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Abstract: The goal of cost-effective production of fuels and chemicals from biomass has been a substantial driver of the development
of the field of metabolic engineering. The resulting design principles and procedures provide a guide for the development of cost-
effective methods for degradation, and possibly even valorization, of plastic wastes. Here, we highlight these parallels, using the
creative work of Lonnie O’Neal (Neal) Ingram in enabling production of fuels and chemicals from lignocellulosic biomass, with a focus

on ethanol production as an exemplar process.
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Introduction

The invention of vulcanized rubber in 1893 opened the doors for
the development of synthetic polymers (Barker, 1940). The ver-
satility in polymer types and blends allows diverse applications
ranging from household goods to medical equipment and single-
use supplies (Andrady & Neal, 2009). Currently, most plastic poly-
mers are derived from petrochemicals in processes designed to
produce stable, durable materials. This stability to various abiotic
and biotic processes results in the accumulation of synthetic plas-
tic polymers in the environment, including microplastics (Sharma
& Chatterjee, 2017). The global production of plastic continues to
increase (Elhacham et al., 2020) and much of this plastic waste
ends up in landfills and water bodies (Law et al., 2020). Various
studies have shown that approximately 80 wt% of the debris col-
lected from the ocean floor is plastic (Selvam et al., 2021). Thus,
there is a need for the development of processes that reuse, recy-
cle or repurpose these materials (Lau et al., 2020).

Here, we focus on biologically mediated repurposing of these
materials (Fig. 1). Ongoing efforts to improve chemical and
thermal-based processes are described elsewhere (Liu et al., 2021;
Monsigny et al,, 2018; Padhan & Sreeram, 2019; Qureshi et al,,
2020; Rahimi & Garcia, 2017; Vollmer et al., 2020). It has also been
demonstrated that plastic monomers traditionally derived from
petroleum can be produced by engineered microbes (Karp et al,,
2017) and plants (Hillmyer, 2017; Rasutis et al., 2015).

The environmental accumulation of carbon-rich plastics due
to an insufficient biological sink is reminiscent of the carbona-
ceous period in which lignin production drastically outpaced its
biodegradation, and much of this lignin still exists in the form of
coal and shale oil deposits (Robinson, 1990). This leads to the in-
triguing premise that petroleum-derived plastics are ultimately
derived from lignin and this novel biological functionality that
arose 300 million years ago is still wreaking havoc, but this ques-
tion is beyond the scope of this review. Persistence of lignocellu-
losic biomass in the environment is no longer a problem and it
is actually an appealing source of carbon and energy for the mi-

crobial production of fuels and chemicals. The continued progress
in the engineering of microbes for utilization and valorization of
biomass makes them a tantalizing candidate for addressing the
plastic waste problem.

The challenges of developing microbial cell factories that can
degrade, or even valorize plastic waste in an economically viable
process parallels the challenge of developing microbial cell fac-
tories for the valorization of lignocellulosic biomass (Fig. 2). The
topic of microbial degradation, and possibly valorization, of plas-
tic waste has been repeatedly reviewed elsewhere, as described
below. Here, we highlight the parallels between plastic utilization
and biomass utilization, with a focus on Lonnie O. Ingram’s exten-
sive body of work related to biomass valorization.

Biomass and Plastic Waste Are Both
Heterogenous
Biomass Composition
In contrast to virgin plastics, biomass is inherently heterogeneous.
The three major components of lignocellulosic biomass are cellu-
lose, hemicellulose and lignin. Cellulose and hemicellulose are bi-
ological polymers, each consisting of repeating monomeric units
of hexose and pentose sugars, respectively. Lignin is a heteropoly-
mer of the phenylpropanoid monomers guaiacyl (G type), syringyl
(S type), and p-hydroxyphenyl (H type) (Davis et al., 2016). Biomass
also contains less abundant metabolic components, such as nu-
cleic acids, proteins, pigments and waxes, referred to in some con-
texts as non-structural components or extractives (Airoldi et al.,
2019; de Araujo Silva et al,, 2021; Horhammer et al., 2018).
Biomass composition varies substantially according to species
(Chi et al.,, 2019), but is also impacted by growth conditions
(Dennison et al., 2019; Templeton et al., 2009) and storage condi-
tions (Smith et al., 2020; Towey et al., 2019; Wendt & Zhao, 2020) of
the harvested biomass. Similar to the challenge of contaminants
in mixed plastic wastes, harvested biomass often contains sand
and soil, the presence of which can negatively impact biomass
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Fig. 1. Overview of possible means of plastic degradation and valorization.
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Fig. 2. Summary of the overall process design procedure.

hydrolysis, often requiring the addition of a process step for their
removal (Horhammer et al., 2018).

