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Gefitinib, an epidermal growth factor receptor–tyrosine kinase inhibitor

(EGFR-TKI), is an effective treatment for non-small-cell lung cancer

(NSCLC) with EGFR activating mutations, but inevitably, the clinical effi-

cacy is impeded by the emergence of acquired resistance. The tumor sup-

pressor gene FBXW7 modulates chemosensitivity in various human

cancers. However, its role in EGFR-TKI therapy in NSCLC has not been

well studied. Here, we demonstrate that the mice with deficient Fbxw7 have

greater susceptibility to urethane-induced lung tumor development.

Through analysis of The Cancer Genome Atlas data, we show that deletion

of FBXW7 occurs in 30.9% of lung adenocarcinomas and 63.5% of lung

squamous cell carcinomas, which significantly leads to decrease in FBXW7

mRNA expression. The reduction in FBXW7 mRNA level is associated

with poor overall survival in lung cancer patients. FBXW7 knockdown

dramatically promotes epithelial–mesenchymal transition, migration, and

invasion in NSCLC cells. Moreover, with silenced FBXW7, EGFR-TKI-

sensitive cells become resistant to gefitinib, which is reversed by the mam-

malian target of rapamycin inhibitor, rapamycin. Furthermore, xenograft

mouse model studies show that FBXW7 knockdown enhances tumorigene-

sis and resistance to gefitinib. Combination of gefitinib with rapamycin

treatment suppresses tumor formation of gefitinib-resistant (GR) FBXW7-

knockdown cells. In conclusion, our findings suggest that loss of FBXW7

promotes NSCLC progression as well as gefitinib resistance and combina-

tion of gefitinib and rapamycin may provide an effective therapy for GR

NSCLC.

1. Introduction

Lung cancer accounts for the most common cause of

cancer death and has the highest incidence rates

among all malignant tumors worldwide. Non-small-cell

lung cancer (NSCLC) accounts for approximately

85% of lung cancers and carries a 5-year survival rate

of only 15%, which is even lower when accompanied

by metastasis. Although surgical resection remains the

most consistent and successful option for patients

diagnosed with lung cancer, the feasibility is invariably

limited because patients’ surgical tolerance and their
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cancer stage might not be optimal (Molina et al.,

2008; Siegel et al., 2017). Therefore, more effective

treatments should be explored for NSCLC patients

who are not suitable for surgery. Over the past decade,

many novel therapeutic targets have been identified for

lung cancer treatment. The detection of mutations in

the epidermal growth factor receptor (EGFR) gene

has brought encouraging improvements in treatment

of advanced NSCLC due to the efficacy of EGFR–ty-
rosine kinase inhibitors (EGFR-TKIs) (Fukuoka et al.,

2011; Wood et al., 2015).

Epidermal growth factor receptor is highly expressed

in a variety of solid tumors, including NSCLC, and its

activation has been shown to promote processes involved

in tumor cell proliferation, angiogenesis, invasion, metas-

tasis, and inhibition of apoptosis (Vansteenkiste, 2004).

One of the mechanisms of increased EGFR signaling is

activating EGFR mutations. Overall, EGFR exon 19

deletion mutations and the point mutation of L858R

constitute about 90% of all EGFR activating mutations

and are termed ‘classical’ activating mutations. Mutant

kinases demonstrate a reduced affinity for ATP, which

provides a molecular explanation for the increased sensi-

tivity to TKI. Gefitinib, as the first-line EGFR-TKI, pro-

vides significant clinical benefits in NSCLC patients, yet

acquired resistance occurs in virtually all NSCLC tumors

that initially respond to it (Gazdar, 2009). Hence, dissect-

ing the molecular mechanisms of gefitinib resistance is of

great necessity.

FBXW7 (F-box and WD40 domain protein 7) func-

tions as a substrate recognition subunit of the SKP1-

CUL1-F-box protein (SCF) E3 ubiquitin ligase com-

plex, which plays a central role in cell division, growth,

and differentiation through targeting well-known

oncoproteins, including mammalian target of rapamy-

cin (mTOR), c-Myc, c-Jun, and Notch (Cheng and Li,

2012; Mao et al., 2008; Welcker and Clurman, 2008).

