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Abstract 

The PSIRED Workbench is a long established and popular bioinformatics web service offering a wide range of machine learning based analyses 
for characterizing protein str uct ure and function. In this paper we provide an update of the recent additions and developments to the webserver, 
with a focus on new Deep Learning based methods. We briefly discuss some trends in server usage since the publication of AlphaFold2 and 
w e giv e an o v ervie w of some upcoming de v elopments f or the service. T he PSIPRED Workbench is a v ailable at http:// bioinf.cs.ucl.ac.uk/ psipred . 
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he PSIPRED Workbench is part of a worldwide ecosystem
f Bioscience data repositories and web services. These cover
rimary data repositories such as the NCBI, EBI and RCSB
DB ( 1–3 ), derived data resources such as STRING, CATH,
EGG, InterPro and UniProt ( 4–8 ), and webservices such as
BI Webservices, NCBI Webservices, among a great many oth-
rs. A large number of tools and services available as code and
ebservices can be discovered via the Elixir BioTools web site

 https:// bio.tools/ ) ( 9 ). 
We have been developing the PSIPRED Workbench for

early 25 years. Our webservices offer a variety of machine
earning-based tools focussed on characterising structural and
unctional features of proteins. In recent years, we have made
ignificant headway in integrating new deep-learning based
ools and techniques. In 2018, we replaced every line of code
n our webserver and significantly improved both tool run
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times and presentation. Since then, we have seen peak annual
usage rise to the order of 350 000 analyses per year. 

Our services critically rely on underlying datasets from
UniRef ( 10 ) and the PDB. Like all bioscience data resources,
we have witnessed exponential growth in the size of these pub-
lished datasets, which creates many computational challenges
for bioinformatics tools and web servers. Many of our meth-
ods function by analysing evolutionary information in protein
families, and protein database searching forms a critical first
step in most of our tools. As the size of these resources grows,
the runtimes for such analysis lengthens. To tackle this, we are
increasingly looking to deep learning. Through careful model
training, it is possible to embed protein sequence information
such as evolutionary relationships between residues within the
weights of a neural network ( 11 ,12 ). Consequently, we can use
these and similar embeddings alongside novel deep learning-
based methods and forgo the need for computationally
, 2024. Accepted: April 24, 2024 
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Figure 1. The neural network architecture of the S4PRED model. Single protein sequences are given as input to the model. Each amino acid in a given 
sequence is first dynamically replaced with a 128-dimensional vector embedding that is learned during training. The sequence of embeddings is then fed 
to a 1024-dimensional bidirectional recurrent neural network (RNN), termed the first la y er. T he specific RNN architecture used is the Averaged stochastic 
gradient descent Weight-Dropped Gated Recurrent Unit (AWD-GRU) ( 38 , 39 ). The RNN output is fed through two more layers and then a final multilayer 
perceptron which transforms the output to 3-dimensional probability predictions for each Q3 class. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

expensive protein database searches while still producing ac-
curate predictions of protein features that rely on evolutionary
information. 

New methods 

Since 2019, we have published a number of new methods in
the UCL Bioinformatics Group and have made some of these
available online via the PSIPRED Workbench. Below we give
a summary of the methods we have added to the webserver. 

S4PRED 

S4PRED ( 13 ) is a state-of-the-art single-sequence protein
secondary structure prediction method. It is used to pro-
vide accurate secondary structure modelling for a challeng-
ing but important class of proteins, namely single orphan
proteins, which have no detectable sequence relatives in cur-
rent databases. Accordingly, the model takes only a protein’s
amino acid sequence as input, with no additional homol-
ogy information, and subsequently returns 3-state secondary
structure predictions for the sequence. Similarly to PSIPRED,
S4PRED prediction results comprise a confidence score, a car-
toon representation, 3-state prediction assignment, and the
original amino acid sequence. 

The model’s architecture is an ensemble of five 3-layered
recurrent deep neural networks (see Figure 1 ). It is trained us-
ing a semi-supervised learning approach to massively supple- 
ment the available number of protein sequences that can be 
trained on. This results in a training set in excess of a million 

examples. This set combines real-labelled examples, where a 
sequence and its secondary structure are known, and artifi- 
cially labelled examples, where only the primary amino acid 

sequence is known. S4PRED has a Q3 secondary structure 
prediction accuracy of 75.3%. This is a significant improve- 
ment over our cutting edge PSIPRED method, which achieves 
a Q3 accuracy of 70.6% when tested on single sequences with- 
out any provided homology information. For secondary pre- 
diction tasks typical run times are of the order of seconds on 

contemporary CPUs. 

