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ABSTRACT

Kidney renal papillary cell carcinoma (KIRP) accounts for 10%–15% of renal cell 
carcinoma (RCC), patients with KIRP tend to have a poor prognosis, and there was a 
lack of effective prognostic indicators for this type of cancer. Currently, owing to the 
availability of The Cancer Genome Atlas (TCGA), long non-coding RNAs (LncRNAs) 
have been discovered to indicate a prognostic value in some tumors. In that regard, 
we analyzed lncRNA-sequencing data of KIRP in TCGA, and among 780 differentially-
expressed lncRNAs, we selected 37 lncRNAs which were able to assist the prognosis. 
In addition, by using the multivariate cox regression analysis, the prognosis index 
(PI) that consisted of 7 lncRNAs (including AFAP1-AS1, GAS6-AS1, RP11-1C8.7, 
RP11-21L19.1, RP11-503C24.1, RP11-536I6.2, and RP11-63A11.1) could predict 
the progression and outcomes of KIRP with accuracy. More importantly, the PI was 
considered an independent indicator for prognostication of KIRP. Moreover, having 
categorized patients with KIRP into cohorts of high risk and low risk, according to the 
PI, we found that the key genes and pathways varied in these two groups. Overall, 
these LncRNAs, especially the PI, may be conceived as biomarkers and helpful for 
determining the different pathological stages for KIRP patients. However, their 
biological functions need to be further confirmed.
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INTRODUCTION

Kidney cancer is a neoplasm with heterogeneity, of 
which epithelial renal cell carcinoma (RCC) represents 
the major proportion. Morphologically, RCC includes 
various histological subtypes—kidney renal clear cell 
carcinoma (KIRC), kidney renal papillary cell carcinoma 
(KIRP), and malignancies of chromophobe, collecting 
duct, and subtypes with classification. Of these subtypes, 
KIRP ranks second in terms of morbidity rate, comprising 
10%–15% of cases, following KIRC with incidence of 
75%–80% [1–5]. 

Approximately 30% of RCC patients have been 
found to exhibit distant metastasis when diagnosed, 
thus the prognosis of RCC remains poor. Clinically, 
patients with other RCC subtypes tend to have desirable 
outcomes; however, patients with KIRP were more likely 
to experience obviously worse clinical courses [1, 6, 7].

Currently, several biomarkers for KIRC that have 
been detected include von Hippel-Lindau (VHL) [8–11], 
vascular endothelial growth factor (VEGF) [12–15], 
carbonic anhydrase IX (CAIX) [16–18], and hypoxia-
inducible factor 1 alpha/2 alpha (HIF1a/2a) mutations 
[19–21], some of which were able to forecast the medical 
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effectiveness and outcomes. Despite that, there have been 
scarce studies into the molecular biomarkers of KIRP for 
the prediction of therapeutic efficacy and prognostication. 
Long non-coding RNAs (LncRNAs) were considered to 
play a vital role in tumorigenesis and progression, exhibited 
by their capability to predict the patients’ outcomes [22–
26]. Nonetheless, studies found that only a small number 
of lncRNAs could foretell the development and prognosis 
of KIRP. Hence, it is important to seek novel molecular 
biomarkers of lncRNAs with prognostic value for KIRP, 
which would facilitate the understanding of the pathogenesis 
of KIRP and be helpful in prognosis evaluation.  

The Cancer Genome Atlas (TCGA) has rendered the 
results of KIRP available for researchers [27–30], which 
updated the knowledge towards the understanding of 
lncRNA-based diseases. Nevertheless, there is no report 
regarding the clinical significance of lncRNAs and the 
differences among lncRNAs based on the TCGA data so 
far. Consequently, mRNA-Seq data, including lncRNAs, 
of patient samples with KIRP collected from TCGA data 
were set to recognize some key lncRNAs that were related 
to clinical manifestations. We particularly focused on the 
ability of prognostic evaluation of these lncRNAs, and 
investigated the clinical significance by selecting seven 
lncRNAs with high prognostic potential to form a pool. 
These key lncRNAs would show clinical significance and 
play a role in the initiation and development of KIRP.

RESULTS 

Differentially-expressed lncRNAs (DELs)

Analysis of the DELs was conducted to compare 
the expressions of 13,198 lncRNAs between KIRP and 
normal kidney tissues. A total of 780 DELs (Figures 1, 
2) were collected by EdegR. Then we eliminated cases 
without adequate data on survival duration, and finally, we 
obtained 271 DELs for further exploration.

Construction of DEL-based prognostic signature

It was demonstrated by the univariate Cox proportional 
hazards regression that 37 of these 271 differentially-
expressed lncRNAs displayed remarkable prognostic value. 
Then multivariate Cox proportional hazards regression 
analysis confirmed that seven differentially-expressed 
lncRNAs showed prognostic significance for KIRP, 
containing actin filament associated protein 1 antisense 
RNA1(AFAP1-AS1), GAS6 antisense RNA 1 (GAS6-
AS1), RP11-1C8.7, RP11-21L19.1, RP11-503C24.1, RP11-
536I6.2, and RP11-63A11.1 (Table 1 and Figure 3). The 
relationship between the expression of major lncRNAs and 
clinicopathological features in KIRP are shown in Figure 4. 
The expression of the seven lncRNAs could also forecast the 
development of KIRP (Table 2 and Figure 5). The prognosis 
index (PI) formula for overall survival prediction was as 
follows: 

