, Gln, and mI were obtained. These metabolite maps
were down-sampled to 32x32 resolution images and were input
into the 32x32 D-UNet along with corresponding T1w images to
yield Recon32x32 for all datasets. These reconstructed images were
then compared to the experimentally acquired HRSI using mean
squared error as described in Equation (5). In addition, Glu/Cr
and Ch/Cr ratios for both the reconstructed and experimentally
acquired images were measured over all ten subjects. These ratios
were investigated as a function of T1w intensity, which directly
corresponds to the ratio of WM and GM in the brain. Finally,
correlations between the reconstructed and experimental results
were performed to yield the correlation coefficients (r) for the
Glu/Cr and Ch/Cr ratios.

3. RESULTS

3.1. Training Results
Due to the novel D-UNet architecture, the mean squared error
loss rapidly converged close to a reasonable value after only 2
epochs for all three networks, and the loss functions are shown
in Figure 4. The loss continued to decrease with more epochs
when a larger batch size was used for the remaining 100 epochs.
From Figure 4, it is clear that the final loss was better for
the 32x32 D-UNet than the 24x24 or 16x16 D-UNets. This is
theoretically expected because higher initial resolution should
aid in the estimation of unknown points, and this is true for
conventional resolution enhancement techniques as well. While
a low dropout was used in the architecture, overfitting was not
a primary concern for the D-UNet training framework because
of the reduced number of weighting parameters in the model.
The results from the testing dataset also highlight the fact that the
D-UNet training was generalized and applicable to never before
seen data.

3.2. Test Set Results
Figure 5 displays the results from the three different D-UNet
reconstructions, as well as the results of the standard zero-filling
and bicubic interpolation methods. In order to provide a more
stringent comparison, both zero-filling and bicubic interpolation
were applied to the 32x32 low resolution metabolite maps instead
of the lower resolution 16x16 or 24x24 metabolite maps. All of
the D-UNet reconstructions are able to determine the abnormally
high signal from the lesion shown in the T1w image. While zero-
filling outperforms both bicubic interpolation and the 16x16 D-
UNet, both the 24x24 and 32x32 D-UNets yield better results
than zero-filling.

To demonstrate the capability of the SI generator, Figure 6
shows a sample of the possible images produced from the same
aT1w image. The Recon32x32 images are also shown, as well as
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FIGURE 3 | Low resolution spectroscopic images generated using the SI generator are shown. To show the effect of different random noise levels, all other random

parameters were the same between the three images. Low noise level, medium noise level, and high noise level were classified as 2–5, 15–20, and 30–40% of the

maximum signal intensity, respectively.

FIGURE 4 | The loss functions for the 16x16 D-UNet (red), 24x24 D-UNet (blue), and the 32x32 D-UNet (black) are shown. All three loss functions drop significantly in

the first 2 epochs, and then gradually decrease as the training continues. Overfitting is not an issue with the current training method, because each epoch contains a

new set of 1,000 data. Therefore, the network does not see any dataset more than once. While more epochs could be used, the loss function flattens after 70

epochs, which implies that further training will yield minimal improvement.

difference maps between the HRSI and Recon32x32. It is clear
that the SI generator is capable of producing a wide variety of
SI images that mimic biochemicals that are more prominent in
GM, more prominent in WM, or equally prominent in both
tissue types.

In addition, a quantitative comparison between these methods
is shown in Table 1. Noise level was varied to determine the
effect of noise on the super-resolution methods. Low noise
level, medium noise level, and high noise level were classified
as 2–5, 15–20, and 30–40% of the maximum signal intensity,
respectively. From Table 1, the 32x32 D-UNet demonstrated the
best performance at every noise level. At medium noise levels,
the 24x24 D-UNet outperformed zero-filling, and at high noise
levels both the 16x16 D-UNet and 24x24 D-UNet outperformed
both zero-filling and bicubic interpolation.

3.3. Spectral Reconstruction Results
The ability of the D-UNets to reconstruct spectra at high
spatial resolutions are highlighted in Figure 7. The 32x32
D-UNet reconstructs the lesion and contra-lateral white
matter spectra reliably. In contrast, the 16x16 D-UNet
underestimates the white matter spectrum. The 24x24 D-
UNet performs very similarly to the 32x32 D-UNet, however
it overestimates the Ch and mI signals in the lesion spectrum
by roughly 20%. Overall, the mean squared error for the
healthy white matter spectrum was 0.34, 0.030, and 0.0085
for the 16x16 D-UNet, 24x24 D-UNet, and 32x32 D-UNet,
respectively. For the lesion spectrum, the mean squared
error was 0.051, 0.36, and 0.13 for the 16x16 D-UNet,
24x24 D-UNet, and 32x32 D-UNet, respectively. From a
quantitative standpoint, all three D-UNets would be able to
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FIGURE 5 | The results of the three D-UNets are shown for an example test subject. The augmented T1w image is used in conjunction with the three low resolution

