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Abstract
Computational protein–ligand docking is well-known to be prone to inaccuracies in input receptor structures, and it is 
challenging to obtain good docking results with computationally predicted receptor structures (e.g. through homology 
modeling). Here we introduce a fragment-based docking method and test if it reduces requirements on the accuracy of an 
input receptor structures relative to non-fragment docking approaches. In this method, small rigid fragments are docked first 
using AutoDock Vina to generate a large number of favorably docked poses spanning the receptor binding pocket. Then a 
graph theory maximum clique algorithm is applied to find combined sets of docked poses of different fragment types onto 
which the complete ligand can be properly aligned. On the basis of these alignments, possible binding poses of complete 
ligand are determined. This docking method is first tested for bound docking on a series of Cytochrome P450 (CYP450) 
enzyme–substrate complexes, in which experimentally determined receptor structures are used. For all complexes tested, 
ligand poses of less than 1 Å root mean square deviations (RMSD) from the actual binding positions can be recovered. Then 
the method is tested for unbound docking with modeled receptor structures for a number of protein–ligand complexes from 
different families including the very recent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) protease. For 
all complexes, poses with RMSD less than 3 Å from actual binding positions can be recovered. Our results suggest that 
for docking with approximately modeled receptor structures, fragment-based methods can be more effective than common 
complete ligand docking approaches.

Keywords  Fragment docking · Homology modeling · Graph theory · Maximum clique · Cytochrome P450-substrate 
complex

Introduction

Computational docking is extensively applied to predict pro-
tein–ligand binding, both for the prediction and understand-
ing of inter-molecular interactions and for virtual screening 

in structure-based drug design [1–3]. Docking calculations 
require prior knowledge of the three-dimensional structure 
of the receptor protein. It is not uncommon that a suitable 
experimental structure of the target receptor is unavailable 
and one has to manage with a computationally modeled 
one. Most commonly, the modeled structures are obtained 
through comparative modeling, i.e., by using existing experi-
mental structures of homologous proteins as templates for 
model construction [4]. Besides comparative modeling, de 
novo protein structure prediction is an increasingly promis-
ing approach to obtaining modeled receptor structures, given 
the recent significant progresses making use of deep learning 
[5]. Despite method advancements, the quality of modeled 
receptor structures cannot yet match that of high-resolution 
experimental structures. This is especially true when a 
homology model has been constructed based on a template 
protein sharing relatively low sequence identity with the tar-
get. In such a situation, the sequence alignment between the 
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target and the template protein contains frequent insertions 
and deletions, causing the accuracy of the resulting structure 
model to deteriorate severely [4]. Given the large number 
of proteins that can potentially serve as drug targets but do 
not have crystal structures, it is of wide interest to consider 
computational docking of ligands with modeled receptor 
structures that are of relatively low accuracy.

Most current docking methods have not been tailored 
to consider homology models as input receptor structures. 
Instead, they have usually been optimized by considering 
benchmarks such as bound docking, in which experimen-
tal structures of receptors in complexes with target ligands 
have been used as input for docking [6–11]. As a result, 
the performance of docking strongly depends on the input 
receptor structure. It has been well-known that with usual 
docking approaches, results obtained by using apo- or mod-
eled receptor structures are significantly worse than results 
obtained by using high resolution ligand-bound (holo-) 
experimental receptor structures [12–14]. The high sensi-
tivity of computational docking to input receptor structures 
is also evidenced by the fact that when docking is applied to 
screen the same diverse ligand library for the same receptor, 
different receptor structures yielded different results [15]. 
This can be explained by the fact that the receptor adopts 
various conformations in order to establish favorable inter-
actions with different ligands [16], and only one input con-
formational state (sometimes with local variations such as 
sidechain rotations) can be considered in one docking run. 
Because of this strong dependency on receptor structure, 
computational docking ideally should use input receptor 
structures coming from high quality experimental studies, 
preferably determined in complex with a ligand that is simi-
lar to the target small molecules that are considered for dock-
ing [17]. On the other hand, a docking method that perform 
well on such inputs does not necessarily lead to the same 
performance in applications that have to rely on less accurate 
receptor structures, such as homology models.

One possible way to reduce the above sensitivity to the 
input structure is to consider the structural flexibility of the 
receptor. Developments in docking programs have been 
made in past to allow a certain degree of receptor flexibil-
ity by including sidechain variations in e.g. AutoDock [18], 
GOLD [19], FlexX [11], and RosettaLigand [20]. Although 
these approaches can help in achieving better results in 
cases such as docking into the apo-structure of a receptor, 
they may still not be sufficient for treating modeled recep-
tor structures, which usually contain varied extents of pep-
tide backbone deviations from the actual receptor structure. 
Ensemble docking is an approach in which backbone vari-
ations are included by considering as docking targets mul-
tiple receptor conformations generated using MD simula-
tions [21]. However, because of the common insufficiency 
of using only a small number of conformations to represent a 

vast number of possible conformations [22], there is always 
high risks of missing from the ensemble conformations 
accommodated to the binding of particular ligands. Besides 
these limitations, the explicit consideration of receptor flex-
ibility in docking significantly increases the computational 
costs, which may make the virtual screening of large ligand 
libraries computationally too expensive. In addition to recep-
tor flexibility, consideration of ligand flexibility is another 
approach of unbound docking. GalaxyDock3, for example, 
is a protein–ligand docking approach which considers full 
ligand conformational flexibility but the protein conforma-
tion is fixed at crystal structure [23].