Merizo 

Merizo is a deep learning-based method for protein domain 

segmentation ( 14 ). The method operates directly on structures 
and can produce accurate domain assignments even for dis- 
continuous domains, as well as for predicted models from Al- 
phaFold2 ( 15 ) which may feature long stretches of unstruc- 
tured, non-domain residues. 

The network of Merizo is based on an encoder-decoder ar- 
chitecture that utilises the invariant point attention module 
(introduced in AlphaFold2) to encode a structure and its se- 
quence into an embedding. This embedding is then decoded 

using a Masked Transformer Decoder ( 16 ) to assign individ- 
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Figure 2. Ov ervie w of Meriz o. ( A ) Summary of inputs and outputs. Meriz o tak es the C-alpha distance map along with the amino acid sequence and 
backbone frames (calculated as per Jumper et al. , 2021) as input. Inputs are fed into the IPA encoder which generates an embedding of the str uct ure. 
The embedding is decoded by a masked transformer decoder to generate domain and non-domain residue masks, along with a confidence estimate for 
each predicted domain. ( B ) Example of domain assignments by several methods including Merizo on AlphaFold2 model AF-Q9UQB3-F1-model_v4. 
Methods include UniDoc ( 40 ), SWORD ( 41 ) and DPAM ( 42 ). Assigned domains are individually coloured and labelled from A-O. (Figure adapted from Lau 
et al , 14 ). 
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al residues into domains in a bottom-up manner. Merizo is
rained using an affinity learning strategy ( 17 ), wherein the
etwork learns to cluster together embeddings of residues that
elong to the same domain. 
In a benchmark study on PDB structures, Merizo out-

erforms several state-of-the-art domain assignment meth-
ds, including both deep learning and non-deep learning-
ased methods, producing accurate assignments that are well-
ligned with those documented in the CATH database. As a
roof of concept, Merizo has also been applied to the hu-
an proteome, identifying over 40 000 domains that can be
atched to known folds in CATH, while requiring only a frac-

ion of the time needed by other methods. 
Typical prediction times are around 1 second on modern

PUs and nearly an order of magnitude faster when using a
PU. Predictions are also shown to be highly accurate; Mer-

zo achieves a median MCC score of approximately 1.0 when
enchmarking predictions against known CATH or ECOD
omain boundaries in multidomain proteins, and has a mean
bsolute error of ∼0.3 when predicting the number of do-
ains within a chain correctly, outperforming other leading
ethods at this task. A brief overview of Merizo’s inputs, out-
uts and illustrative performance to similar methods is given
n Figure 2 . 

MPFold2 

MPfold2 ( 18 ) predicts the tertiary structure of single protein
hains starting from amino acid sequence. It improves upon
ts predecessor DMPfold ( 19 ) in terms of both accuracy and
peed of execution. The high speed of execution is enabled
by a novel neural network architecture that takes as input a
multiple sequence alignment (MSA) of the target protein se-
quence, and outputs the coordinates of C-alpha atoms of the
main chain as direct outputs of the neural network. Alongside
the coordinates, the network also predicts a per-residue con-
fidence score. To predict the structure, the amino acids in the
input MSA is first encoded as integers and then processed by a
sequence of bidirectional Gated Recurrent Unit (biGRU) net-
works, the first operating on columns of the MSA to produce
per-column representations. The second biGRU takes these
representations as input and processes them in the horizon-
tal direction to produce a final representation. This represen-
tation is combined along with a fast approximation of the
residue precision matrix and is fed to a stack of residual con-
volutional layers. The output from this stack is then treated
as a distance matrix and subjected to a differentiable multidi-
mensional scaling procedure to recover the coordinates of the
C-alpha atoms. The remaining main-chain atoms are added
using the catomain procedure ( 20 ) and sidechain atoms can
subsequently be added using tools such as SCWRL ( 21 ). Once
a set of C-alpha coordinates have been generated, they can be
converted into a pairwise distance map and used as an addi-
tional input to the network, and thus predictions can be re-
cycled for iterative refinement. An overview of the method is
presented in Figure 3 . 