Plastic Composition

Some of the common polymers in plastic waste include polyethy-
lene (PE), polyethylene terephthalate (PET), polyvinylchloride
(PVCQ), polypropylene (PP) and polystyrene (PS). Any process that
aims to degrade or valorize plastic waste needs to be capable not
only of utilizing the polymeric materials, but it must also be robust
to the heterogenous nature of plastic waste, both in terms of the
type of plastic, but also the presence of various impurities. Com-
mercially available flakes of recycled PP were found to contain
roughly 4% PE and 1-4% of a combination of PET, PS and PVC, as
well as small amounts of textiles, aluminum and paper (Alvarado
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Charcon et al., 2020). The same analysis determined that recycled
PE flakes contained roughly 5% PP and 1-4% other plastics.

PE is produced as either high-density polyethylene (HDPE) or
low-density polyethylene (LDPE) and is used in plastic bottles,
shopping bags, packaging, toys and household items (Andrady &
Neal, 2009; Rahimi & Garcia, 2017). LDPE’s recalcitrance to degra-
dation is demonstrated by the fact that it took more than 30 years
for a buried PE sheet to attain measurable levels of degradation
and weight reduction (Otake et al., 1995). PET’s backbone linkage
of ester bonds provides high stability (Kawai et al., 2019; Liu et al.,
2019). It is a strong and durable semi-crystalline thermoplas-
tic polyester representing almost 50% of the world’s synthetic
fiber production (Crippa & Morico, 2020). PET has been used for
the production of beverage containers, electronics and textile
fibers (Webb et al., 2013). PET is commonly reused rather than



recycling, and with every use, the quality of polymer degrades.
PVC is commonly used in the production of bottles, shoe soles,
pipes and plastic cards. PP is a polymer of repeating units of
propane-1,2-diyl, with applications in packaging, and medical,
industrial and domestic utilization (Arutchelvi et al., 2008; Shah
et al., 2008). PS is used not only in the packaging industry but also
in daily consumables.

In addition to the plastic polymer, plastic often contains addi-
tives (such as dyes). Mixed plastic waste often contains other com-
ponents (such as silica and glass), residual food and dirt (Andrady
& Neal, 2009). Some of this material can be removed with a pre-
treatment step such as washing, though these contribute to the
overall process cost. Plastics have been repeatedly described as
comprising roughly 10% of household waste (Mathioudakis et al.,
2021; Noufal et al., 2020; Zhou et al., 2014). In European municipal
solid waste, PE (HDPE and LDPE) was the most abundant plastic,
followed by PP, PET and PS (Dahlbo et al., 2018; Moellnitz et al,,
2020). Commercial waste contained less PP than municipal waste,
but all other polymers were roughly equivalent (author’s own cal-
culations from Moellnitz et al., (2020)). One study found that Eu-
ropean commercial and municipal waste each contain roughly
1% PVC and PS, and 2% PP, with commercial waste containing 8%
PE and municipal waste containing 5% PE (author’s own calcula-
tions from Moellnitz et al., (2020)). Plastic waste from the western
North Atlantic Ocean appeared to be highly enriched for HDPE,
with some LDPE and PP, while the corresponding beach waste con-
sisted mainly of PP and LDPE, with some HDPE, PS, PV and PET
(Moret-Ferguson et al., 2010).

Direct Biological Utilization of

Biomass and Plastic
Biomass

The fact that cellulose is a polymer of the hexose sugars generally
preferred by microbes has motivated extensive work with cellu-
lolytic organisms and cellulase enzymes. In the context of micro-
bial cell factories, there are two general options for biological de-
polymerization of cellulose: use of an organism that is capable of
producing its own cellulase enzymes, or exogenous provisioning
of cellulase enzymes that were either purchased or produced in
a distinct process step. Commercially available cellulase enzymes
have often been subjected to extensive protein engineering to im-
prove performance metrics (Chandel et al., 2012).