In the current study, we will explore another approach 
that can potentially reduce the sensitivity to input receptor 
structure of computational docking. This approach uses frag-
ment docking. We note that fragment docking has emerged 
over the past decades as a mainstream paradigm in ligand-
protein docking and ligand discovery [24–26]. Due to their 
small sizes, rigid chemical fragments can be used to probe 
the configurational space inside a binding pocket more effi-
ciently, hence allowing different regions of the pocket to be 
systematically explored [27, 28]. From the perspective of 
cheminformatics, the chemical complexity of a fragment is 
often lower than that of larger compounds, which simplifies 
the interpretation of structure-activity relationship (SAR) 
data and may consequently accelerates experimental lead 
optimization [24, 29]. A number of computational tech-
niques exploiting fragment docking are already available. 
Examples include software like LUDI [30], GLIDE [10], 
LigBuilder [31], SEED [32], and web servers like ACFIS 
[33]. For unbound docking studies, a fragment mapping 
program, Fsubsite, has been validated on apo-structures of 
CDK2 [34].

The reasons that fragment docking may better tolerate 
structure inaccuracies of homology receptor models than 
complete ligand docking include the following. Consider 
the docking of a large ligand with a modeled structure of 
its cognate receptor. For the docking to be successful, every 
part of the ligand in its correct binding pose need to inter-
act favorably with the modeled receptor structure, at least 
without any severe steric clashes. If we refer the immediate 
receptor environment of a part or a fragment of the ligand as 
a subpocket, any inaccuracy of any subpocket structure that 
leads to bad ligand-protein interactions (e.g. severe steric 
clashes) will lead to docking failure. In addition, the cova-
lent connections between different fragments of the ligand 
translate into stringent constraints on the relative geometries 
between the subpockets. Structure inaccuracies that lead to 
errors in these relative geometries also prohibit successful 
docking. If not the complete ligand but only small fragments 
comprising the ligand are separately docked, the modeling 
errors at one subpocket will not affect the proper docking of 
fragments at other subpockets. In addition, the constraints on 
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the relative geometries between different subpockets accom-
modating different fragments may be relaxed, as the docked 
fragments are not covalently connected. We expect that these 
properties of fragment docking may be exploited to increase 
the tolerance of structure inaccuracies when docking a multi-
fragments ligand into a modeled receptor structure.

In our proposed approach, after obtaining possible docked 
poses of fragments, a graph theory algorithm is applied to 
align a complete ligand with the binding poses of its com-
posing fragments. Graph theory-based methods have been 
adopted in various biological and bioinformatics studies 
previously, including metabolic pathway analysis [35, 36], 
protein flexibility predictions [37], protein side chain pre-
dictions [38], secondary structure motif comparisons [39], 
calcium binding site predictions [40] and more. The applica-
tion of graph theory in the current work has been inspired by 
earlier studies using graph theory to find maximum common 
substructures between two structures [41–44].

Our proposed approach is benchmarked using pro-
tein–ligand complexes in which the proteins belong to dif-
ferent families, the cytochrome P450 (CYP450) enzymes, 
G-protein coupled receptors (GPCR), chaperone, bromodo-
mains and severe acute respiratory syndrome coronavirus 2 
(SARS-Cov-2) protease. We have chosen protein families 
of different sequence length and binding pockets to better 
understand how our strategy works. The CYP450 enzymes 
are found in genomes of virtually all organisms. In humans, 
they are involved in detoxification of various drugs [45]. 
In plants, they are involved in biosynthesis of various sec-
ondary metabolites and thus have numerous applications 
in industrial biotechnology [46]. The prediction of ligand 
binding poses using modeled CYP450 proteins is of practi-
cal relevance for the prediction of substrate selectivity and 
reaction site selectivity for CYP450 proteins with unknown 
structures. The GPCR proteins are important regulatory 
elements in a wide spectrum of normal and pathological 
procedures [47]. They are one of the most important fami-
lies of therapeutic targets for small molecule drugs [48, 
49]. Chaperones play a vital role in the stabilization of an 
unfolded protein [50]. Bromodomain (BRD) is an evolution-
ary conserved domain with an approximate length of 110 
amino acids. Proteins containing BRD regulate the process 
of gene expression [51]. SARS-CoV-2 is a novel coronavirus 
that has caused the coronavirus disease 2019 (COVID-19) 
worldwide [52, 53].

Materials and methods

Two types of docking were carried out i.e. bound and 
unbound. In bound docking crystal structures from PDB 
with bound ligands were used. Whereas in unbound dock-
ing, homology models were built and used to dock native 

ligands. Scripts and source codes to carry out the calcula-
tions can be downloaded from http://bioco​mp.ustc.edu.cn/
serve​rs/downl​oad_other​s.php#scrip​ts-for-small​-mol-frag-
docki​ng. Pymol or discovery studio visualizer have been 
used to carry out visualization [54, 55]. Origin software was 
used to plot graphs [56].