PI = 0.195*expAFAP1–AS1–0.474*expGAS6-AS1–0.243*
expRP11-

1C8.7–0.204*expRP11–21L19.1 + 0.335*expRP11–503C24.1–0.251*
expRP11–

536I6.2–0.244*expRP11–63A11.1. The patients with KIRP were 
classified into high risk and low risk groups according to 
the PI (Figure 6). Also the PI, to a large extent, was able to 
foretell the 5-year survival of KIRP patients, with the area 
under the receiver operating characteristic curve (AUC) 
value being 0.824 (Figure 7A). Moreover, Kaplan-Meier 
(K-M) curves showed that the average survival time of 
patients in the high risk group was 109.4 months, which was 
noticeably shorter than that of their low risk counterparts 
(117.3 months, P < 0.001, Figure 7B).

Meanwhile, we also measured the prognosis value 
of various clinical parameters with PI. By the univariate 
Cox proportional hazards regression, we discovered that a 
variety of parameters were closely related to undesirable 
prognosis of KIRP patients (Table 3). Yet, the multivariate 
Cox proportional hazards regression unveiled that only 
distant metastasis could be an independent prognosis 
indicator for KIRP (Table 3). The K-M curves of the 
clinical features were depicted in Figure 8.

We also evaluated the correlations between PI and 
each of the clinical features. It was found that PI exhibited 
moderate ability to foretell the status of tumor stage, 
metastasis, and lymphatic invasion (Table 4 and Figure 9). 
The expression of the 7 differentially-expressed lncRNAs 
in the cohorts of high risk and low risk was illustrated in 
Figure 10.  

Functional assessment of the differentially-
expressed genes in high risk and low risk groups

Gene Set Enrichment Analysis (GSEA) was 
performed to distinguish relevant biological processes and 
signaling pathways [37]. We also investigated differences 
in the gene expression pattern between KIRP patients 
and KIRC patients. The gene set enrichment analysis was 
carried out on the gene sets that showed notably differential 
expression based on normalized enrichment score (NES) 
from high to low. It was detected that a total of 156 
pathways were considerably enriched in the high risk group, 
including KEGG_VASCULAR_SMOOTH_MUSCLE_
CONTRACTION (Figure 11A, Figure 12), KEGG_
TGF_BETA_SIGNALING_PATHWAY, KEGG_MAPK_
SIGNALING_PATHWAY. On the contrary, in the low risk 
group, the enrichment was seen in 21 pathways, including 
some cancer-related pathways like KEGG_OXIDATIVE_
PHOSPHORYLATION (Figure 11B, Figure 13), KEGG_
REGULATION_OF_AUTOPHAGY. The relevant top 10 
biological pathways were listed in Tables 5 and 6. 

Different signaling pathways in high-risk and 
low-risk groups

In the high-risk group, 3502 differentially expressed 
genes (DEGs) were obtained, including 2269 up-regulated 
and 1233 down-regulated genes (Supplementary Figure 1A,  
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Supplementary Figure 2A). Meanwhile, in the low-risk 
group, 3808 DEGs were achieved, including 1607 up-
regulated and 2201 down-regulated (Supplementary 
Figure 1B, Supplementary Figure 2B). Omitting those 
common DEGs between high-risk and low-risk groups, a 
total of 1081 DEGs were gathered from high-risk group, 
while 1387 DEGs were collected from low-risk group 
(Supplementary Figure 1C), which could help explain the 
different clinical outcomes of these two groups. The results 
of the KEGG analysis and of the top 50 pathways from 
GO analysis were presented in Supplementary Figure 3, 
Supplementary Figure 4 and Supplementary Figure 5.

Validation of the novel lncRNAs using Gene 
Expression Omnibus (GEO) DataSets

A total of 67 series were retrieved from GEO 
DataSets according to the search term. Finally, only 
GSE2748 and GSE48352 were found to contain AFAP1-
AS1 or GAS6-AS1 expression. The expression level of 
AFAP1-AS1 from GSE48352 was higher in papillary renal 
cell carcinoma (PRCC) than in that of normal controls 
(P = 0.0318) (Figure 14E). The GAS6-AS1 statistical 
significance differences were noted in the TNM stage (III/
IV vs. I/II) and distant metastasis (M0 vs. M1) (all P < 
0.05) (Figure 14A, 14B). AFAP1-AS1 could be used as a 
prognostic factor, and GAS6-AS1 might be a protective 
factor in PRCC (Figure 14C, 14D). These results 
conformed to our previous findings based on TCGA.

DISCUSSION

In the current study, we analyzed lncRNA-
sequencing data of KIRP in TCGA, and used multivariate 
Cox regression analysis to obtain seven lncRNAs to form 
a pool, which included AFAP1-AS1, GAS6-AS1, RP11-
1C8.7, RP11-21L19.1, RP11-503C24.1, RP11-536I6.2, and 
RP11-63A11.1. The PI was also calculated. Surprisingly, 
the PI was discovered to be an independent indicator for 
KIRP with high prognostic significance. Additionally, after 
categorizing the KIRP patients into high risk and low risk 
groups according to the PI, we observed alterations in key 
genes and pathways between these two cohorts. To our 
knowledge, this current study pioneered research into the 
prognostic value of lncRNAs in KIRP.