Generally, FBXW7 is regarded as a tumor suppressor

and its deletion or mutation has been reported in

many different types of cancers (Akhoondi et al.,

2007; Mao et al., 2004; Rajagopalan et al., 2004;

Spruck et al., 2002). Even though many studies have

implied that FBXW7 mediates chemotherapeutic sensi-

tivity, relatively few studies focused on the associations

between FBXW7 and drug resistance in NSCLC

(Yokobori et al., 2014; Yu et al., 2013). Furthermore,

the mechanisms relating to how FBXW7 executes its

role as a tumor suppressor to enhance chemosensitivity

in NSCLC are poorly elucidated.

In this study, we investigate whether FBXW7 plays

an important role in lung tumor development and

whether FBXW7 depletion affects outcome of gefitinib

therapy.

2. Materials and methods

2.1. Mice and tumor induction

Wild-type and Fbxw7 heterozygous (Fbxw7+/�) mice

(Tsunematsu et al., 2004) were treated with a single

dose of urethane (in PBS; at 1 g�kg�1 body weight) by

intraperitoneal injection at age of 8–9 weeks and sacri-

ficed 40 weeks later for analysis of lung tissues. Lung

tissues were fixed in 70% ethanol to permit tumor

counting. Mice were bred and treated under the ani-

mal protocols that were approved by University of

California at San Francisco (UCSF) Laboratory Ani-

mal Resource Center (LARC) or by Animal Welfare

and Research Committee (AWRC) at Lawrence Berke-

ley National Laboratory (LBNL).

2.2. Cell lines and cell culture

The human NSCLS cell lines PC9 and H1299 were

purchased from the Type Culture Collection of the

Chinese Academy of Sciences (Shanghai, China). Gefi-

tinib-resistant (GR) HCC827GR and H3255GR cells

together with their parental counterparts HCC827 and

H3255 were kind gifts from Xiaojuan Wu. HCC827,

PC9, and H1299 were cultured in RPMI 1640 supple-

mented with 10% FBS (BI; Invitrogen, Carlsbad, CA,

USA). H3255 cell lines were maintained in BEBM sup-

plemented with 10% FBS (Gibco, Invitrogen, Wal-

tham, MA, USA). The GR cell lines were maintained

in the presence of gefitinib (1 lM). All cells were grown

in a humidified incubator at 37 °C with 5% CO2/95%

air atmosphere and were revived every 3–4 months.

2.3. Establishment of FBXW7 stable knockdown

cell lines using RNA interference

The lentiviral constructs expressing human FBXW7

short hairpin RNA were prepared using the

pLVTHM-GFP lentiviral RNAi expression system.

The shRNA for FBXW7 is as follows:

shFBXW756: ccAGAGACTGAAACCTGTCTActc-

gagTAGACAGGTTTCAGTCTCTGG;

shFBXW758: ccAGAGAAATTGCTTGCTTTActc-

gagTAAAGCAAGCAATTTCTCTGG.

HCC827 and H1299 cells were infected with lentiviral

particles containing specific or control vectors. Infected

cells were then selected in media containing 2 lg�mL�1

puromycin for 48 h and after selection maintained in

complete medium with 0.5 lg�mL�1 puromycin.

In PC9 cells, FBXW7 knockdown was achieved

using a FBXW7-specific siRNA. FBXW7-specific
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siRNA (GCACAGAAUUGAUACUAACTT) and a

negative control-siRNA (UUCUCCGAACGUGUCA

CGUTT) were purchased from Invitrogen. For all

transfection procedures, standard protocols were fol-

lowed in accordance with manufacturer’s instructions

using Lipofectamine 2000 (Invitrogen).

2.4. Reagents and antibodies

Gefitinib (Selleckchem, Houston, TX, USA) and rapa-

mycin (Solarbio, Beijing, China) were dissolved in

DMSO at a stock concentration of 100 mM (stored at

�80 °C) and then diluted in appropriate culture med-

ium before used. Antibody against FBXW7 was pur-

chased from Abcam (Cambridge, MA, USA).