Structures of the receptor proteins

In bound docking, the receptor structures have been extracted 
from the experimentally determined PDB structures of 
the respective complexes (Table 2). In unbound docking, 
the receptor structures have been either from a structure 
complexed with a different ligand or, more interestingly, 
constructed using the homology modeling program Mod-
eller [57]. Homology models of eleven CYP450 proteins, 
CYP2B4 (PDB id 1suo, 3me6), CYP2A6 (2fdu), CYP3A4 
(PDB id 3ua1, 4d7d), CYP1A1 (PDB id 4i8v), CYP105AS1 
(PDB id 4oqr), CYP119 (PDB id 4wqj), CYPBM3 (PDB id 
4zf8), CYP126A1 (PDB id 5li8), CYP4B1 (PDB id 6c94), 
four GPCR proteins, 5-HT1B (PDB id 4iar), 5-HT2B (PDB 
id 4nc3), GRK5 (PDB id 4wnk), GRK2 (PDB id 5he0), 
two chaperone proteins, Hsc70/Bag1 (PDB id 3fzm), Hsp 
90-alpha (PDB id 6f1n), two bromodomains, namely, human 
BRD2 (PDB id 4a9m), human ATAD2 (PDB id 5lj0) and 
one SARS-CoV-2 main protease (PDB id 6wtt) have been 
constructed. Structure templates for comparative modeling 
have been identified by sequence BLAST against the PDB 
database. Details of targets and templates are presented 
in Table 1. Templates have been chosen on the basis of 
sequence identity. The protein sequence of a target receptor 
was downloaded from UniProt database (https​://www.unipr​
ot.org/) and protein blast available at https​://blast​.ncbi.nlm.
nih.gov was run for the given sequence against proteins in 
PDB excluding the target protein. The purpose for building 
homology models was to assess our methodology in case of 
poor models or where it was hard to find a good template. 
Therefore, templates with sequence identity above 85% were 
ignored. For 14 out of 20 systems, templates with sequence 
identity of less than 60% were chosen (Table 1). We also 
included templates with sequence identity as low as 19% 
and 25%. Besides sequence identity, query coverage was 
also taken into account and we made sure that it was more 
than 50%. For each receptor, twenty initial models were con-
structed based on a selected template. The initial models 
were optimized and refined using molecular dynamics with 
simulated annealing. Then one model with the minimum 
DOPE (Discrete Optimized Protein Energy) score [58] was 
selected and used for unbound docking. Further details about 
model quality are summarized in Supplementary Table S1. 
Analysis was carried out using the PROCHECK program 
available at https​://www.ebi.ac.uk/thorn​ton-srv/softw​are/
PROCH​ECK/.

http://biocomp.ustc.edu.cn/servers/download_others.php#scripts-for-small-mol-frag-docking
http://biocomp.ustc.edu.cn/servers/download_others.php#scripts-for-small-mol-frag-docking
http://biocomp.ustc.edu.cn/servers/download_others.php#scripts-for-small-mol-frag-docking
https://www.uniprot.org/
https://www.uniprot.org/
https://blast.ncbi.nlm.nih.gov
https://blast.ncbi.nlm.nih.gov
https://www.ebi.ac.uk/thornton-srv/software/PROCHECK/
https://www.ebi.ac.uk/thornton-srv/software/PROCHECK/
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Table 1   Target and template protein structures. For the target receptor, the original ligands are given. For each template, overall sequence iden-
tity and binding pocket identity with respective target are given

Family Target 
Complex 
PDB ID 

Sequence 
Length 

Ligand Template 
PDB ID 

Sequence 
Identity 

Sequence 
Identity in 
pocket 

CYP450

1SUO_A 476  3IBD_A 79% 74% 

2FDU_A 476 5E0E_A 57% 62% 

3ME6_A 476  3IBD_A 79 % 74 % 

4D7D_A 487  5X24_A 25% 50% 

4I8V_A 491  3L4D_A 19% 70% 

4OQR_A 457  2Z36_A 45% 73% 
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Table 1   (continued)

4WQJ_A 368  1UE8_A 63% 81% 

4ZF8_A 468  6N6Q_A 37 % 63 % 

5LI8_A 414  2WM4_A 37 % 44% 

6C94_A 497  5VEU_A 27% 58% 

3UA1_A 487  5VEU_A 84 % 69 % 

GPCR 4IAR_A 401 5WIU_A 52% 45% 

%25%76A_39A6034A_3CN4

4WNK_A 598 4PNI_A 47% 55% 

%86%53A_I9L4146A_0EH5
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Fragment docking

Figure 1 illustrates the overall workflow of the fragment-
based docking approach.

We employed the BRICS (breaking of retrosyntheti-
cally interesting chemical substructures) algorithm [59] 

as included in the RDKit package [60] to break complete 
ligands into small, rigid fragments. BRICS shreds the mol-
ecules retro-synthetically, avoiding the generation of over-
lapping fragments. The program also avoids the generation 
of small terminal fragments such as single hydrogen atoms, 
hydroxyl, nitro and other small groups. Ligands that were 

Table 1   (continued)

Chaperone 3FZM_A 381  3IUC_A 70% 82% 

6F1N_A 236  3PEH_A 52% 58% 

Bromodomain 4A9M_A 154  5U2C_A 42 % 100% 

5LJ0_A 130 4YYM_A 32% 85% 

SARS-CoV-2 6WTT_A 310 4YLU_A 50% 100% 
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Table 2   PDB ids of complexes used for the bound docking tests. The ligands are listed along with corresponding fragments

PDB  
ID 

Ligand 
ID 

Ligand structures Fragments 

1suo 
(Cyp2B4) 

CPZ 

2fdu 
(Cyp2A6) 

D1G 

3me6 
(Cyp2B4) 

CGE 

4d7d 
(CYP3A4) 

PKT 

4i8v (Cyp1A1) FHB
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fragmented are presented in Table 2 (bound docking) and 
Table 1 (unbound docking).

Fragment and receptor data were preprocessed using 
respective AutoDock tools [61]. More specifically, com-
plete ligands were extracted from the respective PDB files. 