Microbial species that are inherently cellulolytic often require
genetic modification to achieve production of the desired tar-
get molecule. For example, metabolic engineering of cellulolytic
Caldicellulosiruptor bescii for expression of the ethanol production
pathway resulted in the conversion of filter paper (cellulose) and
switchgrass to ethanol (Chung et al., 2014). The Ingram group en-
gineered two species with inherent cellobiose depolymerization
capacity for the production of ethanol: the soft-rot bacteria Er-
winia (Beall & Ingram, 1993) and the soil bacteria Klebsiella oxytoca,
abundant in cellulosic waste streams (Doran et al., 1994).

A parallel approach is to modify the production organism so
that it is able to depolymerize cellulose and its subunits (Davison
et al.,, 2020). The Ingram group used several iterations of this
approach. Escherichia coli strains that had previously been engi-
neered for ethanol production were further modified to express
cellobiose phosphotransferase from Bacillus stearothermophilus (Lai
& Ingram, 1993), cellobiose-depolymerization enzymes from K.
oxytoca (Moniruzzaman et al.,, 1997), and endoglucanase enzymes
from Erwinia chrysanthemi (Wood, Beall, et al., 1997; Zhou et al,,
1999). As described above, K. oxytoca was engineered for ethanol
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production. The native cellobiose-depolymerization activity of
this organism was expanded by expression of cellulase from
Clostridium thermocellum (Wood & Ingram, 1992), and E. chrysan-
themi endoglucanase (Zhou & Ingram, 1999; Zhou & Ingram, 2001).
Ultimately, the Ingram group shifted to the use of abiotic biomass
depolymerization in conjunction with commercial enzyme sup-
plementation, as described below.

The pentose sugars comprising hemicellulose are generally less
preferred by microbes relative to hexose sugars, and yet valoriza-
tion of these molecules is key to the economic viability of a biore-
finery. The Ingram group used a grass-fed anaerobic digester as
a source of potential hemicellulose depolymerization enzymes,
resulting in identification of Butyrivibrio fibrisolvens isolates with
the ability to use xylan (hemicellulose) as the sole carbon source
(Sewell et al., 1988). Subsequently, E. coli and K. oxytoca engineered
to produce ethanol were further modified to express the C. thermo-
cellum xylanase enzyme (Burchhardt & Ingram, 1992). Ethanolo-
genic E. coli was eventually modified to express the xylodextrin
enzymes from K. oxytoca (Qian et al., 2003).

The Ingram group extensively used evolutionary methods for
organism improvement. A hallmark of this work is the direct
linkage of growth of the organism and production of the desired
molecule. For example, the central metabolism of E. coli was mod-
ified such that the only way for the cells to maintain redox bal-
ance was through the ethanol production pathway (Ohta et al.,
1991; Yomano et al., 2008). In this manner, cells with mutations
that supported ethanol production were able to grow faster than
other cells. Similar strategies were used for production of lactic
acid (Grabar et al., 2006; Zhou et al., 2006; Zhou et al., 2005; Zhou
et al,, 2003), alanine (Zhang et al., 2007) and succinate (Jantama
etal., 2008a;Jantama et al.,2008b; Zhangetal.,2009a; Zhangetal,,
2009b). E. coli strain KO11, evolved for ethanol production, was
subjected to genome analysis by optical (whole-genome) map-
ping, resulting in identification of extensive genetic duplication of
the ethanol production cassette, as well as large-scale rearrange-
ments of the chromosome (Turner et al., 2012). This type of struc-
tural chromosomal analysis remains relatively unusual in anal-
ysis of bacterial genomes (Yuan et al., 2020), as opposed to next-
generation sequencing (Cao et al., 2020).

Lignin is a heteropolymer consisting of aromatic monomers
(Davis etal., 2016). Direct biological utilization of lignin is unusual;
processes that involve some sort of pretreatment are described
below. While the polysaccharide pectin is often overlooked as a
biomass component, it makes up a substantial fraction of some
agricultural residues, such as beet pulp (Martins et al., 2020). The
Ingram group observed that an ethanologenic E. coli strain was
able to robustly utilize the pectin component galacturonic acid
(Grohmann et al., 1994). One of the Ingram groups’ ethanologenic
E. coli strains was modified for pectinolytic activity by the expres-
sion of select genes from E. chrysanthemi (Edwards et al., 2011).

