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Prediction of chemical warfare 
agents based on cholinergic array 
type meta‑predictors
Surendra Kumar1,4, Chandni Kumari1,4, Sangjin Ahn1,2, Hyoungrae Kim3 & Mi‑hyun Kim  1*

Molecular insights into chemical safety are very important for sustainable development as well as 
risk assessment. This study considers how to manage future upcoming harmful agents, especially 
potentially cholinergic chemical warfare agents (CWAs). For this purpose, the structures of known 
cholinergic agents were encoded by molecular descriptors. And then each drug target interaction (DTI) 
was learned from the encoded structures and their cholinergic activities to build DTI classification 
models for five cholinergic targets with reliable statistical validation (ensemble-AUC: up to 0.790, 
MCC: up to 0.991, accuracy: up to 0.995). The collected classifiers were transformed into 2D or 3D array 
type meta-predictors for multi-task: (1) cholinergic prediction and (2) CWA detection. The detection 
ability of the array classifiers was verified under the imbalanced dataset between CWAs and none 
CWAs (area under the precision-recall curve: up to 0.997, MCC: up to 0.638, F1-score of none CWAs: up 
to 0.991, F1-score of CWAs: up to 0.585).

Chemical warfare agents (CWAs) and hazardous chemicals threaten chemical safety1,2. Prior to the chemical 
weapons convention, CWAs were intentionally invented and synthesized for military operations. Nowadays, there 
are concerns about unintentional CWA inventions along with their unexpected accidents through (1) synthetic 
chemistry related to known CWAs (eg. organophosphorus derivatives)2,3 or (2) chemistries for therapeutic drugs 
(eg. BZ assigned code by NATO) and illegal drugs4. Serial terrors such as Sarin in Japan in 1994, VX in Malay-
sia in 2017, and Novichok (non-declared agent) in Syria in 2018, make the concerns about chemical weapons 
feasible fears5. Moreover, some harmful chemicals (as shown in Fig. 1) were not registered in the CWA list of 
organizations for the prohibition of chemical weapons (OPCW) but have resulted in devasting causalities, and 
the tragedies are still going on: (1) ethoxyethyl guanidinium (PGH)/Polyhexamethylene guanidine (PHMG), 
ingredients of Reckitt Benckiser sterilizers, which resulted in disinfectant deaths of babies and pregnant women 
in South Korea6,7, and (2) TCDD, a trace impurity of Agent Orange (herbicide and defoliant chemical) during 
the Vietnam War, which has promoted epigenetic transgenerational inheritance of diseases8,9.

For chemical safety, humans have built regulations or systems to control the risk resulting from harmful 
chemicals10–12. With such systems, the detection of hazardous agents or their detoxification technologies have 
been continuously developed13–16. Despite the history, the upcoming rate of harmful agents is more rapid than 
the rate to make a regulation or a detection technology. For example, more than 450 new psychoactive substances 
(NPSs) or designer drugs, which were designed to mimic the pharmacological effects of known illegal drugs 
could avoid a regulation of illegal drugs and/or detection in standard drug tests, have been monitored from 2014 
to 201717–19. During these periods, any system for safety could not suitably and timely control the NPSs: their 
identification and detection, evaluation of their toxicity, and establishment of a regulation20. Naturally, chemical 
hazards or toxic substances undefined in a system cannot be prevented, recognized, or controlled21. Thus, harmful 
and hazardous ‘not existing yet but upcoming chemicals (NE chemicals)’ should be pre-defined in advance for the 
risk assessment. However, the prediction of ‘not-existing’ is vague and indefinite. Fortunately, when a machine 
learns the structures and properties of known harmful chemicals and analyzes their relationships, the learned 
relationship can theoretically suggest a pattern of NE chemicals22. In other words, a part of the hazard and toxic 
space can be defined by using molecular features (variables) of known chemicals (Fig. 2). As ‘chemical space’ 
means which encompasses all possible small molecules23, a hazard and toxic space means which encompasses 
all possible hazardous and toxic chemicals and was named. More desirably, if the definition is ideally achieved, 
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it can be used for preventive regulation. With this consideration, we have tried to define a part of the hazard 
and toxic space using cholinergic meta-predictors. In this study, the space of pan-cholinergic agents is a priori 
defined by their molecular structures, and then the cholinergic pattern of nerve agents as CWAs in the space is 
learned by a convolutional neural network (CNN). The former is the generation of cholinergic meta-predictors 
and the latter is the CWA detection based on the meta-predictors.