Since AutoDock requires pdbqt format, all the ligand and 
receptor structures were prepared using graphical user 
interface program of AutoDock tool [61]. Partial charges 
were computed using the gasteiger method and result-
ing molecules were saved as pdbqt format to be used for 

Table 2   (continued)

4oqr 
(CYP105AS1) 

2UO  

4wqj 
(Cyp119) 

36Y  

4zf8 
(CypBM3) 

MYT  

5li8 
(Cyp126A) KKK 

6c94 
(Cyp4B1) 

V16  



1245Journal of Computer-Aided Molecular Design (2020) 34:1237–1259	

1 3

docking. Polar hydrogens were added in molecules before 
charges were computed. In case of fragments, SMARTS 
for each fragment was saved using MarvinSketch [62] and 
resulting structures were stored in PDB format. These 
rigid fragments were then converted to pdbqt format using 
AutoDock GUI as explained. In case of rigid docking using 
complete ligands, the receptor molecule was kept rigid 
whereas ligand was flexible with rotations in rotatable 
bonds switched on. Cyclic portions of ligands were treated 
as rigid. The heme cofactor in CYP450 binding pocket 
was considered as a rigid part of the receptor. For flexible 
docking, torsions were chosen in the receptor pocket resi-
dues which were saved as flexible pdbqt and the rest of the 
protein was saved as rigid pdbqt. In case of bound docking, 
the center of the grid for docking was defined based on the 
information of bound ligand. For unbound docking, pocket 
residues of the modeled structure were identified and then 
center coordinates were computed. The same center was 
used for all fragments of one ligand. The grid size was set 
to 15◊15◊15 in xyz directions for fragment docking so 
that fragments can span the entire pocket. All this infor-
mation was written to a configuration file to be given as 
an input to AutoDock Vina [18] for carrying out docking. 
For each configuration 25 docking runs were carried out 
to obtain up to 500 binding poses.

Poses generated in the previous steps were clustered 
based on their atomic Cartesian coordinates using k-means 
clustering [63], with the number of clusters determined 
using the so-called “elbow” method [64]. After clustering, 

the binding pose of the minimum binding score was picked 
from each cluster to be used further.

Obtaining docked poses of complete ligands

A complete ligand is aligned to combined sets of the docked 
fragment poses using the following protocol. It makes use 
of the graph-theory algorithm for determining maximum 
cliques [65, 66] to identity sets of matches between frag-
ments contained in the ligand and the docked fragment poses 
(Fig. 2).

To describe the method in graph theory terms, we define 
two sets, Q and T, respectively,

Each element qi of Q corresponds to a docked fragment 
pose, associated with the corresponding chemical type of 
the fragment and the atomic positions. For convenience, we 
refer the chemical type of an element qi as Φ

(

qi
)

 , and the 
set of atomic positions as R

(

qi
)

 . For each type of fragment, 
chemically matching substructures in a complete ligand can 
be identified. We used the RDKit cheminformatics tools to 
perform the substructure matching [60], by representing the 
chemical structures of the fragments as SMARTS strings 
[62] which are matched against a complete ligand. Each ele-
ment tk of the set T in formula (2) corresponds to a part of 

(1)QuerysetQ = {q1, q2,… , qN}

(2)TargetsetT =
{

t1, t2,… , tM
}

Fig. 1   Workflow of the docking method



1246	 Journal of Computer-Aided Molecular Design (2020) 34:1237–1259

1 3

the ligand that chemically matches a fragment, its chemical 
type noted as Φ

(

tk
)

 and the set of atomic positions as R
(

tk
)

.
An auxiliary graph Gc representing the compatibility 

between the elements in the sets Q and T is defined as below. 
Each vertex of Gc’s corresponds to a combination of two 
elements associated with the same chemical type, one from 
Q and the other from T, namely,

An edge between two vertices vik and vjl is defined in Gc 
if and only if the following conditions are met: i ≠ j, k ≠ 1 , 
and the two sets of atomic positions R

�

qi
�
⋃

R
�

qj
�

 and 
R
�

tk
�
⋃

R
�

tl
�

 can be well-aligned against each other. A 
clique in the graph Gc is a fully connected (or complete) 
subgraph in which there is an edge between every vertex 
in the subgraph to every other vertex in the same subgraph. 
A maximal clique is a clique which cannot be extended to 
include new vertices without violating the full connection 
requirement. The maximal cliques of Gc can be found with 
the Bron and Kerbosch algorithm [67]. Each maximal clique 
corresponds to an alignment between at least two fragments 
contained in the ligand with the same number of docked 
fragment poses. The definition of edges in the compatibility 
graph guarantees that in the alignment, a ligand fragment 
is only matched to a docked fragment of the same chemical 
type. In addition, all the inter-fragment relative geometries 
in the complete ligand are consistent with the relative geom-
etries between the respectively matched docked poses.

In the next step, for the aligned set of fragments defined 
by each clique, a rigid body geometry transformation is cal-
culated to simultaneously superimpose the different aligned 
fragments contained in the ligand onto the correspondingly 
matched docked fragment poses. The resulting transforma-
tion is applied to the entire ligand, generating a possible 
binding pose of the complete ligand inside the binding 
pocket. To remove potential local steric clashes in the result-
ing ligand-receptor complex, the complex is subsequently 
energy minimized by 300 steepest descent steps using UCSF 
Chimera [68]. All hydrogen atoms were added prior to this 
minimization step. The minimized structures were scored 
separately by two scoring functions, namely, Cyscore [69] 
and DSX [70].

Results and discussion

Binding poses of fragments generated by fragment 
docking

The PDB ids and ligand structures of the cytochrome 
P450 protein–ligand complexes used as test dataset for 
bound docking are given in Table 2. The ligands in these 

(3)
Vertex

(

vik
)

=
(

qi, tk
)

, qi ∈ Q, tk ∈ T, andΦ
(

qi
)

= Φ
(

tk
)

Fig. 2   Determining binding poses of complete ligand through align-
ments with docked fragment poses using the graph theory maximum 
clique algorithm. a Fragments are given as SMARTS input to find 
their matching parts in complete ligands. b Five fragments of 3 dif-
ferent chemical types are shown. The different 3D positions (docked 
poses) of the same fragment types are labeled as i and j and are 
colored yellow and blue, respectively. The parts matching the frag-
ment types in a complete ligand are labeled respectively as t1, t2, t3. 
c Five vertices of the compatibility graph are shown, each vertex is a 
pairing of a docked fragment pose and a part of the complete ligand 
that chemically matches the fragment type. d Connectivity between 
the vertices indicate both chemistry and geometry compatibility of 
the pairings. Solid lines represent the edges between the vertices, 
dotted line means there is no edge. e Four maximal cliques of size 
3 can be found in the compatibility graph, each corresponding to an 
alignment of the complete ligand to a set of docked fragment poses. 
f Transforming the complete ligand according to each alignment pro-
duces a binding pose of the ligand inside the receptor pocket
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complexes are of different sizes ranging from 12 to 36 
heavy atoms. Fragments generated by applying the BRICS 
method to each ligand are given in the same table.

