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Abstract: We consider magnetoactive elastomer samples based on the elastic matrix and magnetizable
particle inclusions. The application of an external magnetic field to such composite samples causes
the magnetization of particles, which start to interact with each other. This interaction is determined
by the magnetization field, generated not only by the external magnetic field but also by the magnetic
fields arising in the surroundings of interacting particles. Due to the scale invariance of magnetic
interactions (O(r−3) in d = 3 dimensions), a comprehensive description of the local as well as of
the global effects requires a knowledge about the magnetization fields within individual particles
and in mesoscopic portions of the composite material. Accordingly, any precise calculation becomes
technically infeasible for a specimen comprising billions of particles arranged within macroscopic
sample boundaries. Here, we show a way out of this problem by presenting a greatly simplified,
but accurate approximation approach for the computation of magnetization fields in the composite
samples. Based on the dipole model to magnetic interactions, we introduce the cascading mean-field
description of the magnetization field by separating it into three contributions on the micro-, meso-,
and macroscale. It is revealed that the contributions are nested into each other, as in the Matryoshka’s
toy. Such a description accompanied by an appropriate linearization scheme allows for an efficient
and transparent analysis of magnetoactive elastomers under rather general conditions.

Keywords: magnetic polymers, magneto-active elastomers; dipole approximation; dipole model;
self-consistent field; magnetization field

1. Introduction

Magnetoactive elastomers (MAEs), also often denoted as magneto-rheological or
magneto-sensitive elastomers, represent a very promising class of field-controllable func-
tional polymer materials. Their magneto-mechanical properties can undergo plenty of
different changes and effects like magnetodeformation and anisotropic changes in dynamic
and static mechanical moduli depending on strength, orientation, or modulation of the
external magnetic field [1–16]. The specific constitution of an MAE sample itself can also be
quite versatile, ranging from the usage of magnetically hard or magnetically soft filler par-
ticles to mixtures of both types [17–19]. In the following we consider the filler particles as
magnetizable, i.e., they display no magnetization in the absence of a magnetic field, being
produced from an ideal magnetically soft material. Additionally, different compositions
of the polymeric material forming the elastic matrix can have substantial influence on the
composite behavior under the applied field. Finally, it is well known that not only the bare
amount of magnetic filler content, but also its arrangement into isotropic or anisotropic
structures as well as the macroscopic form of the sample itself is of great importance for
the control of the effective material behavior. Quite a variety of technical implementations
and applications have been proposed and implemented so far. For example, MAEs can be
used as a working part in actuators and sensors [20–22], energy harvesting devices [23–25],
micro-robots [26] and -pumps [27], in prosthetic and orthotic devices [28], as well as in
ophthalmologic magnetic fixators [29–31].
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Although broadly speaking, one might consider MAEs just as magnetic rubber, the
modeling and subsequent comprehension of MAEs is quite complex and challenging.
According to our understanding, one of the essential reasons for this lies in the very nature
of magnetic interactions. On distance r they scale like O(r−3) in d = 3 dimensions. Thus,
the local arrangement of the nearest neighbor particles is equivalently as important as
the macroscopic form of the entire sample [32]. This leads to an interesting interplay
between particle microstructure and macroscopic shape effect, determining the effective
deformation behavior in the applied magnetic field [33]. Yet, the theory presented in our
previous works [32–34] so far has been limited to essential simplifications, such as the linear
magnetization behavior, spheroidal sample forms, and/or simple lattice-like particle mi-
crostructures. We introduced such assumptions as they allowed to decouple the short- and
long-range dipole-dipole interactions, compute their contribution separately, and finally
recombine them into a unified approach. The crucial point within such an approach is that
we obtain the average magnetization among all particles self-consistently, in dependence
of the sample parameters, and derive subsequently the magnetic energy as a function
of magnetodeformation and local particle rearrangements [32–35]. Minimizing the total
free energy, it is possible then to predict the magneto-mechanical behavior of spheroidal
samples in a wide range of situations [33,34]. For example, the magneto-induced stress is
shown to increase with decreasing anisotropy of a spheroidal sample both for isotropic
and columnar-like microstructures [33]. A similar effect has been confirmed recently for
the cylindrically-shaped samples [36]. The deformational (and magnetizational) behavior
of samples, containing stochastically isotropic and helical microstructures, is found to
be in a remarkable agreement with the results of explicit micro-continuum mechanical
modeling [35,37].

Unfortunately, in more realistic situations, i.e., beyond the linear magnetization ap-
proximation and for general sample shapes or particle microstructures, the short- and
the long-range dipole interactions are inherently intertwined through complex functional
dependencies. As a consequence for experimentally relevant conditions the magnetiza-
tion field on a micro- and on mesoscale for an MAE can only be calculated accurately
upon accounting for the macroscale simultaneously. Such a task is clearly beyond any
computational resources, as it effectively requires a microscopic model of the entire macro-
scopic sample.