Phospho-specific antibody against P70S6K was from

Proteintech (Rosemont, IL, USA). b-Actin, E-cad-

herin, ZO-1, vimentin, N-cadherin, ZEB-1, phospho-

mTOR, mTOR, and P70s6k antibodies were from Cell

Signaling Technology (Danvers, MA, USA). Unless

otherwise noted, all other chemicals were from Sigma-

Aldrich (St. Louis, MO, USA).

2.5. Western blotting

Cell lysates were prepared in RIPA buffer (1% Triton

X-100, 0.1% SDS, 50 mM Tris PH 7.5, 150 mM NaCl,

0.5% sodium deoxycholate, 10 mM NaF) supple-

mented with protease inhibitors (Roche, Indianapolis,

IN, USA) and phosphatase inhibitors (Solarbio).

Equal amounts of protein extracts were separated by

8–12% SDS/PAGE and then electroblotted to poly

(vinylidene difluoride) membranes. After blocking

with 5% (w/v) BSA in TBST (mixture of Tris-buf-

fered saline and Tween-20) for 2 h at room tempera-

ture, the membranes were incubated with primary

antibodies at 4 °C overnight (> 16 h). Subsequently,

the membranes were incubated for 1 h at room tem-

perature in a 1 : 10000 dilution of horseradish peroxi-

dase-conjugated secondary antibody (Sigma-Aldrich)

and visualized with chemiluminescence (Pierce Protein

Biology Products/Thermo Scientific, Rockford, IL,

USA).

2.6. Wound-healing assay

Monolayer cells grown to confluence in six-well plates

were scratched using a sterile plastic 200-lL micropip-

ette tips. Next, the cells were washed three times with

D-Hanks and then cultured with serum-free medium

for 24 h before capture of images. Photographs focus-

ing on the same position were taken immediately and

at 24 h after wound incision with a phase-contrast

microscopy. Five areas were measured in each experi-

ment.

2.7. Motility and invasion assay

A total of 5 9 104 cells were seeded on BD Falcon

Cell Culture Inserts with or without a thin layer of

MATRIGEL Basement Membrane Matrix. The inserts

were then placed on 24-well plates containing complete

serum as chemo-attractant. After incubation in serum-

free medium for appropriate time (16 h for H1299

migration assay, 24 h for H1299 invasion assay, 38 h

for HCC827 migration assay, and 48 h for HCC827

invasion assay), inserts were washed with PBS, fixed

with 4% formalin (Sigma), and stained with Giemsa

staining solution (Invitrogen). The unmigrated cells on

the surface of the membrane were removed using cot-

ton swabs. Images were taken and analyzed with IM-

AGEJ (National Institutes of Health, Bethesda, MD,

USA) to acquire cell numbers.

2.8. Cell viability assay

Cells were plated onto 96-well plates in sextuplicates at

a density of 6 9 103 per well with or without gefitinib/

rapamycin treatment. The viability of cells was deter-

mined using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl-

tetrazolium bromide (MTT) at the indicated time

points. In brief, the MTT assay was performed by

adding 10 lL MTT (5 mg�mL�1) into each well for

4 h after which particles were dissolved using DMSO.

After full dissolution of the particles, the absorbance

was measured at 492 nm on a microplate reader

(Dynex Technologies, Chantilly, VA, USA).

2.9. In vivo tumor growth

BALB/c nude mice were purchased from HFK Bio-

science Company (Beijing, China) and bred under

specific pathogen-free conditions. All animals were

used in accordance with institutional guidelines, and

the current experiments were approved by the Use

Committee for Animal Care of Shandong University.

For subcutaneous inoculation, HCC827 ctrl and

HCC827 shFBXW7 58 cells (3 9 106) were, respec-

tively, injected subcutaneously into the axilla of each

nude mouse (4–6 weeks old). Four days after tumor

inoculation, 20 mice were divided randomly into the

following four groups that received either vehicle con-

trol (hanks), 5 mg�kg�1 gefitinib, 8 mg�kg�1 rapamy-

cin, or 5 mg�kg�1 gefitinib combined with 8 mg�kg�1

rapamycin (n = 5 per group) intraperitoneally every

3 days for 21 days. Tumor size was measured every
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3 days after tumors appeared, and the tumor volume

was calculated by the formula length 9 width2/2.