RCC represents over 90% of renal carcinomas, 
among which the subtype KIRP ranked second in the 
incidence rate, following KIRC [1–5]. Remarkable 
developments have been achieved in the therapy for 
metastatic KIRC over the past decades, and a number of 
targeted therapies have been proposed for it. On the other 
hand, studies aimed at controlling the metastatic non-clear 
cell RCC (nccRCC) still remains limited. In addition to 
KIRP, non-clear cell diseases entail chromophobe and 
sarcomatoid RCC as well [2]. Currently, some genes 
and microRNA have been demonstrated to play a role in 
the prognosis of KIRP. Furthermore, there is a growing 
awareness that lncRNAs may also exert prognostic 
capability. However, we know little of the clinical 

Figure 1: Volcano plot of differentially expressed lncRNAs (DELs) in kidney renal papillary cell carcinoma (KIRP). 
DELs filtered using the edgeR package with Padj < 0.05 and |log2FC| > 2. Volcano plot was drawn by the gplots package. 
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Figure 2: Heatmap of differentially expressed lncRNAs (DELs) in kidney renal papillary cell carcinoma (KIRP). DELs 
identified using the edgeR package with Padj < 0.05 and |log2FC| > 2. Heatmap was generated by the gplots package.
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significance of lncRNAs in KIRP despite their multiple 
functions as a type of non-coding RNA.

In recent years, researchers have had a great 
opportunity to identify a wide range of novel biomarkers 
for various malignancies thanks to TCGA, but the roles 
of lncRNAs in kidney cancers were rarely reported. In 
2015, Malouf GG et al. [31] conducted an analysis of 
the RNA-sequencing investigation of 475 primary KIRC 
cases from TCGA. Four lncRNA subtypes in KIRC 
were investigated by unsupervised clustering, which 
correlated with different clinical, pathological, and 
genomic characteristics of KIRC. The most aggressive 

tumors were determined via Cluster C2 (23.4%), with the 
highest Fuhrman grade, the most advanced TNMstage, 
and the worst overall survival duration. Moreover, 
enrichment of cluster C2 was carried out for 9p deletion 
and chromatin remodeler BAP1 somatic mutations. 
It was interesting to note that cluster C4 (7.8%) was 
linked with the tumor subtype that was derived from the 
distal tubules of the nephron. Due to its distinguishable 
ontogeny, cluster C4 lacked typical alterations in KIRC, 
but had frequent 1p deletion and 17q gain, and was 
enriched for MiTF/TFE translocations. However, this 
was merely a research dealing with KIRC. Because of 

Table 1: Detailed information of seven prognostic lncRNAs in KIRP
lncRNA Esenble ID log2FC FER β (Cox) SE P-value Exp (B) Lower Upper

AFAP1-AS1 ENSG00000272620 3.213267784 3.85E-05 0.195 0.071 0.006 1.215 1.056 1.398

GAS6-AS1 ENSG00000233695 3.709316256 1.91E-25 –0.474 0.126 <0.001 0.622 0.487 0.796

RP11-1C8.7 ENSG00000271830 4.611213539 3.09E-22 –0.243 0.071 0.001 0.784 0.682 0.901

RP11-21L19.1 ENSG00000254418 2.34604761 3.44E-11 –0.204 0.083 0.013 0.815 0.693 0.959

RP11-503C24.1 ENSG00000234768 2.277851897 1.30E-06 0.335 0.112 0.003 1.397 1.123 1.740

RP11-536I6.2 ENSG00000255021 –3.06775197 1.59E-17 –0.251 0.074 0.001 0.778 0.674 0.899

RP11-63A11.1 ENSG00000250781 –2.201710907 3.19E-12 –0.244 0.058 <0.001 0.783 0.699 0.878

Figure 3: Different expression of the seven lncRNAs between kidney renal papillary cell carcinoma (KIRP) and 
normal tissues. The boxplots were generated by R language. Statistical differences were analyzed using the two-sample t-test. Green 
column indicated normal tissue and dark yellow column showed KIRP tissues. (A) AFAP1-AS1; (B) GAS6-AS1; (C) RP11-1C8.7; (D) 
RP11-21L19.1; (E) RP11-503C24.1; (F) RP11-536I6.2; (G) RP11-63A11.1.
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the histological distinctions between KIRC and KIRP 
and their different molecular mechanisms, there was a 
pressing need for the expression profiling of lncRNAs 
in KIRP and a selection of lncRNAs that could predict 
progression and prognostication. However, studies on 
these issues have not been conducted yet.

We singled out the differentially-expressed 
lncRNAs and then gathered 7 lncRNAs by univariate 
and multivariate Cox proportional hazards regression, 
each of which would bear clinical significance such 
as TNM stage, distant metastasis, and tumor stage, etc. 
to some extent. More interestingly, the PI composed of 
these seven lncRNAs displayed considerable predictive 
potential for disease progression, and could even qualify 

itself as an independent indicator for prognosis with its 
clinical significance. Furthermore, taking GEO dataset 
into validation, we collected 67 KIRP-related series. The 
clinical and prognostic value of lncRNAs AFAP1-AS1 
and GAS6-AS1 could be partially verified by GSE2748 
and GSE48352.  However, the clinical efficacy of these 
lncRNAs and the PI required further confirmation with a 
larger sample size and joint effort.