Results and discussion
Design of meta‑predictor for cholinergic pattern.  For a predictive model, predictor variables and 
dependent variables are generally chosen (or selected after manipulation) from variables of raw data. However, 
there was no common information between CWAs and known cholinergic agents, and  a toxicity index was 
rarely available1,2,16,24. The available data on cholinergic agents were their structures and cholinergic activities 
(Fig. 3 and Table S1). Meanwhile, the only common known information about CWAs and harmful agents was 
molecular structure. Expectedly, linking between CWAs and cholinergic data didn’t produce any common vari-
able. Thus, a practical problem was how to create a unified descriptor (predictor variable) of the chemicals from 
the limited data. To define a unified descriptor, an important property of hazard and toxic agents is their toxicity 
profile, together with molecular mechanics, to lead to rescue from toxicity. Notably, the in-depth mechanism 
of respective toxicity is not clear for most agents and is different from each other. In CWAs, while some nerve 
agents show high structural congenericity, the structure of 3-quinuclidinyl benzilate (NATO code: BZ) is very 
dissimilar to those of other CWAs and an outlier in chemical structures of CWAs. Fortunately, nerve agents 
present relatively more consistent mechanisms based on acetylcholinesterase (AChE) rather than other CWAs 
such as blister agents, asphyxiants, choking (pulmonary damaging) agents, incapacitating agents, lachrymating 
agents, and vomit agents1,2,25,26. It is well-known that nerve agents and organophosphorus inhibit AChE at cho-
linergic synapses, thereby inhibiting the degradation of acetylcholine (Fig. 3A). Accumulation of the released 
acetylcholine causes end-organ overstimulation, which is recognized as a cholinergic crisis1.

Thus, the limited knowledge motivated us to investigate hazard and toxic spaces in terms of their cholinergic 
effects on the nervous system (of Fig. 3). Notably, the aim of this study was not only cholinergic DTI prediction 

Figure 1.   Chemical threats include chemical warfare agents (CWAs) having assigned NATO codes, CWA 
stimulants, new psychoactive substances (NPSs) and chemical hazards such as PHMG (sterilizer) and TCDD.

Figure 2.   Conceptual presentation of hazard and toxic space and molecular featurization of chemicals in the 
space.
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of individual chemicals but also the detection of CWA from NE chemicals using cholinergic patterns of known 
chemicals. For this purpose, we designed a meta-predictor to describe the patterns using the structure–activity 
relationship (SAR) of cholinergic agents (Fig. 4). To our best knowledge, before this study, meta-predictor or 
meta-learning studies of bio-/chemo-informatics data (1) use homogenous methods iteratively27, (2) explicitly 
adjust weights of element predictors28,29, or (3) linearly combine element predictors29. More notably, while such 
known studies used the same dataset for training both predictors and meta-predictors, this study used two 
heterogenous datasets (cholinergic data in ChEMBL for predictors, and CWA/NPS out of ChEMBL for meta-
predictors). We designed our meta-predictor as shown in the below equations. While a predictor, f  (of Eq. 1) 
used data and parameters as input, a meta-predictor, g also used element predictors, f T ′

ij  in 
[

i × j
]

 shaped array. 
Thus, authors called them ‘meta-predictors’.

(1)f = L
(

T ,
⇀
w
)

(2)g = CNN

(

f T ′ij ,
⇀

w′
ij

)

f : predictor, g : meta− predictor, L : machine learning method

T : training set(ChEMBL),T ′ : training set(CWA/NPS),
⇀
w ,

⇀
w
′
: vector of parameters

Figure 3.   Description of cholinergic space in this study. (A) The location and roles of cholinergic targets in the 
nervous system. (B) Data collection of cholinergic agents from the ChEMBL database. All agents were extracted 
using respective cholinergic targets as MySQL queries. nAChR nicotinic acetylcholinesterase receptor, mAChR 
muscarinic acetylcholinesterase receptor, VAChT vesicular acetylcholine transporter, AChE acetylcholinesterase, 
BuChE butyrylcholinesterase.