2.10. Statistical analysis

SPSS 17.0 software (SPSS, Chicago, IL, USA) was used

for statistical analysis. Statistical differences between

two groups were assessed with the Student’s t-test and

multiple groups with ANOVA test. P < 0.05 was con-

sidered statistically significant. All results were

expressed as mean � SD from at least three indepen-

dent experiments.

3. Results

3.1. Deficiency of Fbxw7 is susceptible to lung

tumor development in mice

To assess whether Fbxw7 plays a role in lung cancer

development, we first carried out a genetic analysis of

the Fbxw7 locus in our two previous mouse backcross

studies: the first one was between SPRET/EiJ and FVB/

NKras2LA2 mice where lung tumor development was ini-

tiated by knock-in of mutant K-ras (G12D), and the

second was between SPRET/EiJ and FVB/N mice

where lung tumor development was induced by a single

treatment of urethane (To et al., 2006). In both lung

carcinoma models, mice that inherited one SPRET/EiJ

Fbxw7 allele (Asp61 of Fbxw7a) developed significantly

fewer lung tumors compared to mice homozygous for

the FVB/N allele (Asn61 of Fbxw7a) (Fig. 1A,B), con-

sistent with our previous findings that the SPRET/EiJ

Fbxw7 allele confers resistance to tumor development

(Perez-Losada et al., 2012).

In order to confirm whether deficiency of Fbxw7

increases susceptibility to lung cancer development

induced by urethane, 34 Fbxw7 heterozygous (Fbxw7+/
�) mice, which was described in Tsunematsu et al.

(2004), and 31 Fbxw7 wild-type mice were injected

intraperitoneally with a single dose of urethane. After

40 weeks, all mice were sacrificed and the number of

lung tumors counted. We observed a statistically sig-

nificant increase in the number of lung tumors in

Fbxw7+/� mice (Fig. 1C) in agreement with the

hypothesis that this gene is a general tumor suppressor

in multiple tissues.

3.2. Reduced FBXW7 expression correlates with

poor disease outcome

To assess the roles of FBXW7 in human lung cancer

development, we first examined DNA copy number

changes of FBXW7 in lung adenocarcinoma (AC) and

squamous cell carcinoma (SCC) using The Cancer

Genome Atlas data and found that deletion of

FBXW7 was found in 71 of 230 (30.9%) ACs and

113 of 178 (63.5%) SCCs, while gain of FBXW7 was

only found 19 (8.3%) ACs and 11 (6.2%) SCCs

(Table S1). Moreover, 4 (1.7%) ACs and 11 (6.2%)

SCCs contained a mutation of FBXW7 (Table S1),

which is similar to the frequency reported in the Cata-

logue Of Somatic Mutations In Cancer (COSMIC)

database (http://cancer.sanger.ac.uk/cosmic). The dele-

tion of FBXW7 significantly led to reduction in

FBXW7 mRNA expression in both ACs and SCCs

(Fig. 2A,B). These results indicated that genomic loss

of FBXW7 DNA copy number is one of the main

mechanisms through which gene expression is reduced

in human lung cancer. To determine whether reduced

FBXW7 expression is associated with clinical outcome

of lung cancer patients, we further evaluated the prog-

nostic value of FBXW7 in a large public clinical

Fig. 1. Fbxw7 deficiency is susceptible to lung cancer development in mice. (A, B) Fbxw7 polymorphism (Asp61Asn of Fbxw7a) is

associated with lung cancer development in mouse F1 backcross (F1Bx) studies: (A) F1Bx between SPRET/EiJ and FVB/N Kras2LA2 mice,

and (B) F1Bx between SPRET/EiJ and FVB/N mice where lung tumors were induced by a single treatment of urethane. (C) Loss of a single

copy of Fbxw7 significantly increases urethane-induced lung tumor development: box-plot of lung tumors in Fbxw7+/� and wild-type mice

(P = 0.016).
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microarray database (Gyorffy et al., 2013). Kaplan–
Meier analysis showed that tumors with high expres-

sion of FBXW7 had significant longer overall survival

in both AC and SCC (Fig. 2C,D). Together, these

clinical data indicate that the expression levels of

FBXW7 are reduced during lung cancer development

and that reduced FBXW7 expression correlates with

poor clinical outcome.