Having classified the patients into high risk and 
low PI cohorts according to their PI scores, we examined 
the signaling pathways of differentially-expressed genes 
in the two cohorts and found that the major pathways 
of the high risk group included KEGG_VASCULAR_
SMOOTH_MUSCLE_CONTRACTION, KEGG_TGF_

Figure 4: The relationship between the expression of major lncRNAs and clinical pathological features in kidney renal 
papillary cell carcinoma (KIRP). The boxplots were drawn by R language. Statistical differences were analyzed by the two-sample 
t-test. These major lncRNAs statistical significance differences were noted in several clinical pathological features: (A) tumor stage (T3/
T4 vs. T1/T2), (B) lymph node metastasis (N0 vs. N1), (C) distant metastasis (M0 vs. M1), (D) TNM stage (III/IV vs. I/II), and (E) cancer 
status (tumor free vs. tumor). The X axis shows different lncRNAs, and the Y axis indicates the normalized expression (log2).
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Table 2: The association between these seven lncRNAs and clinical features of KIRP patients

Factor AFAP1–AS1 GAS6–AS1 RP11–1C8.7 RP11–21L19.1 RP11–503C24.1 RP11–536I6.2 RP11–63A11.1

Tumor stage 
(T3–4/T1–2)

t-test 3.737 –1.052 –3.225 –2.733 –3.244 –3.042 –4.910 
P <0.001 0.294 0.002 0.008 0.001 0.003 <0.001

AUC 0.369 0.550 0.654 0.641 0.647 0.626 0.695 
P 0.002 0.227 <0.001 0.001 <0.001 0.003 <0.001

Lymph node 
metastasis 
(N1/N0)

t-test –2.965 1.540 2.146 2.290 2.017 3.392 2.117 
P 0.005 0.128 0.037 0.025 0.049 0.001 0.038 

AUC 0.332 0.601 0.662 0.681 0.647 0.724 0.642 
P 0.014 0.144 0.018 0.009 0.032 0.001 0.039 

Metastasis 
(M1/M0)

t-test –2.064 2.083 2.235 1.183 1.579 1.652 1.789 
P 0.070 0.040 0.053 0.240 0.118 0.102 0.077 

AUC 0.272 0.713 0.740 0.671 0.684 0.653 0.702 
P 0.024 0.035 0.018 0.090 0.069 0.131 0.046 

TNM stage 
(III–IV/I–II))

t-test 3.365 –1.251 –2.936 –2.601 –2.587 –2.653 –5.482 
P 0.001 0.212 0.004 0.011 0.010 0.008 <0.001 

AUC 0.380 0.557 0.634 0.624 0.624 0.614 0.710 
P 0.004 0.171 0.001 0.003 0.003 0.006 <0.001

Cancer status 
(with tumor/
tumor free)

t-test –3.058 3.308 3.451 2.790 3.520 3.982 4.384 
P 0.003 0.001 0.001 0.007 0.001 <0.001 <0.001 

AUC 0.361 0.661 0.661 0.649 0.670 0.675 0.705 
P 0.048 0.001 0.001 0.001 <0.001 <0.001 <0.001

Figure 5: The predictive effect of lncRNAs on clinical progression of kidney renal papillary cell carcinoma (KIRP) 
by receiver operating characteristic (ROC). The ROC curves were generated by SPSS and used to estimate the predicted value of 
each lncRNA for the cancer progress including: (A) advanced tumor stages (T3–4), (B) lymph node metastasis positive, (C) metastasis, (D) 
higher TNM stages (III–IV), and (E) cancer status (with tumor). *P < 0.05 for AUC of each lncRNA.
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Figure 6: The risk score analysis of kidney renal papillary cell carcinoma (KIRP) patients. (A) LncRNA predictive risk 
score distribution; (B) The survival status of KIRP cases; (C) Heatmap of the seven lncRNAs expression profiles in KIRP. From blue to red 
indicates a trend from low expression to high expression.

Figure 7: Survival ROC curve and Kaplan–Meier curve for the seven lncRNAs signature in kidney renal papillary 
cell carcinoma (KIRP). (A) Survival ROC curve was generated by Survival ROC package of R language. Time-dependent ROC curves 
analysis relies on the 7-lncRNAs signatures for survival prediction. (B) Kaplan–Meier curve was drawn by GraphPad Prism. Kaplan-Meier 
survival curve showed overall survival outcomes by relative high-risk and low-risk patients.
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BETA_SIGNALING_PATHWAY, and KEGG_MAPK_
SIGNALING_PATHWAY; these were utterly different 
from its low counterpart, of which the main pathways 
involved KEGG_OXIDATIVE_PHOSPHORYLATION 
and KEGG_REGULATION_OF_AUTOPHAGY. It was 
assumed that the pathway differences helped clarify 
the underlying molecular mechanisms which produced 
contrasting outcomes. Nonetheless, the relationships 
between these pathways and KIRP required experimental 
verification. 

For the present, the clinical implications and 
mechanisms of lncRNAs in other diseases appeal to 
our research team. By literature research, of the seven 
lncRNAs, we only retrieved reports on AFAP1-AS1 
and GAS6-AS1 in other diseases, whereas reports were 
lacking on RP11-1C8.7, RP11-21L19.1, RP11-503C24.1, 

RP11-536I6.2, and RP11-63A11.1. It was thus necessary 
to conduct in-depth investigation.