Figure 4.   Design of meta-predictor for multi-tasking and data workflow. Pale sky-blue arrow: data flow for 
building cholinergic DTI models, blue arrow: data flow for building array classifier, yellow arrow: the flow of 
upcoming data for multi-task. Model list = [M1, M2, …, M20], target list = [T1, T2, T3, T4, T5], ML list = [ML1, 
ML2, ML3, ML4], seed list = [S1, S2, …, S10], compound list = [C11, C12, …, C21, …, Cij], and value list of 
predictors =  [1, 2].
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Practically, first of all, the biochemical activities of cholinergic agents were embedded together with the 
molecular descriptors for a machine to learn the SAR. Secondly, the experimental activity data of ChEMBL 
(a public database) disciplined the machines to judge the relationship between the five cholinergic targets and 
chemicals, which is called drug target interaction (DTI). The trained DTI models of Fig. 4 (200 classifiers of 
four type machines, ten differently divided data, and five targets) were internally and externally validated to 
elucidate the binominal cholinergic patterns (active/inactive) of a chemical. Thirdly, the cholinergic patterns of 
known CWAs and NPSs as harmful agents were predicted by the 200 binary classifiers, and the predicted values 
were transformed into an array type data as shown in Fig. 4. Finally, the predicted array data was used as meta-
predictors to build the CWA detection model. Even if real cholinergic patterns of these harmful chemicals are 
unknown, a chemo-centric approach allowed us to infer the pattern. The chemo-centric approach means if two 
similar molecules are likely to possess similar properties, they can share biological targets or may show similar 
pharmacological profiles30–35. Notably, this study used only two types of real data: chemical structures of all 
chemicals (ChEMBL, CWAs, and NPSs) and cholinergic activities of ChEMBL chemicals (Fig. 3B).

Robust DTI classification models for meta prediction.  To realize the designed meta-predictor, two 
types of 2D molecular fingerprints (FCFP, ECFP) captured the molecular structures of all cholinergic agents36. 
These extended-connectivity and functional-class fingerprints are well-known molecular representations, which 
precisely describe molecular structure and functional groups (groups of atoms having their own characteristic 
properties) in a molecule and show their competent performance in drug design and large-scale prediction36. 
Thus, ECFP and FCFP were used to describe the cholinergic SAR under machine learning (ML) algorithms of 
random forest (RF), support vector machine (SVM), decision tree (DT), and k-nearest neighbor (KNN)37–39. 
The DTI model was trained for each cholinergic target of acetylcholinesterase (AChE), butyrylcholinesterase 
(BuChE), nicotinic acetylcholinesterase receptor (nAChR), muscarinic acetylcholinesterase receptor (mAChR), 
and vesicular acetylcholine transporter (VAChT)40. Firstly, statistical performance for the nAChR classifier was 
evaluated (Table 1 and Table S2). Expectedly, the receiver operating characteristic (ROC) plots of nAChR clas-
sifiers demonstrated the robust predictability irrespective of data division into training and test (Table S2 and 
Fig. S2). When Area Under ROC (AUC) of test data was compared, RF, SVM, and KNN models (AUC: 0.961–
0.998) produced AUC higher than DT (AUC: 0.739–0.889). Furthermore, we applied other statistical metrics 
including accuracy, F1 score, and Matthews correlation coefficient (MCC), which informative and truthful 
scores in evaluating binary classifications than accuracy and F1 score. Notably, the MCC values of every model 
were reliable (Test: MCC ~ 0.438–0.978, Train: 0.474–0.956), and the MCC values of test sets were at par with 
those of train sets. Secondly, the learning of the mAChR dataset followed a similar pattern to nAChR models, 

Table 1.   The classification performance of selected best model based on ensemble-AUC for train and test 
set. ACC​ Accuracy, MCC Matthew’s Correlation Coefficient, RF Random Forest, DT Decision Tree, SVM 
Support Vector Machine, KNN K-Nearest Neighbor, nAChR Nicotinic Acetylcholinesterase Receptor, mAChR 
Muscarinic Acetylcholinesterase Receptor, AChE Acetylcholinesterase Enzyme, BuChE Butyrylcholinesterase 
Enzyme, VAChT Vesicular Acetylcholine Transporter. The values in parenthesis belong to the test set. The best 
model was selected based on the ensemble-AUC (Table S7).