images as inputs for the three D-UNets. The reconstructed HRSI (16x16 High Res, 24x24 High Res, and 32x32 High Res) are shown below their respective low

resolution images. In addition, zero-filling and bicubic interpolation were applied to the 32x32 LRSI to produce 128x128 interpolated images. Error maps are produced

by subtracting the reconstructed images and the ground truth high resolution image (High Res). The 16x16 High Res displays much more error than the 24x24 and

32x32 High Res images. This is mostly due to better local signal refinement at the location of the lesion for the 24x24 and 32x32 reconstructions.

determine the abnormally elevated Ch, as demonstrated from
the metabolite maps.

3.4. In vivo Results
The ability of the 32x32 D-UNet to reconstruct the LRSI
of Cr, NAA, Glu, Gln, Ch, and mI for the in vivo data is
shown in Figure 8. This figure shows the reconstructed images,
experimental HRSI, and difference maps between the two for
each metabolite for one healthy volunteer. All reconstructed
images retain the metabolite signals from the low resolution
maps, and also show regional changes similar to the HRSI.
For example, Glu is more concentrated in the GM and less
concentrated in the WM, which is a well-known regional
difference in the brain (33). Another well-known regional
difference is that Ch is more concentrated in WM regions,
which is apparent in both the reconstructed and experimental
images. Figure 9 shows reconstructions with low, average, and
large MSE values. In general, lower SNR metabolites appeared to
have a larger MSE value compared to higher SNR metabolites.
From a quantitative standpoint, the average MSE values over
the ten volunteers for Cr, NAA, Glu, Gln, Ch, and mI were
0.0048, 0.0042, 0.0060, 0.0079, 0.0059, and 0.0056 respectively.
These errors are displayed in Figure 10D and plotted against the
average MSE values obtained for the testing set using different

noise levels (low, medium, high). It is clear that the MSE values
are in most cases comparable to simulated test images with 2–
20% noise, with the exception of Gln which is most comparable
to test images with 35% noise.

Figure 10 also shows the Glu/Cr and Ch/Cr ratios as
a function of the T1w intensity averaged over the ten
volunteers. The ratios are taken after normalization of the
metabolites as part of the super-resolution reconstruction,
which is why Ch/Cr appears larger than Glu/Cr in the
figure. The trend shows that with higher WM content, Glu/Cr
decreases while Ch/Cr increases. The correlation between the
experimental HRSI and Recon results are shown in Figure 10C.
Quantitatively, both Glu/Cr and Ch/Cr ratios have high squared
correlation coefficients, r2 > 0.99. This highlights the fact
that important biological relationships are preserved in the
reconstructed images.

4. DISCUSSION

Although SI provides invaluable information regarding
the biomolecular processes of tissues in vivo, experimental
limitations have greatly hindered the integration of this method
into standard clinical protocols. This study demonstrates a
technique capable of overcoming one of the greatest challenges
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FIGURE 6 | From one augmented T1w image, the generator is capable of producing multiple ground truth high resolution (High Resolution SI) images and low

resolution (Low Resolution SI) images, a small sample of which are shown. In this example, the top row shows images where metabolite signal is higher in WM. In the

middle row, the metabolite signal is equal in WM and GM, whereas the metabolite signal is higher in the GM in the bottom row. Since a single input T1w image can

produce many augmented T1w images, the generator allows for an exponentially large number of unique training data. The reconstruction for each aT1w image and

LRSI is performed with the 32x32 D-UNet to yield the reconstructed HRSI images (Reconstructed). The difference maps are produced by subtracting the

reconstructed and ground truth images.

TABLE 1 | The mean squared error between the high resolution ground truth

(HRSI) and several methods are tabulated.

Method Noise Level

Low Medium High

Zero-Fill from 32x32 1.109 1.652 4.505

Bicubic from 32x32 2.794 3.129 3.820

16x16 D-UNet 1.863 2.420 2.761

24x24 D-UNet 1.139 1.316 1.745

32x32 D-UNet 0.7460 0.9722 1.599

These values are the total sum of the mean squared error over 169 test subjects. The

32x32 D-UNet reconstruction outperforms all of the other methods. With higher random

noise present in the LRSI, the 16x16 and 24x24 D-UNets outperform both zero-filling and

bicubic interpolation. It is important to note that this is true even though the zero-filling

and bicubic interpolation methods are applied to a 32x32 image. Bold values indicate the

method with the lowest mean squared error for each comparison.

in SI, which is poor spatial resolution. By utilizing a deep
learning framework, it is shown in Figures 5–9 that high
resolution spectroscopic images can be produced from the
combination of low resolution spectroscopic images and
T1w images. In addition, as seen in Figure 7, it is possible
to reconstruct spectra at higher spatial resolutions. The
reconstruction method also preserves important regional
metabolic differences and shows low errors for in vivo
reconstructions, as shown in Figure 10. This deep learning
super-resolution method was compared to both zero-filling
and bicubic interpolation, and proved to be better than these
methods for all noise levels.