3.3. FBXW7 knockdown induces EMT in NSCLC

cells

To examine whether FBXW7 regulates epithelial–mes-

enchymal transition (EMT) in NSCLC cells, we

knocked down FBXW7 using two different short hair-

pin RNA (shRNA) constructs (shFBXW7 56 and

shFBXW7 58) into H1299 cells and HCC827 cells.

The levels of FBXW7 in these resultant cell lines were

verified by qRT–PCR and western blotting (Fig. 3A,

B). Compared to the control cells, morphologic

changes in FBXW7 knockdown cells were observed

with a discohesive growth pattern and a spindle-

shaped fibroblastic appearance, the typical features of

cells undergoing EMT (Fig. 3C). Consistent with these

observations, western blotting revealed obvious losses

of epithelial markers (E-cadherin and ZO-1), accompa-

nied by apparent increases in mesenchymal markers

(vimentin, N-cadherin, and ZEB-1) in both HCC827-

shFBXW7 cells and H1299-shFBXW7 cells (Fig. 3D).

These findings suggest that FBXW7 knockdown pro-

motes EMT in NSCLC cells.

3.4. FBXW7 inhibits migration and invasion of

NSCLC cells

Next, we assessed the function of FBXW7 on EMT

associated cell behaviors in NSCLC cells. First, we

performed the wound-healing assay to examine the

effect of FBXW7 on cell migration. We found that

both HCC827-shFBXW7 cells and H1299-shFBXW7

cells had significantly faster closure of the wound area

compared to their respective control cells (Fig. 4A,B).

This result was confirmed using the Boyden chamber-

based cell migration assay (Fig. 4C,D). Additionally,

both HCC827-shFBXW7 cells and H1299-shFBXW7

cells harbored enhanced invasiveness compared to

their control cells in the Matrigel invasion chamber

assay (Fig. 4C,D). These data indicate that FBXW7

inhibits migratory and invasive capabilities of NSCLC

cells.

Fig. 2. Reduced expression of FBXW7 is associated with poor prognosis of human lung cancer patients. (A, B) Expression of FBXW7 is

positively correlated with its copy number changes in lung adenocarcinomas (A) and squamous cell carcinomas (B) using The Cancer

Genome Atlas datasets. (C, D) Low expression of FBXW7 significantly decreases overall survival of lung adenocarcinomas (C) and

squamous cell carcinomas (D) patients using KM plotter analysis (http://kmplot.com/analysis/index.php?p=service&cancer=lung).
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3.5. FBXW7 knockdown leads to gefitinib

resistance in vitro

Increasing evidence shows a correlation between

FBXW7 expression and drug resistance. Therefore, we

investigated whether FBXW7 had an impact on gefi-

tinib sensitivity in NSCLC cells. First, HCC827-

shFBXW758, H1299-shFBXW758, and their control

cells were treated with different concentrations of gefi-

tinib for 72 h. The inhibitory effect of gefitinib on the

growth of HCC827, a gefitinib-sensitive cell line, was

significantly impaired after FBXW7 knockdown while

no significant change was observed in GR H1299 cells

(Fig. 5A and Fig. S1). We then tested the influence of

Fig. 3. FBXW7 loss induces EMT in NSCLC. (A, B) The reduced mRNA (A) and protein (B) levels of FBXW7 were measured by qRT–PCR

and western blotting in H1299 and HCC827 cell lines stably transfected with shFBXW7 56 and shFBXW7 58. The graph shows quantitative