Although not as accurate as AlphaFold2 and RoseTTAFold
( 22 ), DMPfold2 is orders of magnitude faster than these meth-
ods, and has considerably lower resource requirements. The
former two methods require the use of GPU AI accelerators
to achieve reasonable runtimes, however DMPfold2 is fast
enough to be run on CPUs with runtimes ranging from sec-
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Figure 3. Ov ervie w of protein tertiary str uct ure prediction using DMPf old2. *Coordinates produced at the end of the netw ork can optionally be 
con v erted into a distance map and used to refine predictions in an iterative fashion. This distance map is zeroed out in the first iteration. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

onds to a few minutes once the input MSA has been gener-
ated. On GPUs, DMPfold2 was shown to be roughly 2 or-
ders of magnitude faster than AlphaFold2 in a head-to-head
comparison. 

DMPmetal 

DMPmetal is a deep learning-based method for predicting
metal binding sites from amino acid sequences. It follows
the approach of using a large (1.2 billion parameter) pre-
trained transformer encoder protein language model (pLM)
to embed the target sequences and to provide the features
for simple feed-forward classifier. One difference from many
other pLMs is that the DMPmetal pLM was jointly pre-
trained on both sequence and structures through training on
the UniRef50 subset of the AlphaFold Database ( 23 ). From
a user perspective, the input to the model is a protein se-
quence, and the output probabilities relate to each of the 29
CHEBI metal codes. This model was ranked 1 

st in the UniProt
Metal Binding Site Machine Learning Challenge held in 2022,
and was trained on the organizers’ provided NEG_TRAIN 

and POS_TRAIN_FULL datasets, based on curated UniProt 
annotations ( http:// insideuniprot.blogspot.com/ 2022/ 02/ the- 
uniprot- metal- binding- site- machine.html ). 

Available methods 

The PSIPRED Workbench offers a number of analysis meth- 
ods. We summarize these and their principal publication in 

Table 1 . 

Retired methods 

As science progresses, some of our older methods become ob- 
solete. We now take the approach that prediction tools on 

our webserver which consistently see fewer than 1000 re- 
quests per year become candidates to be retired. We then as- 
sess these methods to establish if they have become obsolete; 
that is, they have either been replaced by a method within our 
group or have been made obsolete by other advances or tools 

http://insideuniprot.blogspot.com/2022/02/the-uniprot-metal-binding-site-machine.html
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Table 1. Methods a v ailable via the PSIPRED workbench 

Method Summary Citation 

PSIPRED 4.0 Secondary structure prediction Protein secondary structure prediction based on 
position-specific scoring matrices ( 24 ) 

DISOPRED3 Disordered residue prediction DISOPRED3: precise disordered region predictions with 
annotated protein-binding activity ( 25 ) 

MEMSAT-SVM Membrane helix prediction Predicting transmembrane helix packing arrangements 
using residue contacts and a force-directed algorithm ( 26 ) 

GenTHREADER, 
pGenTHREADER & 

pDomTHREADER 

Fold recognition pGenTHREADER and pDomTHREADER: new methods 
for improved protein fold recognition and superfamily 
discrimination ( 27 ) 

DeepMetaPSICOV 1.0 Structural contact prediction Prediction of interresidue contacts with DeepMetaPSICOV 

in CASP13 ( 28 ) 
DomPred Protein domain boundary prediction Computer-assisted protein domain boundary prediction 

using the DomPred server ( 29 ) 
DMPFold 2.0 Fast and Accurate Deep Learning 

Based protein structure prediciton 
Ultrafast end-to-end protein structure prediction enables 
high-throughput exploration of uncharacterized proteins 
( 18 ) 

FFPred3 GO Term functional prediction FFPred 3: feature-based function prediction for all Gene 
Ontology domains ( 30 ) 

Metsite Metal binding site prediction Predicting metal-binding site residues in low-resolution 
structural mode ( 31 ) 

HSPred Protein-protein interaction hotspot 
prediction 

Predictions of hot spot residues at protein-protein 
interfaces using support vector machines ( 32 ) 

MEMEMBED Membrane protein orientation 
prediction 

Membrane protein orientation and refinement using a 
knowledge-based statistical potential ( 33 ) 

Merizo Deep Learning base structural 
domain segmentation 

Merizo: a rapid and accurate protein domain segmentation 
method using invariant point attention ( 14 ) 

S4PRED Single Sequence Protein secondary 
Structure Prediction 

Increasing the accuracy of single sequence prediction 
methods using a deep semi-supervised learning framework 
( 13 ) 