Docking the ligand fragments into the binding pocket 
of the respective receptor structure led to a large num-
ber of binding poses for each fragment type. Inspecting 
the poses suggested that by considering 25 docking runs 
for each fragment, the positioning of the fragments in the 
actual ligand-receptor complexes can usually be closely 
reproduced by one or more docked poses. On the other 
hand, a large number of docked poses are redundant, i.e., 
of similar structures. Therefore, following fragment dock-
ing, the docked poses for a given fragment were clustered 
and one representative pose from each cluster was cho-
sen to be used for the subsequent steps. RMSDs of the 
representative poses from the respective ligand parts in 
the actual complex structures were computed. For every 
fragment, the set of representative poses included at least 
one experimental binding position-like pose. This indi-
cates that because of the small sizes and conformational 
rigidity of the fragments, it is relatively easy for stand-
ard docking protocols to thoroughly explore and identify 
their favorable binding positions inside a receptor pocket. 
In Fig. 3, the experimental-like representative poses of 
fragments are shown together with the containing ligands 
in experimental binding poses inside the corresponding 
binding pockets.

We observed that the experimental-like docked poses of 
fragments do not always correspond to the docked poses 
associated with the lowest energy scores. Thus if we only 
retain a small number of top-ranking poses from the dock-
ing results without the clustering step to remove redundant 
poses, we could have missed the near native binding poses 
from the retained poses. Thus the clustering step minimized 
the chance of losing native like poses while retaining only 
a small number of docked poses for subsequent process-
ing. We note that as the fragments are small and can form 
only reduced number of specific interactions within the 
binding pockets, a fragment acting as a probe can sample 
an entire binding pocket more efficiently compared with a 
complete ligand. Despite this, for a large ligand comprising 
many different fragments, there can still be chances that for 
some fragments, the respective near native poses are missed 
because of the lack of specific interactions for strong binding 
(for example, in Fig. 3, result 9f, docking of the phenyl frag-
ment generated poses distant from the native binding posi-
tion of the fragment in the complete ligand). For this reason, 
in the subsequent graph-theory-based fragment-ligand align-
ment step, an accepted alignment is required to cover not 
all but as many as possible the fragments that comprise the 
ligand. In this way, near native poses of the complete ligand 
can still be produced making use of the subset of fragments 
whose near native poses have been generated and retained.

Binding poses of complete ligands derived 
from docked fragment poses

Bound docking

For each of the 10 ligands listed in Table 2, the number 
of poses generated by applying the graph theory algorithm 
to align the complete ligands with docked fragment poses 
are given in Table 3, together with the minimum RMSDs 
from the respective actual bound conformations in crystal 

Fig. 3   Experimental position-like representative fragment poses (yel-
low) docked inside binding pockets. (1) 1suo, (2) 2fdu, (3) 3me6, 
(4) 4d7d, (5) 4i8v, (6) 4oqr, (7) 4wqj, (8) 4zf8, (9) 5li8 (10) 6c94. 
Experimental ligand positions (green) are also shown. Binding pocket 
residues are labelled and interactions are shown as dotted lines. Red 
lines represent hydrogen bonds and blue represent hydrophobic inter-
actions
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structures. For some complexes, the total number of poses 
generated from cliques is quite high due to the large numbers 
of representative fragment poses chosen in the previous step. 
The RMSD for every pose from the experimental ligand 
position was calculated, and low RMSD poses have been 
found for every complex. Figure 4 shows the superimposed 
structures of the minimum RMSD docked ligands superim-
posed with the actual bound ligands inside the binding pock-
ets. These results confirm that the fragment-based docking 
approach thoroughly searches for possible binding positions 
of complete ligands inside the binding pockets.

Unbound docking

For unbound docking, the fragment-based docking approach 
have been applied to dock the ligands contained in 20 PDB 
complexes (eleven CYP450-substrate, four GPCR, two chap-
erons, two bromodomains and one SARS-Cov-2 complex, 
see Table 1) with receptor structures generated by com-
parative modeling. The PDB IDs of the template structures 
as well their sequence identities with respect to the actual 
receptor proteins are also given in Table 1. Possible bind-
ing poses of complete ligands have been generated with the 
fragment-based approach described above. For simplic-
ity, we have only aligned and transformed each ligand in 
its actual bound conformation, as present in the respective 
PDB structures. In real unbound docking, it is usually not 
difficult to first systematically explore the conformational 
space of a small molecule ligand to identify its low energy 
conformational states, and then separately align each confor-
mation with the docked fragment poses by the graph theory 
algorithm.