A large number of in vitro and in vivo experiments 
explored the function and molecular mechanism of 
AFAP1-AS1. The knockdown of AFAP1-AS1 significantly 
prohibited cell migration and invasion in nasopharyngeal 
carcinoma (NPC) and lung cancer cells [32, 33]. Silencing 
of AFAP1-AS1 markedly reduced hepatocellular 
carcinoma (HCC) cell proliferation and invasion and 
decreased tumor growth in a murine allograft model  
in vivo. AFAP1-AS1 also promoted the cell proliferation 
and invasion through up-regulating the RhoA/Rac2 
signaling [34, 35]. Silencing AFAP1-AS1 would inhibit 
the pancreatic ductal adenocarcinoma (PDAC) cell 
proliferation, migration, and invasion, while aberrantly-
expressed AFAP1-AS1 accelerated cell proliferation, 

Table 3: Univariate and multivariate cox analyses for the prognostic value of clinical features of KIRP patients  

Variables
Univariate Multivariate

P HR LL UL P HR LL UL
PI (high-risk/low-risk) <0.001 2.163 1.813 2.580 0.002 2.400 1.374 4.192
Gender (female/male) 0.149 0.617 0.320 1.190 0.548 1.743 0.284 10.706
Age (>60/<60) 0.881 0.955 0.527 1.733 0.751 1.284 0.274 6.023
T (T3–4/T1–2) <0.001 5.074 2.765 9.310 0.829 0.799 0.104 6.131
N (N1/N0) <0.001 4.994 2.058 12.118 0.254 0.300 0.038 2.376
M (M1/M0) <0.001 114.966 22.481 587.924 0.008 42.852 2.628 698.744
Cancer status (with tumor/tumor free) <0.001 15.389 7.812 30.316 0.842 1.290 0.105 15.842
TNM stage (III–IV/I–II) <0.001 6.473 3.362 12.462 0.903 1.205 0061 23.920

Figure 8: Kaplan-Meier survival curves in subgroup analyses of different clinical factors. Kaplan–Meier curves were 
generated by GraphPad Prism. (A) Tumor stage (HR = 5.074, P < 0.001); (B) Lymphatic stage (HR = 4.994, P < 0.001); (C) Metastasis 
(HR = 114.966, P < 0.001); (D) TNM stage (HR = 6.473, P < 0.001); (E) Cancer status (HR = 15.389, P < 0.001).
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migration, and invasion [36]. The knockdown of AFAP1-
AS1 decelerated the intrahepatic cholangiocarcinoma 
(CCA) cell proliferation and migration [37, 38]. In 
addition, silencing AFAP1-AS1 prohibited cell migration 
in part due to reduced expression of MMP-2 and MMP-9 
[38]. The knockdown of AFAP1-AS1 prohibited gastric 

cancer (GC) SGC7901 cell proliferation and induced 
apoptosis through PTEN/p-AKT pathway [39]. AFAP1-
AS1 accelerated ovarian cancer cell proliferation, and 
AFAP1-AS1 knockdown significantly promoted ovarian 
cancer cell and esophageal squamous cell carcinoma 
(ESCC) cell apoptosis [40, 41]. AFAP1-AS1 depletion 

Table 4: The association of the risk score of the seven lncRNAs signature with clinical features in KIRP patients 

Parameters N
t-test ROC Spearman

Mean ± SD P (AUC) P r P
Age 60≤ 143 –5.906 ± 2.007 0.025 0.570 0.040 –0.122 0.040

>60 142 –6.415 ± 1.714
Tumor stage T1–2 224 –6.464 ± 1.684 <0.001 0.698 <0.001 0.282 <0.001

T3–T4 61 –5.015 ± 2.153
Lympy node metastasis N0 49 –6.207 ± 2.030 <0.001 0.751 <0.001 0.418 <0.001

N1 28 –4.110 ± 2.426
Metasstasis M0 95 –6.113 ± 1.886 0.001 0.811 0.002 0.302 0.002

M1 9 –3.764 ± 1.999
Cancer status Tumor free 226 –6.493 ± 1.580 <0.001 0.749 <0.001 0.323 <0.001

With tumor 46 –4.399 ± 2.394
TNM stage I–II 192 –6.522 ± 1.621 <0.001 0.691 <0.001 0.289 <0.001

III–IV 66 –5.110 ± 2.159

Figure 9: Predictive value of the risk score for clinical features according to the receiver operating characteristic (ROC) 
curves. The ROC curves were drawn by SPSS. (A) Tumor stage (AUC = 0.698, P < 0.001); (B) N stage (AUC = 0.751, P < 0.001); (C) 
Distant metastasis (AUC = 0.811, P < 0.001); (D) TNM stage (AUC =  0.691, P < 0.001); (E) Cancer status (AUC = 0.749, P < 0.001).
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suppressed SW480 cell and colorectal carcinoma (CRC) 
cell proliferation and colony formation [42, 43].