DMPmetal Metal binding site prediction for 
protein sequences 

Manuscript in preparation 

Figure 4. Total number of predictive analysis tasks run by the PSIPRED 

Workbench in the years 2019 to 2023. Y-axis is truncated. 
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hat have emerged within protein bioinformatics. This year,
e have chosen to retire our methods BioSerf and DomSerf,
hich were fully automated homology modelling packages
hich generated protein structure predictions. We see that

hese are amply superseded by the performance of methods
uch as DMPFold2 and AlphaFold2. Code for these methods
ill remain available in our public code repository. 

rends In usage since 2018 

igure 4 shows the trends in usage of the PSIPRED web server
ince 2018, when our faster and more user-friendly web site
was first launched. In the two years immediately following
this, we saw substantial growth in the number of jobs sub-
mitted, aided no doubt by the increasing interest and use of
novel bioinformatics tools in general during this time. How-
ever, in 2022, we saw a sharp decline in job counts, which we
attribute to the availability of AlphaFold2 ( 15 ) and the asso-
ciated AlphaFold structure database ( 23 ), which, at least in
theory, would obviate the need for secondary structure and
other predictions. Nevertheless, in 2023, submission counts
for secondary structure prediction rebounded to their pre-
2022 levels (see Figure 5 ). We suspect that over time, re-
searchers became more familiar with the limitations of pre-
calculated structure models (as observed by others, 34 ,35 ),
and the additional difficulty in handling 3D structural data
when only a protein sequence annotation is required. There
clearly remains a demand for methods that can either corrob-
orate the predictions made by structure modelling methods, or
that can provide data that can be interpreted rapidly and more
directly, for example in evaluating point mutants of some pro-
tein sequences. 

Site reliability and server developments 

The principal focus of our web site development work
since 2018 has been a new JavaScript front end code base.
Our previous web site was implemented using the Ractive
JavaScript framework ( https:// ractive.js.org/ ). This was an ex-
cellent choice in 2016 for rapidly prototyping our new web
site, but as time passed and the site grew in complexity, the
code became quite labyrinthine and hard to maintain. Since
then, we have ported the entire website to React ( https://
react.dev/). We believe this gives a number of benefits; Re-

https://ractive.js.org/
https://react.dev/
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Figure 5. Bar chart of the proportion of predictive analyses jobs requested 
by user, coloured by predictive method. Data is broken down by year. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

act is highly opinionated about application structure, and this
should reduce any tendency towards writing unmaintainable,
spaghetti code. React has also emerged as something of an
industry standard for designing dynamic web applications so
we anticipate that the framework will be well-supported for
years to come. 

Alongside this work on the web code we have recently up-
graded the web server hardware. The old web server hardware
had reached end-of-life and has been replaced with three new
modern server machines. Alongside this, we will be adding a
further data processing machine with 48 cores. This should
provide sufficient additional capacity for the web site’s devel-
opments in the years to come. 

In our prior 2018 / 2019 web server publication ( 36 ), we
replaced the entire code base for the website and installed
new data analysis pipeline middleware. Since then, we are
pleased to report that the webserver has experienced no down-
time due to software failures. All server downtime has been
due to scheduled hardware maintenance or unplanned hard-
ware failures, such as power outages. Both our webserver and
middleware code display excellent reliability with little need
for ongoing maintenance. However, we do see a number of
analyses fail. Sometimes our predictive methods have bugs
or perhaps cannot handle certain edge cases; and on occa-
sion users are able to submit erroneous input data. Neverthe-
less, the number of such failed jobs is small, at only around
3000 failures per year, typically < 1% of all analyses each
year. 

Discussion 

We’ve reviewed in this paper some recent updates to our web
services. Looking to the future, with the advent of AlphaFold2
and accurate structural modelling, we anticipate that a struc-
tural approach to protein bioinformatics will become increas-
ingly common. With this in mind, our future developments for
the service will focus on providing a novel ‘structure-first’ view 

to help integrate both structural predictions and sequence 
annotations in manner that makes it easy for researchers 
make sense of the protein sequences they are working 
with. 

The PSIPRED workbench remains a popular and well-used 

bioinformatics resource for researchers across the globe. In 

acknowledgement of the impact and importance of our web 

server, the site was accepted as an Elixir Web Resource as part 
of the Elixir UK node in 2019 ( 37 ). This enables us to take 
part in the coordination of services and life science research 

across the UK and Europe. This will help us to continue to 

develop and fund the service in the years to come. 

Data availability 

The web server is available at http://bioinf.cs.ucl.ac.uk/ 
psipred/. Our principal code repository is available at https: 
// github.com/ psipred . 
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