Deep learning requires large datasets, which are not readily
available for SI. Unfortunately, there is also a lack of ground truth
for high resolution spectroscopic imaging due to the fact that
experimental results may contain chemical shift displacement
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FIGURE 7 | Magnitude spectral reconstructions using the three D-UNets are shown for two voxels. The voxel locations for the white matter and lesion spectra are

displayed in the T1w image as red points. The spectra generated from the ground truth (red), the 16x16 (blue), 24x24 (green), and 32x32 D-UNets (black) for the

1.5–4.3 ppm range are displayed. For spatial comparison, the choline metabolite maps for each method are also shown. All metabolite maps are scaled from 0 to 1.

The 24x24 and 32x32 D-UNet reconstructions over-estimate the amount of choline in the lesion. However, the 16x16 reconstruction under-estimates the amount of

metabolite signal in the healthy white matter region.

artifacts, B0 inhomogeneity issues, partial volume effects, low
signal to noise ratios, water contamination, or other forms of
signal contamination. It is also prohibitively long to scan at
high resolution (128x128) without using several acceleration
methods, making a ground truth impossible to obtain from the
human brain with current technology. Therefore, an SI generator
was developed to simulate training and testing data from a
publicly available dataset. By including various probabilistic
transformations, such as contrast variations, metabolic signal
changes, and FOV variations, the SI generator was capable of
providing a diverse and large dataset for the training of the
three D-UNets. These data may not be entirely realistic, and
this generator must be validated more rigorously in the future.
For this study, the dataset does seem to be representative of real
acquisitions, as seen from the in vivo results.

The Recon32x32 and HRSI experimental images are very
similar, as seen from Figures 8–10. The reconstructed images
show better resemblance to the anatomical T1w images,
including cerebral spinal fluid localization. However, both the
Recon32x32 and HRSI experimental images provide similar
quantitative results, as seen in Figure 10. Theoretically, the
Recon32x32 images would require 1

16 th to
1
4 th the time to acquire,

depending on the acceleration methods implemented. Therefore,
it is important to note that aside from super-resolution, the D-
UNet may also be used as a means to accelerate a spectroscopic

imaging protocol in the future. Additionally, the reconstructed
in vivo images are denoised while retaining essential metabolic
information for different tissues of the brain, which may be
desirable for certain applications.While the simulated and in vivo
data demonstrate that the reconstruction method is accurate, one
of the main disadvantages of this work is that it has not been
validated in vitro. This is due to the fact that a high resolution
SI phantom similar to the human brain is not available. Since
the D-UNet model is trained using in vivo anatomy, it is not
capable of reconstructing high resolution images from unrealistic
geometries. Therefore, future work will focus on the development
of a realistic, high resolution SI phantom for validation.

Even though the D-UNets outperformed zero-filling and
bicubic interpolation, these models may not be perfect for HRSI
reconstruction primarily due to experimental imperfections.
As seen from Table 1, error increases as a function of noise.
Intuitively, chemicals that are found in the body at lower
concentration may have larger reconstruction errors than
chemicals with higher SNR, which is also supported by the in vivo
results shown in Figure 9 where the Gln reconstructed images
have higher error than the other metabolite images. Therefore,
prediction accuracy is limited by the quality of the original
LRSI. Also, while the in vivo results have low mean-squared
errors, it is important to note that down-sampling from a high
resolution acquisition decreases potential acquisition problems
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FIGURE 8 | An in vivo example of a healthy volunteer is used to demonstrate the potential application for the D-UNet. The experimental high resolution SI (HRSI) data

was acquired at 128x128 resolution using an accelerated acquisition protocol (20). This data was then down-sampled to produce 32x32 low resolution SI (LRSI)

metabolite maps for Cr, NAA, Glu, Gln, Ch, and mI. Together with the T1w image, the low resolution metabolite images were used to reconstruct high resolution

spectroscopic images (Recon) using the 32x32 D-UNet model. The difference maps between the Recon and HRSI images (Diff) are also shown.