Clinical researche into lncRNA AFAP1-AS1 in 
multiple tumors was diversified. AFAP1-AS1 might act 
as therapeutic targets in NPC, and anti-PD-1 immune 
treatment was considered suitable for patients with co-
expression of AFAP1-AS1 and PD-1 [32, 44]. Meanwhile, 
another study also revealed that circulating AFAP1-AS1 
possibly played the role of a serum biomarker for NPC 
determination and outcome prediction after treatment [45]. 
AFAP1-AS1 was connected with a poor prognostication 
of HCC [34]. It was demonstrated by microarray analysis 
that increased expression of AFAP1-AS1 in PDAC tissues 
suggested lymph node metastasis, perineural invasion, 
and undesirable survival. When AFAP1-AS1 was used as 
a prognosis biomarker, the areas under receiver operating 

characteristic (ROC) curves were 0.8669 and 0.9370 for 
the forecast of tumor growth during 6 months and 1 year, 
respectively [36]. It was detected that AFAP1-AS1 showed 
an upward trend in intrahepatic CCA, and overexpression of 
AFAP1-AS1 was related to shorter overall survival duration 
[37, 38]. The up-regulation of AFAP1-AS1 was found in 
GC tissues as well as GC cells [39].  Additionally, higher 
expression of AFAP1-AS1 was also discovered in ovarian 
cancer, gallbladder cancer (GBC), lung adenocarcinoma 
(LUAD), esophageal squamous cell carcinoma (ESCC) 
, colorectal carcinoma (CRC), and the highly-expressed 
AFAP1-AS1 was clearly linked with unsatisfactory 
prognosis [33, 40–43, 46–49].

Owing to the extensive research on AFAP1-AS1, Liu 
et al. [50] performed meta-analysis on the clinical role of 
AFAP1-AS1. Web-based search in PubMed, EMBASE, 

Figure 10: Kaplan–Meier curves for the seven lncRNAs signature in kidney renal papillary cell carcinoma (KIRP). 
Kaplan-Meier survival curves of the seven lncRNAs showed overall survival outcomes by relative high-risk and low-risk patients.  
(A) AFAP1-AS1 (HR = 1.189, P < 0.001); (B) GAS6-AS1 (HR = 0.679, P < 0.001); (C) RP11-1C8.7 (HR = 0.824, P < 0.001); (D) RP11-
21L19.1 (HR = 0.789, P < 0.001); (E) RP11-503C24.1 (HR = 0.848, P = 0.001); (F) RP11-536I6.2 (HR = 0.793, P < 0.001); (G) RP11-
63A11.1 (HR = 0.747, P ≤ 0.001). Kaplan–Meier curves were generated by GraphPad Prism.
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Figure 11: Gene set enrichment analysis revealed KEGG pathways associated with risk score.  (A) KEGG_VASCULAR_
SMOOTH_MUSCLE_CONTRACTION; (B) KEGG_OXIDATIVE_PHOSPHORYLATION.

Figure 12: Adapted from KEGG oxidative phosphorylation pathway. GSEA enriched genes are labeled in the KEGG pathway 
with red five pointed stars.
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Cochrane Library, China National Knowledge Infrastructure 
(CNKI) and Wanfang database was conducted. After 
gathering papers concerned with AFAP1-AS1, Liu et al. [50] 
investigated the relationships between expression levels of 
AFAP1-AS1 and lymph node metastasis, distant metastasis, 
overall survival, relapse-free survival, and progression-free 
survival duration. Eventually, 1,017 patients from eight 
studies were involved, up to 2015. It was found that high 
expression of AFAP1-AS1 rendered cancer patients more 
vulnerable to lymph node metastasis and distant metastasis. 
Additionally, compared with low expressions of AFAP1-
AS1, a significant relationship between highly-expressed 
AFAP1-AS1 and shorter overall survival, undesirable 
progression-free survival, and depressive recurrence-
free survival was noted. Overall, increased expression of 
AFAP1-AS1 indicated adverse clinical outcomes. AFAP1-
AS1 has high potential to function as a new biomarker for 
predicting clinical consequences in human malignancies. 
However, there were no reports on this issue available 
except our current study. The connections between AFAP1-
AS1 and KIRP remained obscure, thus requiring more 
profound and comprehensive clinical research.

Studies on GAS6-AS1 were also rather scarce, and 
only relevant studies on lung cancers were retrieved. It was 
reported that down-regulation of GAS6-AS1 expression was 

observed in tumor tissues in 50 cases of non-small cell lung 
cancer (NSCLC) compared with adjacent normal tissues  
(P < 0.001). In addition, reduced expression of GAS6-
AS1 was adversely linked with lymph node metastasis 
(P = 0.032) as well as advanced tumor node metastasis stage 
(P = 0.003). Via univariate and multivariate analysis, GAS6-
AS1 was considered to act as an independent predictive 
factor for overall survival duration (P = 0.036). Moreover, 
GAS6-AS1 level showed a negative relationship with 
GAS6 mRNA level. Aberrant GAS6-AS1 expression could 
participate in the development of NSCLC via affecting of 
its host gene, rendering it possible in becoming a diagnosis 
target in NSCLC patients [51]. The RNA sequencing data 
analysis revealed that GAS6-AS1 showed a similar trend 
in KIRP as in NSCLC, as well as being strongly connected 
with prognosis. Hence, we supposed that GAS6-AS1 might 
play a vital part in the initiation and development of KIRP, 
but its molecular mechanism requires further investigation.

Overall, in this current research, we pioneered the 
deep RNA-sequencing data mining of KIRP lncRNA in 
TCGA and found that AFAP1-AS1, GAS6-AS1, RP11-
1C8.7, RP11-21L19.1, RP11-503C24.1, RP11-536I6.2, 
and RP11-63A11.1 were differentially expressed in tumor 
tissues of KIRP, hence exhibiting their capacity to predict 
outcomes. More importantly, The PI, which consisted of the 

Figure 13: Adapted from KEGG vascular smooth muscle contraction pathway. GSEA enriched genes are labeled in the 
KEGG pathway with red five pointed stars.
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seven novel lncRNAs, could become a new independent 
prognostic indicator for KIRP, providing new targets for 
clinical therapy. Nevertheless, the data in the study were 
entirely retrieved from TCGA. A joint effort is necessary to 
clarify the clinical significance and molecular mechanisms 
of these lncRNAs.