Target ML AUC​ MCC ACC​ F1-Score

nAChR

RF 0.994 (0.987) 0.918 (0.975) 0.959 (0.987) 0.959 (0.987)

DT 0.845 (0.871) 0.678 (0.764) 0.836 (0.871) 0.824 (0.854)

SVM 0.994 (0.989) 0.936 (0.978) 0.968 (0.989) 0.968 (0.989)

KNN 0.741 (0.737) 0.551 (0.558) 0.741 (0.737) 0.791 (0.792)

mAChR

RF 0.997 (0.977) 0.952 (0.954) 0.976 (0.977) 0.976 (0.977)

DT 0.841 (0.820) 0.673 (0.642) 0.837 (0.820) 0.834 (0.813)

SVM 0.996 (0.981) 0.959 (0.962) 0.979 (0.981) 0.979 (0.981)

KNN 0.992 (0.958) 0.911 (0.917) 0.956 (0.958) 0.955 (0.958)

AChE

RF 0.997 (0.981) 0.942 (0.962) 0.971 (0.981) 0.971 (0.981)

DT 0.832 (0.789) 0.627 (0.597) 0.808 (0.789) 0.824 (0.813)

SVM 0.996 (0.986) 0.943 (0.972) 0.971 (0.986) 0.972 (0.986)

KNN 0.982 (0.818) 0.704 (0.683) 0.832 (0.818) 0.856 (0.846)

BUChE

RF 0.999 (0.973) 0.949 (0.948) 0.974 (0.973) 0.974 (0.973)

DT 0.796 (0.773) 0.523 (0.566) 0.761 (0.773) 0.760 (0.799)

SVM 0.995 (0.973) 0.961 (0.947) 0.980 (0.973) 0.980 (0.973)

KNN 0.909 (0.667) 0.408 (0.447) 0.643 (0.667) 0.737 (0.750)

VAChT

RF 1.000 (0.911) 0.702 (0.915) 0.830 (0.956) 0.887 (0.957)

DT 0.975 (0.944) 0.953 (0.934) 0.976 (0.967) 0.976 (0.966)

SVM 0.998 (1.000) 0.991 (1.000) 0.995 (1.000) 0.991 (1.000)

KNN 0.998 (0.956) 0.953 (0.934) 0.976 (0.967) 0.977 (0.967)
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along with AUC of 0.807–0.998 and MCC of 0.608–0.974 (Table 1 and Table S3). The mAChR models produced 
slightly higher predictive performance than the nAChR models. The overall DT model presented a lower per-
formance than RF, SVM and KNN models. Thirdly, BuChE models also showed reliable prediction performance 
with AUC of 0.771–1.000 and MCC of 0.420–0.986 and slightly lower than the classification models of nAChR 
and mAChR (Table 1 and Table S5). Fourthly, we further analyzed the classification metrics from AChE models. 
Despite the large data size (n = 3098), the classification performance revealed at par performance for AUC of 
0.774–0.999 (Table 1 and Table S4). Finally, VAChT models of the smallest dataset outperform those of nAChR, 
mAChR, AChE, and BuChE (Table 1 and Table S6). To visualize the predictive power of the cholinergic DTI 
models, the best performing models were described by ensemble-AUC values (Fig. 5 and Table S7).