Plastic

The analogous nature of enzymatic degradation of biomass and
plastic has been previously noted (Chen et al., 2020). One can en-
vision that development of industrial organisms for plastic degra-
dation or valorization will follow the same basic path as that used
for biomass utilization, particularly cellulose. Specifically, biolog-
ical depolymerization of plastic will either be performed by an
engineered organism or by exogenous provisioning of enzymes
that were either purchased or produced in a distinct process step.
There are many recent reviews describing microbial activity on
plastics (Danso et al., 2019; Devi et al., 2016; Gautam et al., 2007,
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Table 1. Microorganisms associated with plastic polymer degradation

Organism Isolation site

Observed weight loss Reference

Pseudomonas fluorescens Plant root nodules
Serratia marcescens
Bacillus cereus

Bacillus safensis

Bacillus amyloliquefaciens
Aspergillus clavatus JASK1
Stenotrophomonas sp. P2 Landfill waste plastic
Achromobacter sp. DF22 Drilling fluid
Pseudomonas citronellolis -

Alcanivorax borkumensis Mediterranean Sea
Pseudomonas sp Gulf of Mannar
Enterobacter asburiae YT1
Bacillus sp YP1

Ideonella sakaiensis 201-F6

Mixed waste dump site

Municipal solid waste
Landfill soil

PET bottle recycling factory

Indian meal moth (Plodia interpunctella) gut

2% for HDPE, 90 days
8% for HDPE, 90 days
35% for PE, 112 days

20% for PE, 112 days

16% for LDPE, 60 days
20% for LDPE, 90 days
8% for LDPE, 100 days

Baculi et al. (2017)
Muhonja et al. (2018)

Das & Kumar (2015)
Gajendiran et al. (2016)
Dey et al. (2020)

13% for PVC, 30 days
3.5% for LDPE, 80 days
15% for HDPE, 30 days
6% for PE, 60 days
11% for PE, 60 days
90% for PET, 50 days

Giacomucci et al. (2019)
Delacuvellerie et al. (2019)
Balasubramanian et al. (2010)
Yang et al. (2014)

Yoshida et al., (2016)

Jacquin et al., 2019; Jaiswal et al., 2020; Lucas et al., 2008; Moharir
& Kumar, 2019; Ru et al., 2020; Sheth et al., 2019; Shimao, 2001;
Sivan, 2011; Tokiwa et al., 2009; Wierckx et al., 2015; Zheng et al.,
2005). Knowledge has also been summarized for specific plastic
types, such as PET (Hiraga et al., 2019; Taniguchi et al., 2019) and
PE (Ghatge et al., 2020; Mohanan et al., 2020; Pathak & Navneet,
2017; Restrepo-Florez et al., 2014; Sen & Raut, 2015; Shah et al,,
2008), and specific organism groups, such as Pseudomonas (Wilkes
& Aristilde, 2017).

Ingram’s work relied heavily on enzymes encoded by organ-
isms that were bio-prospected from environments rich in the rel-
evant substrate. For example, K. oxytoca was isolated from pulp
and paper mill waste streams and Erwinia is known to be capa-
ble of depolymerizing biomass to the point of causing ‘soft rot’
(Toth et al., 2003). A similar bioprospecting approach has been
used to identify microbes encoding enzymes that enable plastic
depolymerization and possibly even chassis organisms, with rep-
resentative findings shown in Table 1. Many of the organisms de-
scribed to date have been isolated from plastic-dumping sites and
landfills, marine water, with utilization of HDPE and/or LDPE be-
ing the most frequently described. The gut of wax-eating worms,
such as Galleria melonella, is also a promising environmental niche
from which the PE-hydrolyzing bacteria Enterobacter asburiae YT1
and Bacillus sp. YP1 were isolated (Bombelli et al., 2017; Cassone
et al., 2020; Yang et al., 2014). Bioprospecting has also included
the enrichment of naturally occurring microbial consortia capa-
ble of plastic degradation, such as marine bacteria with activity
on PE (Syranidou et al.,, 2019) and soil bacteria with activity on
LDPE (Esmaeili et al., 2013).