MATERIALS AND METHODS

Patients and data mining from TCGA

TCGA has been a major source of valuable data 
for 33 types of tumors, including for mRNA expression, 
protein expression, various mutations, amplifications, etc. 
In this study, we collected sequencing data of KIRP from 
the TCGA website (https://portal.gdc.cancer.gov/), which 

contained 321 KIRP tissues and 32 tumor-free adjacent 
normal tissues up to May 10, 2017. The clinical parameters, 
including age, tumor size, status of lymph node metastasis, 
status of distant metastasis, clinical TNM stage, and overall 
survival, etc. were collected and analyzed. Due to the public 
availability of the data from TCGA, additional approval 
by the ethics committee was not required. The data was 
used and processed according to TCGA Human Subjects 
Protection and Data Access Policies.

Evaluation of the differentially-expressed 
lncRNAs

The current KIPR TCGA dataset was comprised 
of gene counts for 60,244 mRNAs. In this study, we 
chose the lncRNAs with descriptions from GENCODE  

Table 5: Pathways enriched in high-risk group by using gene set enrichment analysis (GSEA)

NAME SIZE ES NES NOM
p FDR FWER 

p
RANK 

AT MAX LEADING EDGE

KEGG_VASCULAR_SMOOTH_
MUSCLE_CONTRACTION 115 0.62 1.964702 0.002008 0.065481 0.026 11121 tags = 55%, list = 20%, signal = 68%

KEGG_HYPERTROPHIC_
CARDIOMYOPATHY_HCM 83 0.59 1.955429 0 0.03834 0.031 9975 tags = 54%, list = 18%, signal = 66%

KEGG_ECM_RECEPTOR_
INTERACTION 84 0.67 1.949449 0.002008 0.028178 0.034 9125 tags = 60%, list = 16%, signal = 71%

KEGG_ARRHYTHMOGENIC_RIGHT_
VENTRICULAR_
CARDIOMYOPATHY_ARVC

74 0.6 1.912274 0.003876 0.034986 0.051 8727 tags = 53%, list = 16%, signal = 62%

KEGG_DILATED_CARDIOMYOPATHY 90 0.58 1.898705 0.001938 0.032262 0.058 8727 tags = 49%, list = 16%, signal = 58%

KEGG_TGF_BETA_SIGNALING_
PATHWAY 85 0.62 1.866714 0.001992 0.045007 0.09 11089 tags = 59%, list = 20%, signal = 73%

KEGG_FOCAL_ADHESION 197 0.61 1.855329 0 0.04626 0.098 12655 tags = 60%, list = 23%, signal = 78%

KEGG_OOCYTE_MEIOSIS 110 0.62 1.850145 0.004107 0.044282 0.109 10925 tags = 56%, list = 20%, signal = 70%

KEGG_MAPK_SIGNALING_PATHWAY 265 0.54 1.843136 0.003937 0.044181 0.116 13695 tags = 52%, list = 25%, signal = 69%

KEGG_GAP_JUNCTION 90 0.57 1.835098 0.003861 0.043918 0.121 14440 tags = 58%, list = 26%, signal = 78%

Table 6: Pathways enriched in low-risk group by using gene set enrichment analysis (GSEA)

NAME SIZE ES NES NOM 
p FDR FWER 

p

RANK 
AT 

MAX
LEADING EDGE

KEGG_OXIDATIVE_
PHOSPHORYLATION 118 –0.6 –1.42998 0.174603 1 0.663 6202 tags = 50%, list = 11%, signal = 56%

KEGG_PARKINSONS_DISEASE 114 –0.5 –1.36873 0.222441 1 0.726 7601 tags = 49%, list = 14%, signal = 57%

KEGG_HISTIDINE_METABOLISM 28 –0.5 –1.2721 0.232283 1 0.828 5883 tags = 43%, list = 11%, signal = 48%

KEGG_GLYCINE_SERINE_AND_
THREONINE_METABOLISM 31 –0.5 –1.24302 0.269461 0.917195 0.85 3778 tags = 35%, list = 7%, signal = 38%

KEGG_BUTANOATE_METABOLISM 34 –0.5 –1.19111 0.314961 0.866483 0.877 5384 tags = 41%, list = 10%, signal = 46%

KEGG_VALINE_LEUCINE_AND_
ISOLEUCINE_DEGRADATION 44 –0.5 –1.06689 0.470472 1 0.924 5444 tags = 43%, list = 10%, signal = 48%

KEGG_HUNTINGTONS_DISEASE 174 –0.4 –1.06527 0.422179 0.889884 0.925 6292 tags = 35%, list = 11%, signal = 39%

KEGG_PRIMARY_BILE_ACID_
BIOSYNTHESIS 16 –0.4 –1.02939 0.41358 0.858544 0.935 5049 tags = 38%, list = 9%, signal = 41%

KEGG_ALZHEIMERS_DISEASE 158 –0.3 –0.95915 0.492126 0.910816 0.957 6202 tags = 35%, list = 11%, signal = 39%