Multi‑task of array classifiers and performance.  The first task of the built array model is predicting 
cholinergic activities of ‘out-of-set (neither training nor test set)’ molecules on nAChR, mAChR, VAChT, AChE, 
and BUChE (Fig. 4). For the purpose, every cholinergic DTI classifier was already validated in the prior section. 
Clearly, CWAs and none CWAs consisting of NPSs and designer drugs19 are out of ChEMBL cholinergic data40, 
neither training nor test data. Cholinergic patterns of the CWAs and none CWAs were predicted to play the 
role of meta-predictors for the second task. The second task of the array model is judging the chemical warfare 
likeness of ‘out-of-set’ molecules. For this purpose, the discrimination between CWAs and none CWAs was 
learned by a CNN algorithm. CNN is a popularly used deep learning framework for object recognition tasks, 
object tracking, pose estimation, text detection and recognition, visual saliency detection, action recognition, 
scene labeling41. LeNet of LeCun et al.42 and AlexNet of Hinton et al.43 initialized the popularity of CNN in the 
field of computer vision. GoogleNet44, VGGNEt45, ResNet46, and so on elaborated CNN architecture (e.g., batch 
normalization, filter, residual function) improved prediction accuracy. Despite the difference in data size, our 
meta-predictors have the same property as a binary pixel array with MNIST hand-written data (28 × 28 pixels 
with two colors), which is a representative dataset of CNN models47. The common property made us benchmark 
the image-based learning of MNIST data. Firstly, our meta-predictors were converted to the 2D array of a 5 × 4 
shape for CNN learning. After the investigation, the architecture of Fig. 6A (see also Fig. S9) was chosen for the 
best learner. As our expectation, the 2D array reliably detected CWAs from large NPS data. During the learning 
along with the increased epoch, accuracy and loss values reached their optimal values and retained the values 
(Fig. 6B). With the encouraging results, we tried to adjust the data imbalance between CWAs and non-CWAs 
through over-sampling and under-sampling (the removal of data showing duplicated array values). As shown in 
Fig. 7, when imbalanced native data (Model 01) was compared with balanced over-sampled data (Model 03), sta-
tistical metrics showed the deviation with a slight decrease, but the area under the precision-recall curve (AUPR) 
values of Fig. 7A were still comparable between native (imbalanced) and over-sampled data (balanced) to prove 
that these statistical values did not simply result from data imbalances. The Matthews correlation coefficient 
(MCC), F1-score, and accuracy (Fig. 7B) also supported that the SMOTE (over-sampling) confirmed the ability 
to find CWAs48. Furthermore, the two types of sampling allowed us to evaluate 2D or 3D array classifiers of dif-
ferent shapes. When we re-shaped the 2D array from [50 × 4] to [40 × 5], the detection ability steeply decreased 
to reveal the importance of how to arrange element predictors. If some data shows a dependency on the order 
between its variables (element predictors), the data can be called sequential. Meanwhile, when we converted the 
2D array into 3D arrays, surprisingly, image-based learning of [10 × 5 × 4] shape improved AUPR, MCC, and 
F1-score of the worst ‘Model 04’ and decreased the performance gap between different data (Fig. 7). When the 
3D array was reshaped into [5 × 10 × 4], the improvement of these statistical values was also retained. Moreover, 
multi-layer perceptron (MLP) model was built from the training data of the CNN model with the same number 
of layers. The MLP model as a baseline showed very inferior precision and a lower F1 score than the best CNN 
model. In detail, while two CNN models were superior to the MLP model, still shape of the array was still impor-
tant to give how much better performance than MLP (Fig. 7C).

Based on the statistical validation of Fig. 7 and Table S8, the array classifiers are ready for CWA detection 
of NE chemicals. Obviously, this predictive model for chemical threats under the chemo-centric assumption is 
arguable due to the available data and impossible experimental validation. However, such a trial is not the only 
one. For example, the OECD also developed the QSAR model toolbox and has provided it for risk assessment10. 
Although typical QSAR models can guarantee high precision within their prediction domain, the QSAR models 