Microbial activity on plastic is affected by polymer type, the
condition of the polymer, the identity of the microbial strain and
environmental conditions (Artham & Doble, 2008). Such micro-
bial action typically involves enzymes that are secreted onto the
polymer surface and/or the production of substrate-specific bio-
surfactants. As with cellulose, the crystalline nature of plastic
waste is a challenge and reductions in the polymer chain length
promote further depolymerization (Ghatge et al., 2020). This initial
fragmentation of the polymer often occurs due to abiotic environ-
mental factors like UV radiation or mechanical breakdown (Singh
& Sharma, 2008), and process designs that include these elements
are described below. As with cellulose depolymerization, there is
typically a series of enzymatic reactions to reduce the polymer
fragments into smaller units, such as dimers and monomers that
can then be assimilated into microbial metabolism.

Our understanding of the depolymerization enzymes that
are active on the various types of plastic has greatly ex-
panded in the past decade (Chen et al., 2020; Wei & Zimmer-
mann, 2017). Reviews are available describing PET hydrolases
(Carr et al,, 2020; Maurya et al., 2020) and include achievements
in enzyme engineering (Austin et al., 2018). Many of the polymer-
degrading enzymes characterized thus far are similar to enzymes
known for their ability to depolymerize biologically produced sub-
stances (Danso et al., 2019). This raises the possibility that ex-
isting design principles and knowledge can be applied to plastic-
depolymerizing enzymes.

As with the Ingram group’s expression of cellulase enzymes in
chassis organisms, the PETase identified from the PET-utilizing or-
ganism Ideonella sakaiensis was expressed in the photosynthetic
algae Phaeodactylum tricornutum (Moog et al., 2019). Selection of P.
tricornutum as the chassis organism was motivated by the inten-
tion of its eventual utilization in a marine-type environment. The
prospect of using microbial processes not just to degrade plas-
tics but to reassemble the carbon into a valuable molecule was
supported by observation of production of the polyhydroxyalka-
noate (PHA) biopolymer from LDPE by several bacterial species
(Montazer et al., 2019).

Hybrid Processing of Biomass and Plastic
Biomass

Economically viable production of low-value fuels and chemicals
from lignocellulosic biomass typically uses a hybrid approach in-
volving not just biological activity, but also abiotic mechanical and
chemical steps for size reduction and depolymerization (Baruah
etal, 2018; Jin et al., 2020; Zoghlami & Paes, 2019). This combina-
tion of biological and abiotic steps is referred to here as “hybrid
processing.”

Methods for pretreatment and depolymerization of lignocellu-
losic biomass have been reviewed elsewhere (Bhutto et al., 2017;
Kumar et al., 2009), including a summary of 20 distinct pretreat-
ment methods across 18 process metrics (Dale & Ong, 2012). The
Ingram group frequently used dilute acids for hydrolysis of hemi-
cellulose, though the acid identity changed over time. Their early
reports with corn cobs and hulls (Beall et al., 1992), pine wood
(Barbosa et al., 1992) and rice hulls (Moniruzzaman et al., 1997)
used sulfuric acid. However, other groups demonstrated the ad-
vantages of using phosphoric acid instead of sulfuric acid, such
as less stringent energy demands and possible means of nutri-



ent economy (de Vasconcelos et al., 2013). The Ingram group de-
scribed the use of dilute phosphoric acid treatment for biorefining
of Eucalyptus benthamii and with sugarcane bagasse (Castro et al,,
2014; Zeng et al.,, 2014). In these processes, dilute acid treatment
was combined with other abiotic and biological depolymerization
steps, such as steam treatment (Castro et al., 2014; Zeng et al,,
2014) and the addition of cellulase enzymes (Geddes et al., 2010Db).

Processes have been developed that aim to depolymerize of
the lignin component for microbial utilization, such as alkaline
treatment and pyrolysis (Davis et al.,, 2019; Davis et al., 2016;
Linger et al., 2014; Ragauskas et al., 2014). The heterogenous na-
ture of lignin, and the resulting heterogeneity of any depolymer-
ization products, presents a challenge relative to sugar utilization
through central metabolism. The attempt to shunt as much car-
bon as possible into central metabolic intermediates has been de-
scribed “biological funneling” (Linger et al., 2014).

Plastics

Abiotic environmental factors, such as weathering and UV ra-
diation, assist in natural biodegradation of plastics (Wilkes &
Aristilde, 2017). UV radiation provides energy and promotes free
radical formation on the plastic surface, which in turn gener-
ates small molecules that can be utilized by microbes (Devi et al.,
2016). Similar to the role of acids in hemicellulose hydrolysis, acids
can alsoinitiate the oxidation of polymer surfaces (Arkatkaretal.,
2010; Kumar Sen & Raut, 2015; Rajandas et al., 2012). It is ex-
pected that the design of plastic waste degradation/valorization
processes will include some of these components. For example,
HDPE was incubated at 70°C for 10 days prior to characterization
with microbial substrates, with the goal of enhancing biodegrada-
tion (Awasthi et al., 2017).