analysis. (C) Representative micrographs of H1299-shFBXW7 and HCC827-shFBXW7 cells under bright field display significant differences in

morphology. (D) Expressions of epithelial markers (E-cadherin and ZO-1) and mesenchymal markers (vimentin, N-cadherin, and ZEB-1) were

analyzed by western blotting. All data are presented by mean � SD. *P < 0.05, **P < 0.01, ***P < 0.001 based on the Student’s t-test. All

results are from three independent experiments.
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FBXW7 on the efficacy of gefitinib in another gefi-

tinib-sensitive PC9 cells, which harbor EGFR

(delE746-A750) mutation. The expression of FBXW7

in PC9 cells was transiently silenced using FBXW7-

specific siRNA, which was confirmed by qRT–PCR

and western blotting (Fig. S2A,B). Subsequent cell

growth analysis revealed that, similar to HCC827, PC9

cells with FBXW7-siRNA transfection exhibited

increased gefitinib resistance compared to PC9 cells

transfected with control-siRNA (Fig. 5B). These data

Fig. 4. FBXW7 inhibits NSCLC cell migration and invasion. (A, B) H1299-shFBXW7 (A) and HCC827-shFBXW7 cells (B) or their control

vector cells were subjected to wound-healing assay. The graph shows quantitative analysis (bottom). (C, D) H1299-shFBXW7 (C) and

HCC827-shFBXW7 cells (D) or their control vector cells were subjected to Transwell migration and Matrigel invasion assays. The graph

shows quantitative analysis (bottom). Data are presented as mean � SD. *P < 0.05, **P < 0.01, ***P < 0.001 based on the Student’s t-

test. Results in A–D are from three independent experiments.
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indicate that knockdown of FBXW7 reduced TKI sen-

sitivity in EGFR-mutated cell lines to some extent.

To confirm the involvement of FBXW7 in gefitinib

resistance, FBXW7 expression was determined in

acquired GR HCC827GR and H3255GR cells. Inter-

estingly, both HCC827GR and H3255GR cells

expressed lower levels of FBXW7 compared to their

parental gefitinib-sensitive counterparts (Fig. 5C,D).

Collectively, these results indicate that FBXW7 posi-

tively mediates therapeutic efficacy of gefitinib in

EGFR-mutated NSCLC cell lines.

3.6. Rapamycin eliminates gefitinib resistance

induced by FBXW7 knockdown

As mTOR is one of the downstream substrates of

FBXW7 and a case study of a lung cancer patient har-

boring an FBXW7 mutation reported clinical and

radiographic benefit from treatment with an mTOR

inhibitor (Villaruz and Socinski, 2014), we addressed

the possibility that FBXW7 executed its role in gefi-

tinib treatment through interfering mTOR signaling

pathway. As indicated in Fig. 6A, in HCC827 and

PC9 control cell line, the phosphorylation of mTOR

and its downstream protein P70S6K was markedly

reduced upon gefitinib treatment. In contrast, in the

FBXW7 silencing HCC827-shFBXW7 cells and PC9-

siFBXW7 cells, the total protein level of mTOR along

with phosphorylation of mTOR and P70S6K was dra-

matically increased and persisted at higher levels with

or without gefitinib treatment. Moreover, accompanied

by attenuated FBXW7 level, HCC827GR cells and

H3255GR cells had elevated mTOR, phosphor-mTOR,

and phosphor-P70S6K levels compared to their paren-

tal cells (Fig. 6B).

To determine whether increased mTOR signaling

underlies the gefitinib resistance induced by FBXW7

depletion, we examined whether mTOR inhibition sup-

pressed growth of the resistant cells. HCC827-

shFBXW7 cells and PC9-siFBXW7 cells were exposed

Fig. 5. FBXW7 downregulation induces gefitinib resistance in vitro. (A, B) HCC827-shFBXW7 58 (A) and PC9-siFBXW7 cells (B) or their

control cells were treated with gefitinib at indicated concentration in 96-well plates for 72 h, and the cell viability was examined by MTT

assays. (C, D) FBXW7 expression was detected in HCC827GR (C) and H3255GR (D) cell lines by western blotting. NCL, normal cell line;

GR, gefitinib resistant. The graph shows quantitative analysis. Data are presented as mean � SD. *P < 0.05, **P < 0.01 based on the

Student’s t-test. All results are from three independent experiments.
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to rapamycin, a mTOR signal inhibitor in combination

with gefitinib. Combined treatment successfully

reversed drug resistance of HCC827 and PC9 cells trig-

gered by loss of FBXW7 expression (Fig. 6C,D).