Figure 5.   Statistical performance of DTI classification models. The area under receiver operating characteristic 
curve (AUC) was calculated in external and internal validation of respective targets.
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have the limitation of a domain beyond the congeneric series set. For example, when the six acute toxicity models 
of the OECD QSAR Toolbox predicted CWAs, considerable CWAs could not return the predicted values due to 
out of prediction domain and gave a failure rate of ca. 50% (Table 2). Thus, innovative studies should overcome 
the limitation of a domain. Moreover, QSAR models generally cannot be built using an ab initio method. Unfor-
tunately, toxicity index of CWA data is rare, not enough to build a reliable predictive model. Obviously, although 
a classification model can be built, the prediction domain is still biased to organophosphorus. Thus, we suggested 
cholinergic meta-predictors in order to investigate the make-up of the current data limitation. The notable dif-
ference between this study and typical QSAR models is the definition of the dependent variable and independent 
variable. Typical QSAR models use ‘experimental activity/toxicity index’ as a dependent variable and ‘chemical 
structure and their descriptors’ as independent variables. Meanwhile, the CNN model of this study did not use 
either chemical structures or their molecular descriptors. The encoding of chemical structures was replaced with 
cholinergic meta-predictors. Because current information on the mechanism of CWAs is enriched in AchE and 
cholinergic effects, this study only described cholinergic patterns to detect chemical threats. In the future, if data 
is updated, this methodology could be applicable to other pharmacological effects of known harmful chemicals 
such as brain monoacylglycerol (MAG) lipase activity and endocannabinoid degrading enzyme, fatty acid amide 
hydrolase (FAAH), which are recently reported toxicity mechanisms of organophosphorus pesticides2,16. Even 
if the MAG and FAAH inhibition of the insecticides were reported, such a trial would be more feasible after 
updating the data (of MAG or FAAH agents) as much as those of cholinergic agents.

Conclusion
Despite extremely imbalanced data, the cholinergic pattern of CWAs was learned through array-type meta-
predictors to achieve acceptable predictive performance. Furthermore, the learning allows multi-tasking for a 
chemical: DTI prediction for five cholinergic targets under four ML algorithms and CWA detection under the 
CNN algorithm. While the former task was verified through the internal and external validation of the respective 
DTI classifier, the latter task was validated using CWA and non-CWA. Notably, this study suggests a new method 

Figure 6.   Training of the three different shaped array classifiers (2D, 3D, and reshaped 3D). (A) CNN 
architecture in this study. (B) Robust training of the CNN models with early stopping via callback. X-axis: 
the number of epochs (training unit), y-axis: accuracy or loss values (the gap between real and prediction), 
which were calculated by a loss function according to data sampling (Model 01: native, Model 02: removal of 
duplicated array values from Model 01 data, Model 03: SMOTE oversampling of Model 01 data, Model 04: 
SMOTE oversampling of Model 02 data).
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Figure 7.   CWD detection performance of the three different shaped array classifiers according to data sampling 
(Model 01 to 04). (A) Precision-Recall curve of CNN models, (B) Performance of CNN models (MCC, 
F1-Score, and Accuracy), and (C) comparison with multiple layer perceptron as a baseline model.

Table 2.   Acute toxicity QSAR models for human health hazards and toxicity prediction of CWAs. CWA data 
of CNN models was used for the prediction. Every CWA should be inserted through query search in IUCLID 
databased implemented in the OECD QSAR Toolbox. a The failure rate was % ratio of the counted ‘no value’ 
in each predictive model. No value was produced with ‘out-of-domain’, ‘not applicable’, and none mentioned 
reason.

OECD-QSAR model Failure ratea

Acute toxicity in mouse (intraperitoneal) 0.58

Acute toxicity in mouse (intravenous) 0.48

Acute toxicity in mouse (oral) 0.59

Acute toxicity in mouse (subcutaneous) 0.53

Acute toxicity in rat (intraperitoneal) 0.56

Acute toxicity in rat (oral) 0.36
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to describe harmful agents having limited information for their quantitative structure–toxicity relationship. Thus, 
it contributes to the research controlling and predicting chemical threats from NE chemicals in the recent future.

Methods
Dataset collection and manipulation.  Any machine learning algorithm  inextricably relies on the 
structure and reported activity data. In recent years, the ChEMBL databases have become a primary source 
for retrieving chemical data for machine learning applications. Herein, the ChEMBL database version 2449 was 
selected to retrieve the structural and property data of cholinergic agents (nAChR, mAChR, VAChT, AChE, 
and BUChE) with the MySQL query consisting of molecular structures (canonical smiles), activity ID, standard 
values of inhibitory activities with standard relation and standard unit (nanomolar), assay ID, and target ID. In 
addition, the molecular structures of CWAs and NPSs were collected from literature1,2,19 and NPS-datahub50. 
Every manipulation of data (sorting, merging, cleaning of duplicated data, and binominalization) was conducted 
by the KNIME Analytic Platform51. The supplementary section describes the composition of chemicals in each 
target. In brief, a total number of 1818, 6944, 3098, 1382, 302, 95, and 3126 chemicals belonging to nAChR, 
mAChR, AChE, BuChE, VAChT, CWA, and NPSs were selected respectively.