Pyrolysis has previously been demonstrated as a rapid and ro-
bust means of biomass depolymerization. The feasibility of us-
ing pyrolysis for plastic depolymerization in combination with mi-
crobial valorization was demonstrated with PP (Mihreteab et al.,
2019). Specifically, pyrolysis was used to convert PP pellets to an
oil rich in fatty alcohols and alkenes. This oil was then utilized
by the oleaginous yeast Yarrowia lipolytica for the production of
lipids. Thermal oxo-degradation of HDPE at moderate tempera-
tures in an oxidative environment was shown to produce a mate-
rial that supported increased growth of Candida maltosa relative to
pyrolyzed HDPE (Brown et al., 2022). The fatty alcohols and hydro-
carbons produced by pyrolysis or oxo-degradation of plastics will
present various challenges relative to the sugars released from
lignocellulosic biomass. Such molecules have lower water solu-
bilities and the associated transporters and metabolic pathways
are poorly characterized relative to glycolysis (Beier et al., 2014;
Hussain et al., 2017; Iwama et al., 2014).

Overcoming Toxicity
Biomass

While there are a variety of effective biomass depolymeriza-
tion processes, these often result in the release or production
of molecules that are inhibitory to the fermentation organism
and thus limit the amount of substrate that can be provided, in
turn limiting the final product titer (Dale & Ong, 2012; Geddes
et al., 2011b). The most well-characterized of these molecules in
biomass acid hydrolysate are the small organic acid acetate, re-
leased from the biomass, and the aldehyde furfural, a dehydration
production of hemicellulose. Other types of biomass treatment
methods, such as depolymerization with ionic liquids, also face
the issue of organism inhibition (Dickinson et al., 2016). Lignin
is often depolymerized into aromatic acids, and these intended
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substrates are often inhibitory to the production organism (Davis
etal,, 2019; Davis et al., 2016).

One route for mitigating this toxicity is the addition of a pro-
cess step to remove or convert the problematic compound(s).
The Ingram group demonstrated the effectiveness of the addition
of calcium hydroxide “overliming” and removal of the resulting
precipitant in improving microbial utilization of acid-hydrolyzed
biomass (Martinez et al., 2001; Martinez et al., 2000). This ap-
proach has also been shown to be helpful for other types of
biomass depolymerization, such as fast pyrolysis (Chi et al., 2013;
Liang et al., 2013). The Ingram group also performed a systematic
characterization of various detoxification techniques performed
individually and in combination (Geddes et al., 2015). It was shown
that for sugarcane bagasse phosphoric acid hydrolysate, a combi-
nation of vacuum evaporation to remove volatile inhibitors, lac-
case enzymes, adjustment to high pH with ammonium hydrox-
ide, addition of bisulfite, and finally microaeration was extremely
effective, with ethanol production titers lagging only slightly rel-
ative to a representative mix of pure sugars (Geddes et al., 2015).

Another route for mitigating this toxicity is to alter the or-
ganism so that its sensitivity to the problematic molecules is
reduced. This can be done through both evolution-based strain
improvement (Jin et al., 2016) and by rational strain engineer-
ing (Jarboe et al., 2011). The Ingram group extensively used
evolutionary-based strain improvement for tolerance of various
products, model inhibitors, industrial operating conditions, and
actual biomass hydrolysate (Geddes et al., 2011b; Jarboe et al.,
2007; Shanmugam & Ingram, 2021).

Reverse engineering of evolved strains can be used to propose
rational strain engineering designs. This was demonstrated by the
Ingram group in regards to furfural tolerance (Miller et al., 2009;
Turner et al, 2011; Wang et al,, 2013) and hydrolysate (Geddes
etal., 2011b; Shi et al., 2020; Shi et al., 2016).

Plastics

Given the early stage of characterization of direct microbial uti-
lization of plastics, it is not yet clear if any of the products of
biological plastic depolymerization are inhibitory to the associ-
ated microbes. One study concluded that there was no negative
effect of breakdown products of various plastics on Penicillium, As-
pergillus, and Pseudomonas isolates (Taghavi et al., 2021). However,
it has been noted that microplastics can increase the tension of
lipid membranes (Fleury & Baulin, 2021), and this raises the pos-
sibility that membrane engineering strategies may be needed for
plastic-utilizing cell factories.