To further confirm our in vitro findings, HCC827-

shFBXW7 and its control cells were subcutaneously

inoculated into athymic mice. Consistent with the

in vitro data, downregulation of FBXW7 accelerated

tumor formation at the implantation site and pro-

moted gefitinib resistance in vivo. In contrast, the

tumors originating from HCC827 control cells grew

less rapidly and appeared to be sensitive to gefitinib

treatment. Fortunately, the suppressive effect of gefi-

tinib was intensified when combined with rapamycin

even for the refractory HCC827-shFBXW7 cells

(Fig. 7A–C). Taken together, we conclude that

FBXW7 contributes to the efficiency of gefitinib treat-

ment by interfering with the mTOR signaling path-

way.

4. Discussion

EGFR-TKI has been recommended as the first choice

for advanced NSCLC patients with EGFR mutation

on account of the fact that it can bring about longer

progression-free survival, less severe adverse events

and prolongs survival in NSCLC patients who fail the

chemotherapy regimens (Mitsudomi et al., 2010;

Rosell et al., 2012; Shepherd et al., 2005). However,

drug resistance ultimately develops. Although several

systemic treatment options have been established for

drug-resistant NSCLC patients, more efforts should be

made to conquer such challenges (Fruh, 2011).

Recent studies have identified the mechanisms asso-

ciated with resistance to EGFR-TKI in NSCLC.

Among those resistance mechanisms, the secondary

EGFR mutation, T790M in exon 20 of the EGFR

gene, plays the most significant role and arises in

~ 60% of the cases (Sun et al., 2013; Sutto and Gerva-

sio, 2013; Yun et al., 2008). To target this mutation,

reversible indolocarbazole-based or irreversible pyrim-

idine-based TKIs, such as WZ4002, AZD9291, and

CO-1686, have been used in recent preclinical studies

(Cross et al., 2014; Lee et al., 2013; Walter et al.,

2013; Zhou et al., 2009). Other mechanisms explaining

EGFR-TKI resistance include the primary resistance

driven by K-RAS mutation, activation of PI3K/AKT

pathway, NF-jB activation, EML4-ALK gene

Fig. 6. FBXW7 influences gefitinib sensitivity by targeting mTOR pathway. (A) Levels of FBXW7, mTOR, PmTOR, P70S6K, PP70S6K were

analyzed by western blotting in HCC827-shFBXW7 58 and PC9-siFBXW7 cells or their control cells with or without gefitinib treatment. (B)

HCC827GR and H3255GR lysates along with their control cell lysates were subjected to western blotting analysis and probed with the

above antibodies. (C, D) The cell viability of HCC827-shFBXW758 (C) and PC9-siFBXW7 cells (D) or the control cells was measured by MTT

assays following the treatment of gefitinib, rapamycin, or the combination of gefitinib and rapamycin for 72 h. Data are reported as

mean � SD. *P < 0.05. All data are based on three independent experiments.
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rearrangements, EMT involvement as well as acquired

resistance caused by MET amplification, loss or

decreased DNA copy number of the activating EGFR

mutant gene and genotypic and histological transfor-

mation from NSCLC into small cell lung cancer

(Bivona et al., 2011; Coldren et al., 2006; Engelman

et al., 2006; Sequist et al., 2011; Shaw et al., 2009;

Tabara et al., 2012; Turke et al., 2010; Zhu et al.,

2008). In the present study, we emphasize the function

of FBXW7 in controlling of EGFR-TKI resistance in

NSCLC.