KEGG_REGULATION_OF_
AUTOPHAGY 34 -0.3 -0.95755 0.519588 0.822838 0.957 5966 tags = 38%, list = 11%, signal = 43%
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Figure 14: Validation of AFAP1-AS1 and GAS6-AS1 in papillary renal cell carcinoma (PRCC) based on Gene 
Expression Omnibus (GEO). (A) The relationship between the expression of two lncRNAs and TNM stage (III/IV vs. I/II) in papillary 
renal cell carcinoma (PRCC); (B) The relationship between the expression of two lncRNAs and metastasis (M0 vs. M1) in PRCC; (C) 
Kaplan-Meier survival curves of AFAP1-AS1 expression; (D) Kaplan-Meier survival curves of GAS61-AS1 expression; (E) boxplot of 
AFAP1-AS1 (GSE48352).
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(http://www.gencodegenes.org/) for further analysis, and 
a subset of expression profiles of 13,198 lncRNAs was 
eventually obtained. The differentially expressed lncRNAs 
were subsequently filtered by edgeR R package, with Padj 
< 0.05 and |log2FC| > 2 of expression level when comparing 
tumor and adjacent normal kidney tissue. The differentially 
expressed lncRNAs, which had been log2 transformed, 
were illustrated in a volcano plot and heatmap.

Construction of DEL-based prognosis index (PI)

In performing the prognosis analysis, we excluded 
differentially-expressed lncRNAs whose expression levels 
were below 1 in more than 10% of all subjects [52]. Patients 
whose key clinical statistics were available in the survival 
evaluation were involved. Additionally, the follow-up 
time or survival time of the patients had to exceed 0 days. 
Subjects without clinical information were removed. The 
end-point of the current study was overall survival (OS).     

The univariate Cox proportional hazards regression 
was applied to obtain the differentially-expressed lncRNAs 
that were strongly associated with OS, with the significance 
level set at 0.05. The multivariate Cox regression model 
was also used to calculate the prognosis value of these 
differentially-expressed lncRNAs. Next, the clinical role of 
these DELs with prognostic value was assessed. Student’s 
T-Test (SPSS Inc., Chicago, IL, USA) was used to examine 
the differential expression of these lncRNAs between 
KIRP and non-cancerous kidney tissues. The relationships 
between DEL expression and clinical progress were 
evaluated via Student’s T-Test, Spearman correlation, and 
K-M Curve. The PI, which was used for OS prediction, 
was created on the basis of the linear combination of the 
expression level multiplied by the regression coefficient that 
was derived from the multivariate Cox regression model (β).  
The calculation formula is as follows: PI = βDEL1 × exprDEL1 + 
βDEL2 × exprDEL2+ ··· + βDELn × exprDELn. [53–55].

Patients with KIRP were categorized into high 
risk and low risk cohorts according to the cut-off of the 
individual infection point of PI. The impact of PI on 
the OS of KIRP cases was measured by univariate and 
multivariate Cox proportional hazards regression analysis. 
Several clinical parameters, such as age, tumor stage, and 
cancer status, etc. were adjusted. Hazard ratio (HR) and 
95% confidence intervals (CI) were evaluated. In order 
to gauge the accuracy of the prognostic model for time-
dependent disease outcomes, we utilized the R package 
“survival ROC” to conduct ROC curve analysis within  
5 years as the defining point [53]. Kaplan-Meier survival 
curves were employed to calculate OS duration for KIRP 
patients with predicted high or low PIs.

Different signaling pathways involved in high 
risk and low risk cohorts

GSEA, also known as functional enrichment analysis, 
could facilitate the identification of types of genes or 

proteins that are over-represented in a large set of genes or 
proteins which may be connected with disease phenotypes. 
GSEA distinguishes itself from other pathway analysis 
owing to its enrichment process–the gene expressions in 
each cohort are first calculated and then enriched according 
to their expressions. The calculation is as follows: calculate 
the enrichment score (ES) that embodies the amount to 
which the genes in the set are over-represented at either the 
top or bottom of the list. The Molecular Signatures Database 
(MsigDB) accommodates a large group of annotated gene 
sets that can be utilized with most GSEA Software. In the 
current study, a total of 60,483 genes were inputed for 
GSEA. Gene sets with a p-value less than 0.05 and a false 
discovery rate (FDR) value <0.25 were deemed significantly 
enriched. If no significant gene set could be obtained, then 
the gene sets were listed ascendingly according to the orders 
of p-value and FDR. The results were generated by GSEA.

Different signaling pathways obtained in high-
risk and low-risk groups

DEGs were calculated between high-risk and 
low-risk groups and normal tissues, respectively. DEGs 
were identified using the edgeR package with Padj<0.05 
and |log2FC| > 2. The inconsistent DEGs between high-
risk and low-risk groups were sent for further signaling 
pathways analysis to unveil different possible molecular 
mechanisms. DAVID database was used for the annotation 
and visualization of DEGs in different risk groups. GO 
terms and KEGG pathway of DAVID were considered as 
significant with Padj < 0.05.

Validation using gene expression omnibus (GEO) 
datasets 

The correlative microarrays from GEO DataSets 
were gathered to validate the clinical roles of the seven 
lncRNAs; the following search terms were adopted: (kidney 
OR nephridium OR renal) AND papillary AND (cancer 
OR carcinoma OR tumor OR neoplas* OR malignan* OR 
adenocarcinoma). The levels of lncRNA expression between 
different groups were analyzed by Student’s t-test. Survival 
analysis was performed using Kaplan–Meier method.
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