Process Engineering and Scale-Up
Biomass
Bioproduction at rates, yields and titers sufficiently high for eco-
nomic viability often requires process engineering beyond organ-
ism development and substrate depolymerization. For example,
the fluid properties associated with operating with a high con-
centration of depolymerized biomass in the production vessel
(high solids) makes it challenging to achieve sufficient mixing
(Modenbach & Nokes, 2013). Insufficient mixing can lead to fluc-
tuations in pH, which can negatively impact organism perfor-
mance (Moniruzzaman et al., 1998). The Ingram group demon-
strated that ultrasound could be used to improve microbial uti-
lization of mixed waste office paper (Wood, Aldrich, et al., 1997).
The low aqueous solubility of depolymerized lignin can be par-
tially mitigated by preparing emulsions (Davis et al., 2019).

While the depolymerized biomass serves as a source of carbon
for the production organism, other macronutrients are needed for
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metabolic activity, such as nitrogen (N), sulfur (S), phosphorous
(P) and trace metals. The Ingram group observed that crude yeast
autolysate could serve as a nutrient supplement (York & Ingram,
1996).

For the production of ethanol from sugarcane bagasse, the
Ingram group developed seed train procedures (Geddes et al.,
2013), adjusted cellulase usage to improve liquid handling of
bagasse slurry (Geddes et al., 2010a), simplified the hydrolysis
process (Geddes et al,, 2011a) and the saccharification process
(Geddes et al., 2010b), identified additional additives to address
furfural toxicity (Nieves et al., 2011a) and tuned aeration condi-
tions (Nieves et al., 2011b). This process was operated at the pi-
lot scale (80 L) (Nieves et al., 2011b) and resulting data was used
in a technoeconomic analysis of operation at commercial scale
(83 x 10° L/yr) in Aspen Plus (Gubicza et al., 2016) and SuperPro
Designer (van Rijn et al., 2018). These economic analyses empha-
sized the need to achieve a high product yield, decrease the cost
of cellulolytic enzymes, and add value to lignin.

Plastics

Hopefully, process engineering for microbial utilization of plas-
tics can leverage the expertise that has been developed from lig-
nocellulosic processes. It has been reported that utilization of
thermally depolymerized PP by Y. lipolytica was increased by the
inclusion of biosurfactants (Mihreteab et al., 2019). Many descrip-
tions of microbial utilization of plastic have mentioned biofilms,
and these structures were observed to improve LDPE utilization
by Pseudomonas ASK2 (Tribedi & Dey, 2017). As with biomass uti-
lization, provisioning of nutrients other than carbon will need to
be given careful consideration. Characterization of the microbial
communities associated with the North Pacific Gyre revealed evi-
dence of nitrogen limitation (Bryant et al., 2016). This observation
serves as a reminder that microbes need to be provided with suffi-
cient nutritional support in order to perform the challenging task
of plastic utilization and degradation.

Discussion

Here we have attempted to highlight the similarities between the
development of processes for the microbial valorization of ligno-
cellulosic biomass and possible processes for the microbial val-
orization of plastic waste. This review has focused on the work
of Lonnie O'Neal (Neal) Ingram and his colleagues at the Univer-
sity of Florida, but the field of lignocellulosic biomass utilization
includes many excellent researchers who have made unique and
valuable contributions not described here.

This document has mainly described Ingram’s work with the
production of ethanol from lignocellulosic biomass, but his re-
search group worked with many other biochemical products not
described here. Finally, this review has not described Ingram'’s
dedication to commercialization and technology transfer. Neal is
often quoted as saying “The development of technology for the
cost-effective conversion of modern, renewable biomass into a
clean-burning automotive fuel has the potential to free the United
States and other nations from oil-dependence and to allow a re-
distribution of wealth based on productivity and ingenuity rather
than natural resources.” The assertion of this work is that the de-
velopment of technology for the cost-effective degradation and
valorization of plastic waste has the potential to free the global
community from the scourge of plastic waste and that the pro-
ductivity and ingenuity of our scientists and engineers are suffi-
cient to accomplish this goal for the benefit of all.
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