FBXW7, a member of F-box family proteins, is a

substrate recognition component of the SCF (complex

of SKP1, CUL1, and F-box protein) E3 ubiquitin

ligase complex that mediates the ubiquitin-dependent

proteolysis of several oncoproteins, such as MCL1,

Myc, cyclin E, and mTOR, so it is regarded as a

tumor suppressor at the crossroads of cell division,

growth, and differentiation (Cheng and Li, 2012; Mao

et al., 2008; Welcker and Clurman, 2008). Low

FBXW7 expression is associated with decreased

chemotherapeutic sensitivity, like taxol and cisplatin in

NSCLC (Yokobori et al., 2014; Yu et al., 2013).

Moreover, Wertz et al. (2011) suggested profiling the

FBXW7 and MCL1 status of tumors, in terms of pro-

tein levels, messenger RNA levels along with genetic

status, could be of great use in predicting the response

of patients to antitubulin chemotherapeutics. In addi-

tion, MCL1 accumulation caused by FBXW7 mutation

in SCC led to resistance to the BH3 mimetic ABT-737

but enhanced synergistic effects of combination the

HDAC inhibitor vorinostat with ABT-737 (He et al.,

2013).

As one of the established causes of drug resistance,

EMT can adversely promote cancer progression

through endowing cells with enhanced migratory, inva-

sive, anti-apoptotic combined with drug-resistant prop-

erties, and hence, profiling important EMT markers

could imply chemosensitivity and tumor prognosis

(Hoshino et al., 2009; Jechlinger et al., 2003; Kurrey

Fig. 7. Rapamycin reverses FBXW7 knockdown induced gefitinib resistance in vivo. (A) FBXW7 silenced HCC827 cells and their

corresponding control cells were subcutaneously injected into nude mice (n = 5) with treatments described in Section 2. After 25 days, the

nude mice were sacrificed. The images of the dissected tumors are shown. A ruler is used to demonstrate the size of the tumor. (B) The

body weight of mice with different treatment was presented. (C) The volumes of the subcutaneous tumors were measured every 3 days

from the 4th day following implantation. The comparisons of statistics were carried out with ANOVA test (bottom). Data are represented as

mean � SD. *P < 0.05, **P < 0.01, based on the Student’s t-test.
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et al., 2009; Nozawa et al., 2006). In addition, the

enzyme mTOR functions as a serine/threonine protein

kinase that regulates cell growth, proliferation, motil-

ity, survival, protein synthesis, autophagy as well as

cell cycle progression, and mTOR pathway activation

leads to tumor development (Hay and Sonenberg,

2004). Previous studies have indicated that targeting

mTOR can enhance apoptosis and increase sensitivity

to chemotherapeutics. Furthermore, mTOR inhibitors

manage to overcome EGFR-TKI resistance in NSCLC

(Fei et al., 2013; Ishikawa et al., 2013; Shi et al.,

1995).

Here, we focus on FBXW7, a bona fide tumor sup-

pressor that restrains EMT and directly target mTOR

for ubiquitin degradation in NSCLC. Not only do we

demonstrate the imperative role of FBXW7 in control

of EMT and NSCLC cell invasion, but also its pivotal

responsibility to guarantee effectiveness of gefitinib via

inhibiting mTOR/p70S6K pathway in EGFR-mutated

NSCLC. Additionally, in the condition that mTOR

signaling is aberrantly activated to abrogate gefitinib-

induced cell growth inhibition because of FBXW7

downregulation, the administration of rapamycin is

sufficient to reverse gefitinib resistance, leading to the

firmer conviction that FBXW7 plays a crucial role

mediating EGFR-TKI sensitivity via mTOR/p70S6K

pathway (Fig. S3).

5. Conclusion

Our studies focus on the views that FBXW7 executes

its tumor suppressor function by inhibition of EMT

and the mTOR/p70S6K pathway, ensuring the effi-

ciency of EGFR-TKI treatment in NSCLC. This find-

ing suggests that FBXW7 may serve as a potential

molecular marker for predicting EGFR-TKI treatment

response and prognosis in NSCLC patients with

EGFR mutation and, more importantly, provides a

new treatment strategy for these patients.
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