MySQL query in ChEMBL DB.  Select x.molregno,canonical_smiles, activity_id,y.assay_id, standard_value, 
standard_relation, standard_units, i.tid, k.target_type, k.pref_name, k.organism From compound_structures x, 
activities y, assays i, target_dictionary k.

Where x.molregno = y.molregno and y.assay_id = i.assay_id and i.tid = k.tid and k.tid = 10532 INTO outfile 
"chembl_target_BuChE.csv" fields terminated by ’,’ lines terminated by ’/n’;

Molecular descriptor generation.  Eight 2D molecular fingerprints of every chemical data were gener-
ated with (1) two types, extended-connectivity fingerprint (ECFP) and functional-class fingerprint (FCFP), and 
(2) 4 different diameters (0, 2, 4, 6) under a fixed 1024-bit vector size. Notably, ECFP captures precise atom prop-
erties (e.g. atomic number, charge, hydrogen count, etc.), whereas FCFP captures functional (pharmacophoric) 
features (i.e. hydrogen donor/acceptor, polarity, aromaticity, etc.) of the atoms in a molecule. The CDK toolkit52 
was used for both fingerprint calculations. The generated fingerprints were split and combined with respective 
binominal activity values into an embedded data matrix for learning.

Building classification models and validation.  Four machine learning algorithms (random forest, 
decision tree, support vector machine, and k-nearest neighbor) applied on the data matrix with 10 different 
random seed numbers to build a classification model in the classification and regression training (CARET) 
package of the R environment. Every model was internally and externally validated in the condition of a 70:30 
division ratio between training and test and k-fold (k = 10) cross-validation methods. In brief, in k-fold cross 
validation, the input data is randomly partitioned into k-equal size subsamples. One of the k subsamples is kept 
as validation data for testing the model, while the remaining k-1 subsamples are used as training data. This k-fold 
cross-validation procedure is then repeated k times (the folds), with each of the k subsamples used exactly once 
as the validation data.

Array classifier‑CNN architecture.  The built models generated meta-predictors (meta-data) of 200 
binary bits (5 cholinergic targets × 4 machine learning methods × 10 seed numbers). The metadata was embed-
ded through several shape arrays of ([50 × 4], [5 × 10 × 4], [10 × 5 × 4]). The CNN model, which is composed 
of different layers of convolutional, pooling, flatten, and dense  layers was built with the hyperparameters of 
maximum of 100 epochs, a batch size of 32 and a learning rate of 0.01 with the Adam optimizer53. The EarlyStop-
ping criteria were introduced to prevent the CNN models from being over-fitting and to terminate the learning 
early. The ‘Softmax’ activation function was used to define the probability distribution of the chemical warfare 
likeness54. The learning performance and robustness were measured by accuracy and loss values as the epoch 
number increased. Binary cross-entropy was used as the loss function to measure the deviation between the 
predicted and actual class values.

Evaluation of predictive model.  The performance of each models was evaluated using three classifica-
tion metrics i.e. Matthews correlation coefficient (MCC), accuracy, the area under the receiver operating char-
acteristic curve (AUC) based on true positive (TP), true negative (TN), false positive (FP), false negative (FN). 
These metrics evaluate the statistical performance and robustness of built models.

Loss = −
1

m+ n

[

m
∑

i

log
(

f
(

x+i
))

+
n

∑

i

log
(

1− f
(

x−i
))

]

Accuracy (ACC) =
(TP+ TN)

(TP+ FP+ TN+ FN)

Precision =
TP

TP+ FP
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Ethics approval and consent to participate.  Every author accepted ethical standards of a genuine 
research study.

Data availability
Python code, and refined data will be available in GitHub. https://​github.​com/​colle​ge-​of-​pharm​acy-​gachon-​
unive​rsity/​Array_​Class​ifier.
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