FIGURE 9 | Three reconstructions showing low MSE (top), average MSE (middle), and large MSE (bottom) are shown for three different volunteers. In general, lower

MSE were observed for metabolites with higher signal-to-noise ratios such as NAA, whereas larger MSE values were calculated for low SNR metabolites such as Gln.

The different MSE values are highlighted by the errors seen in the difference maps.
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FIGURE 10 | The Glu/Cr (A) and Ch/Cr (B) signals averaged over ten subjects are shown for the experimentally acquired images (HRSI) and the images

reconstructed from low resolution 32x32 images (Recon). The signals are shown as a function of the T1w intensity, which is representative of the gray and white

matter content of the voxel. The red dotted line represents the point at which the gray matter content equals the white matter content in a voxel. The correlation

between the HRSI and Recon values are plotted (C) with linear fits. For both Glu/Cr and Ch/Cr, the r2 values of the fits are above 0.99. Finally, the mean squared error

for the ten subjects calculated between the HRSI and Recon for each metabolite map (D) is displayed. The dotted black lines reflect the MSE from the testing set for

different noise values (low, medium, and high).

such as lipid contamination and partial volume effects. Therefore,
it is expected that a prospectively acquired low resolution data set
will yield higher errors when reconstructed using the D-UNet.
This must be evaluated in a more rigorous study where both low
resolution and high resolution experimental SI data are acquired.

Of course, the original resolution of the experimental SI
plays a large role in the reconstruction process. While 24x24
and 32x32 matrices provide relatively accurate high resolution
reconstructions, the 16x16 resolution does not perform as well.
This suggests that there is a lower bound necessary to accurately
upscale high resolution SI. This might be true for other super-
resolution techniques (21), so a more thorough comparison
between this deep learning method and other methods may aid
in identifying this lower bound. Furthermore, results may be
biased by the quantitative methods implemented to produce
the LRSI before the super-resolution process is performed.
This bias could be removed in the future by developing a
deep learning based approach to metabolite quantitation (44).
However, it may be worthwhile to explore the differences
between common one dimensional spectral quantitation

programs, such as LCModel (43) or TARQUIN (45), on the
upscaling process.

From the spectral reconstruction results shown in Figure 7, it
is apparent that some metabolites are over- and under- estimated
during the reconstruction process. Therefore, clinical diagnosis
based on the D-UNet reconstruction must be made with caution,
as results from this method could lead to false positives or false
negatives. Before basing diagnosis on the D-UNet reconstruction,
the process should be evaluated in vivo in a well-known brain
cancer pathology to assess the rates of false positives or false
negatives detected by experienced radiologists in the field.

The deep learning method presented in this study may be
useful for other super-resolution transformations in the field
of medical imaging. This is especially true for spectroscopic
imaging of other nuclei, such as 13C and 31P, where lower
SNR results in low spatial resolution acquisitions. Recently,
accelerated hyper-polarized 13C spectroscopic imaging has
shown to be promising for imaging prostate cancer (46, 47), and
this technique could benefit by using the D-UNet model. In
addition, 31P spectroscopic imaging has also been used to image
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cancer (48, 49). The main drawback, again, is the lack of SNR to
adequately acquire high spatial resolution data. High resolution
acquisition schemes have been proposed for 31P spectroscopic
imaging (50), and theD-UNetmodel could provide an alternative
for improving spatial resolution. The same SI generation process
could be used for training for these other nuclei, however
different anatomical sites must be included (breast, prostate, etc.)
to yield accurate results depending on the desired application.

The same principles discussed in this work may also apply to
positron emission tomography (PET) (51). It is well-known that
the radioactive tracer is more prominent in certain tissues and
lesions, and positrons from this tracer travel some distance before
annihilating to produce the PET signal. The distance between the
source and the annihilation can be thought of as a partial volume
effect. This model can potentially be used to learn how to remove
this partial volume effect artifact, and this would be applicable for
CT-PET or MR-PET acquisitions. Ultimately, this deep learning
model allows for the acquisition of high quality images without
increasing the scan time or improving the hardware of the
imaging system.

5. CONCLUSION

The D-UNet model presented in this study allows for the
reconstruction of accurate super-resolution magnetic resonance
spectroscopic images from the human brain. Utilizing this
method, we demonstrate that a simulated, low resolution
chemical map can be transformed together with the T1w image
to produce a high resolution chemical map. This method
demonstrates better accuracy than typical zero-filling and bicubic
interpolation methods. Furthermore, we demonstrate that the
accuracy of this model holds when evaluating our method on
retrospective in vivo data. This model still needs to be validated

on prospective in vivo data in the future. After further in vitro
and in vivo validation, this method may be utilized for denoising,
scan acceleration, and improved tissue delineation.
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