The fragment-based docking results are compared with 
those obtained by direct docking of complete ligands 
with AutoDock Vina. The latter calculations included 
rigid receptor docking, in which the receptor structures 
were not allowed to change, as well as flexible docking, 
in which the side chains of pocket residues were allowed 
to rotate. Table 4 shows the minimum RMSDs of docked 
poses from the experimental bound structures for different 
docking approaches. The results suggest that for several 
complexes, while direct docking of the complete ligands 
was not able to yield any experimental result-like binding 
poses, the fragment-based approach was able to produce 
poses that were of relatively small RMSDs from experi-
mental results. Figures 5 and 6 show the docked minimum 
RMSD binding poses in comparison with respective actual 
ligand positions in respective experimental complexes. 
The results obtained by the fragment-based approach and 
the direct docking approach are compared side by side. 
Results clearly indicate that the proposed fragment-based 
strategy outperforms complete ligand docking with Auto-
Dock Vina, with all complexes having RMSD within 3 Å 

Fig. 3   (continued)

Table 3   Minimum RMSD values of the bound docking results

Protein id (ligand id) Total number of docked poses 
generated from cliques

Minimum 
RMSD (Å)

1suo (cpz) 443 0.54
2fdu (d1g) 4971 0.72
3me6 (cge) 254,524 0.46
4d7d (pkt) 2147 0.81
4i8v (bhf) 80 0.8
4oqr (2uo) 125,860 0.79
4wqj (36y) 551 0.59
4zf8 (myt) 18,827 0.55
5li8 (kkk) 1703 0.65
6c94 (v16) 4313 0.42
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where 12 complexes present RMSD of < 2 Å and 6 com-
plexes having the RMSD of less than 1 Å. In case of direct 
docking of complete ligands with AutoDock Vina, 12 out 
of 20 complexes yielded the RMSD of less than 3 Å, 6 
complexes within RMSD of 2 Å and only 1 complex with 
RMSD of less than 1 Å (Table 4). We have found that 

complexes for which Autodock gave good results either 
have small protein sequence length e.g. bromodomains or 
they are bound to small ligands e.g. in case of 1suo_A and 
4zf8_A (Table 1). Inaccuracies in the modeled structures 
prevent appropriate binding of large sized ligands there-
fore usual docking methods often fail to generate native 

Fig. 4   Minimum RMSD poses from bound docking. Green sticks represent experimental ligands and pink sticks represent docked poses

Table 4   Minimum RMSD values generated by our methodology and AutoDock (rigid, flexible) with modeled structures

Family Model protein Minimum RMSD generated by 
our methodology (Å)

Minimum RMSD generated by Auto-
Dock rigid docking (Å)

Minimum RMSD
generated by 
AutoDock flexible 
docking(Å)

CYP450 1suo_model 0.7 0.85 1.57
2fdu_model 2.62 3.97 2.86
3me6_model 1.33 3.19 2.25
4d7d_model 0.96 3.17 4.53
4i8v_model 2.64 2.19 2.5
4oqr_model 1.75 2.34 2.46
4wqj_model 1.19 2.69 2.38
4zf8_model 0.55 1.83 1.7
5li8_model 0.84 5.68 7.28
6c94_model 2.38 6.65 4.48
3ua1_model 2.25 2.92 3.24

GPCR 4iar_model 1.35 7.08 6.23
4nc3_model 2.22 3.27 3.49
4wnk_model 1.18 5.4 3.82
5he0_model 0.44 3.1 1.71

Chaperone 3fzm_model 1.82 6.1 3.33
6f1n_model 2.13 1.14 3.58

Bromodomain 4a9m_model 2.60 2.64 1.88
5lj0_model 2.70 1.03 1.91

SARS-CoV-2 6wtt_model 0.25 3.04 4.7
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ligand conformations in such cases. Our methodology, on 
the other hand, performed quite well under circumstances 
where the protein size is big and they are bound to large 
ligands e.g. CYP450, GPCR and SARS-CoV-2.

Different modeled receptor structures (4zf8_model, 
3fzm_model, 1suo_model) were considered for which 
results were compared between two different homology 
models generated via the same respective templates (for 
the quality of these models see supplementary Table S1). 
Only slight variations in RMSD (< 0.5 Å) were observed 
(Table 5).

In addition to docking with modeled structures, cross 
docking analysis was also performed. For this purpose, three 
protein–ligand complexes were considered. CYP2B4 is pre-
sent in various conformations in protein data bank bound 
with different ligands. We took 1suo bound with cpz ligand, 
3me6 bound with cge ligand and 3r1a co-crystallized with 
tb2 ligand. Every ligand was docked with every receptor 
and RMSD from the native ligand conformation was calcu-
lated (Table 6). All the ligands were well aligned with the 
native conformations with RMSD less than 2 Å except for 
one ligand tb2 which yielded RMSD of 2.4 Å when cross 
docked with 1suo receptor. These results clearly indicate that 

the proposed methodology works efficiently for unbound 
docking.

Scoring the docked poses of complete ligands

Before subjected to scoring, each ligand-receptor complex 
was first energy-minimized using Chimera [68]. As the 
transformed ligands may be involved in unacceptable steric 
clashes with the protein environment, this local optimization 
step is necessary. Two scoring functions have been consid-
ered: Cyscore [69] and DSX [70].

Figure 7 shows the RMSDs from respective experimental 
ligand positions of the top 10% scored conformations for 
bound docking. Evaluated with the Cyscore scoring function, 
for 9 of the 10 complexes, the 10% top scoring binding poses 
included one or more experimental result-like ones. Evalu-
ated with the DSX scoring function, experimental result-like 
binding poses were included in the 10% top scoring bind-
ing poses for all complexes (Fig. 7b). Because of inaccura-
cies in both the structural models and the scoring functions, 
some false binding poses were unavoidably ranked top along 
with true binding poses. Visual inspection of several such 
false poses inside binding pockets reveal multiple favorable 

Fig. 5   Docked ligand positions 
obtained with modeled CYP450 
receptors compared with actual 
ligand positions. a 1suo, b 2fdu, 
c 3me6, d 4d7d, e 4i8v, f 4oqr, 
g 4wqj, h 4zf8, i 5li8, j 6c94. 
Ligand binding modes gener-
ated by our fragment-based 
docking approach are colored 
light pink. Results of direct 
docking of complete ligands 
by AutoDock Vina are colored 
cyan. Actual ligand positions 
are shown as green sticks
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Fig. 6   Docking of modeled proteins. a 3ua1, b 4iar, c 4nc3, d 4wnk, 
e 5he0 f 3fzm, g 6f1n, h 4a9m, i 5lj0, j 6wtt. Ligand binding modes 
generated by our fragment-based docking approach are colored light 

pink. Results of direct docking of complete ligands by AutoDock 
Vina are colored cyan. Actual ligand positions are shown as green 
sticks

Table 5   Results indicating RMSD values using different models for 
three receptors

Protein Model 1 
RMSD 
(Å)

Model 2 
RMSD 
(Å)

All atoms 
RMSD (Å) 
between models

RMSD (Å) 
between models 
(with outliers 
rejection)

4zf8 0.5 0.8 1.44 0.12
3fzm 1.8 2.2 1.33 0.14
1suo 0.7 1.0 1.18 0.07

Table 6   Cross docking RMSD results for three complexes

Protein PDB (co-
crystalized ligand ID)

CPZ ligand 
RMSD (Å)

CGE ligand 
RMSD (Å)

TB2 ligand 
RMSD (Å)

1suo (cpz) 0.5 1.8 2.4
3me6 (cge) 1.6 0.4 0.7
3r1a (tb2) 1.9 0.2 0.6
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interactions with the pocket residues (Fig. 8). In some cases, 
high RMSD can be attributed to flipped conformations. The 
molecule is completely flipped along its axis such that the 
reaction center is pointed in opposite direction (Fig. 8). In 
native pose 1a, imidazole is pointing towards heme group 
but in pose 1b the molecule has flipped by 180 degrees ori-
enting chlorophenyl towards heme group. In pose 3b, the 
ligand molecule has flipped along two axis, moving benzene 
ring away from the heme group, and flipping the carbonyl at 
the same time. For pose 4b, we can see the flip along both 
axis. The good ligand-receptor shape-complementarity as 
well as the favorable local interactions of the false poses 
cause difficulty the scoring functions to tell them from the 
true poses. In some cases, there could be the possibility that 
not all possible binding poses have been captured in the cor-
responding crystallographic structures, as for some CYP450 
enzymes, a ligand may bind in different conformations and 
leading to more than one reaction sites on the ligand.

Figure 7 shows the RMSDs from respective experimental 
ligand positions of the top 10% scored conformations for 
bound docking. Evaluated with the Cyscore scoring function, 
for 9 of the 10 complexes, the 10% top scoring binding poses 
included one or more experimental result-like ones. Evalu-
ated with the DSX scoring function, experimental result-like 

binding poses were included in the 10% top scoring binding 
poses for all complexes (Fig. 7b). Because of inaccuracies in 
both the structural models and the scoring functions, some 
false binding poses were unavoidably ranked top along with 
true binding poses. Visual inspection of several such false 
poses inside binding pockets reveal multiple favorable inter-
actions with the pocket residues (Fig. 8). In some cases, 
high RMSD can be attributed to flipped conformations. The 
molecule is completely flipped along its axis such that the 
reaction center is pointed in opposite direction (Fig. 8). In 
native pose 1a, imidazole is pointing towards heme group 
but in pose 1b the molecule has flipped by 180 degrees ori-
enting chlorophenyl towards heme group. In pose 3b, the 
ligand molecule has flipped along two axis, moving benzene 
ring away from the heme group, and flipping the carbonyl at 
the same time. For pose 4b, we can see the flip along both 
axis. The good ligand-receptor shape-complementarity as 
well as the favorable local interactions of the false poses 
cause difficulty the scoring functions to tell them from the 
true poses. In some cases, there could be the possibility that 
not all possible binding poses have been captured in the cor-
responding crystallographic structures, as for some CYP450 
enzymes, a ligand may bind in different conformations and 
leading to more than one reaction sites on the ligand

Fig. 7   RMSD distributions of the bound docking results in top 10% hits according to a Cyscore b DSX ranking
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Fig. 8   Comparison of experimental-like poses with non-experimen-
tal-like poses that have been ranked top by the scoring function. The 
experimental-like poses are colored pink (a) and non-experimental-
like poses are colored cyan (b). 3D representation of 8 docked com-
plexes from bound and unbound docking are presented: (1) 1suo-cpz, 
(2) 3me6-cge, (3) 4i8v-bhf, (4) 6c94-v16, (5) 3me6-model, (6) 3ua1-

model, (7) 4zf8-model, (8) 5li8-model. The heme group is shown in 
gray sticks. Favorable contacts with binding pocket residues are indi-
cated. Green lines are hydrophobic interactions of alkyl or pi-alkyl 
groups. Blue lines are hydrogen bonds. Pink lines are pi–pi interac-
tions
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Figure 9 displays the RMSDs from respective experimen-
tal ligand positions of the top 20% scored conformations for 
unbound docking. In total 20 complexes have been consid-
ered for unbound docking. The Cyscore evaluation reveals 
that for 12 of 20 complexes, the top 20% scoring binding 
poses included one or more experimental result-like poses 
(within 3 Å). The DSX score evaluation yielded one or more 
experimental result-like poses for 14 of 20 complexes in top 
20% results. In general, the accuracy of scoring functions 
was lower for ranking the unbound docking results than the 
bound docking results. This can be attributed to the fact that 
the unbound docked complexes originated from approxi-
mately modeled structures.

Considering multiple ligand conformations

To test the fragment-based docking approach in a more 
realistic scenario, we further considered different ligand 
conformations. Two complexes (PDB IDs 5li8 and 4wnk) 
have been considered as examples. The respective ligands 
are named as KKK and 453, as in the corresponding 
PDB records. For each ligand, we generated 15 different 

conformers (Figs. 10 and 11) using the ETKDG (Experimen-
tal-Torsion basic knowledge distance geometry) algorithm 
[71] contained in RDKit. Each of the resulting conformers 
were separately aligned to the docked fragment poses using 
the graph theory algorithm. Each conformer was also used 
for direct docking with AutoDock Vina. Complete ligand 
docking results for the GPCR complex (ligand 453) are as 
good as the fragment-based docking results. However, for 
the CYP450 complex (ligand KKK), fragment-based dock-
ing yielded much better RMSD results (Table 7). The bind-
ing pocket of the GPCR receptor is comparatively exposed, 
which makes it easier for complete ligand docking to find 
correct ligand orientation. On the other hand, for the dock-
ing of a relatively large ligand (ligand KKK) in to the buried 
pocket of the CYP450 receptor, direct docking of complete 
ligands seems to be rather challenging, especially with mod-
eled receptor structures.

The resulting docked poses were also energy minimized 
and then scored using the DSX scoring function [70]. Fig-
ure 12 shows that for 10 of 15 KKK and 453 conformations, 
the top 20% scoring poses included one or more binding poses 
close to native (< 3 Å).

Fig. 9   RMSD distributions of unbound docking results for top 20% hits according to a Cyscore b DSX ranking
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Conclusions

In this article, we introduce a fragment-based docking 
method in which binding poses of complete ligands are 
determined based on alignments with docked fragment 

poses. A graph theory maximum clique algorithm is adopted 
to identify proper alignments between a multi-fragment 
ligand and a set of docked poses of various types of frag-
ments. Bound docking of 10 CYP450 complexes verified 
that this fragment-based approach yields valid docking 
results as other established docking methods: for all the 
tested complexes, experimental-like binding positions of 
complete ligands can be successfully recovered. Then the 
fragment-based method was challenged with unbound dock-
ing, in which the input receptor structures were not from 
experimental complexes, but constructed through homology 
modeling. For all the complexes tested, binding poses with 
RMSD less than 3 Å from actual ligand binding positions 
could be recovered by the fragment-based approach, with 
12 complexes having RMSD within 2 Å. For comparison, 
direct docking of complete ligands into the same modeled 
receptor pockets generated the binding positions in 12 of 20 
complexes with RMSD < 3 Å.

The relatively poor performance of unbound docking of 
complete ligands are consistent with the well-known fact 
that conventional docking approaches are highly sensitive 
to receptor structures, making unbound docking, espe-
cially docking with modeled receptor structures, a chal-
lenging task. The graph theory based fragment docking 
approach proposed here is intended to be less sensitive to 
receptor structures. In this new approach, different regions 
of a binding pocket are probed more systematically and 
thoroughly by small, rigid fragments. By retrieving pos-
sible binding positions of complete ligands through align-
ments with the docked fragments, one avoids difficulties 
associated with moving a relatively large ligand within the 
limited volume of a binding pocket according to an energy 
function. Because the different sub-pockets (the favorable 
binding sites for different fragments) are searched sepa-
rately and independently, the requirements on the modeled 
receptor pocket to be accurate as a whole is efficiently 
reduced. Additionally, the relative geometries between 
the docked fragment poses are far less restricted than the 
relative geometries between the covalently linked frag-
ments in a complete ligand. This may lead to better toler-
ance of inaccuracies in the relative geometries between 
different regions of a modeled receptor pocket. Compared 
with existed flexible docking approaches, the graph-based 
approach does not require extensive sampling of receptor 

Table 7   Minimum RMSD values for different ligand (KKK, 453) 
conformations

Ligand conforma-
tions

Minimum RMSD (Å) with 
our method

AutoDock Vina 
minimum RMSD 
(Å)

KKK-1 1.71 4.74
KKK-2 1.69 4.66
KKK-3 1.37 4.75
KKK-4 1.56 5.55
KKK-5 2.11 4.52
KKK-6 2.28 4.88
KKK-7 2.67 6.32
KKK-8 2.19 4.7
KKK-9 2.32 4.53
KKK-10 2.28 4.8
KKK-11 2.02 4.97
KKK-12 2.07 5.5
KKK-13 2.29 6.5
KKK-14 1.58 4.67
KKK-15 2.14 5.98
453-1 2.26 2.40
453-2 2.21 2.61
453-3 2.61 2.25
453-4 2.80 3.0
453-5 2.21 2.70
453-6 2.69 1.88
453-7 3.38 3.13
453-8 2.28 2.40
453-9 1.98 2.29
453-10 2.18 3.12
453-11 2.70 2.62
453-12 3.15 3.67
453-13 2.66 2.80
453-14 3.20 2.83
453-15 3.11 2.50
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Fig. 10   15 conformations of ligand KKK ligand used in unbound docking

Fig. 11   15 conformations of 
ligand 453 used for unbound 
docking
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structures, which is time consuming and convergence or 
thorough coverage of different states important for ligand 
binding is not easily achieved. Our graph based docking 
strategy is less sensitive to receptor inaccuracies and hence 
gave good results even with poor quality structure models. 
However, with this method, one will end up in having mul-
tiple similar poses that need to be filtered out. In addition, 
this method requires prior knowledge of possible binding 
conformations to pick the best binding pose. In practice, 
this should not cause serious problems as the conforma-
tional space of a ligand are usually not enormous and a set 
of candidate binding conformations may be generated from 
systematic conformational analysis. These theoretical con-
siderations and the actual docking results taken together, 
the fragment-based docking approach proposed here pro-
vides a useful new method for computational ligand dock-
ing with approximate, modeled receptor structure.
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