In the present work we develop an approximate solution scheme to this problem,
examining the dipole-dipole interactions between magnetizable particles in more general
situations. The scheme envolves a cascading mean-field description of the magnetization
field followed by an appropriate linearization of the magnetization function. This allows
to greatly decouple the effects coming into the magnetization field from the micro-, meso-,
and macroscale in the composite samples with arbitrary microstructures and shapes. The
paper is organized in the following way. First, we derive our approximation scheme in
general form in Section 2. Here, we also analyze implications for linear and for saturating
magnetization behavior and highlight possible interpretations of the results. To prove its
appropriability we explicitly apply the scheme in Section 3. We consider two example
situations for microstructure calculations and additionally determine the mesoscopic effects
due to the macroscopic shape of a cylindrical sample. Finally, in Section 4 we formulate
the conclusion.

2. The Cascading Mean Field Approach

Apparently, the driving force determining the behavior of an MAE sample under an
external magnetic field has its origin in the overall changes of magnetic energy. This energy
takes the following general form [33,38]:

Umag =µ0

∫

VS

d3r



−

H∫

0

M ·dH +
1
2

M ·(H − H0)



 , (1)
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where µ0 is the vacuum permeability and VS is the volume of the sample. The magnetization
field M(r) within a particle inclusion located at position r is assumed to be induced by
the local magnetic field H(r), whereas the externally applied magnetic field is described
by the constant vector H0. To be able to calculate the magnetic energy, two basic inputs
are necessary: (1) What kind of the particle microstructure is embedded inside the sample
volume, and (2) which magnetization function describes the behavior of inclusions. As we
mentioned in the introduction, an ideal magnetically soft behavior will be considered in
the present work, following the most common experimental situation [30,39,40]. Having
this basic information, the task of computing the magnetic energy stays highly nontrivial
due to the presence of two unknown fields M and H in Equation (1), which should be
calculated self-consistently. In particular, non-linear magnetization behavior, quite relevant
in most experimental situations, makes the computation of magnetic energy and thus a
prediction of magneto-mechanical properties technically infeasible. This will become clear
from the considerations presented in the following session.

2.1. The Dipole Model

In the following let N be the total number of magnetizable particles distributed
somehow within the macroscopic MAE sample. We assume a constant magnetization
field within each of the inclusions, such that magnetic interactions among all the particles
are described in terms of dipole fields. This assumption represents the so-called dipole
model [33,41–51]. It is best suited for inclusions with the shape close to a spherical one,
because a homogeneously magnetized sphere generates a dipole field in its exterior exactly.
Neighboring inclusion particles should also remain at some distance from each other to
assure a homogeneous field over the extent of each particle. This minimum center-to-
center distance was found to be around 3rp, with rp being the particle radius [38]. This
corresponds to a maximum of about 20–30% of the volume fraction of well-dispersed
particles in an MAE sample [33]. However, for any arbitrarily shaped inclusions or for
particles coming closer to each other the dipole approach can likewise be motivated as a
first approximation. In the most general form the calculation of the local magnetization
field within any inclusion a ∈ N of the sample follows from:

Ma = L(Ha) . (2)

Here, L(·) denotes the material magnetization function of the inclusions and will be
specified in the following. For instance in case of isotropic linear magnetization, it simply
reads Ma = χHa, with magnetic susceptibility χ. In the framework of the dipole model,
the local magnetic field Ha is obtained via:

Ha = H0 − ν̂a ·Ma +
N
∑
b 6=a

ĝab ·Mb . (3)

The externally applied magnetic field H0 is assumed to be homogeneous over the
extent of the MAE sample. For an arbitrarily-shaped magnetizable particle the tensor
parameter ν̂a represents the self-demagnetization factor of inclusion a. In Equation (3) we
defined the tensorial dipole operator between the particles a and b as:

ĝab :=
vb
4π

3rabrab − r2
ab Î

r5
ab

. (4)

The vector rab = rb − ra describes the distance vector a ↔ b, Î denotes the second
order unit tensor, and vb accounts for the volume of inclusion b.

The fact that the sum in Equation (3) runs over all inclusions in the entire sample is due
to the long-range nature of the magnetic interactions, here approximated in terms of the
dipole field, Equation (4). Accordingly, even within the (simplifying) dipole approximation
the calculation of the magnetic energy in an MAE sample requires a self-consistent solution of
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a macroscopic number (here 3N in 3 dimensions) of coupled equations, Equations (2) and (3)
∀a ∈ N . We note, that already in the elementary case of linear magnetization (M = χH),
and a respective set of linear equations, a straightforward solution for any macroscopic
sample (N ∼ O(109...12)) is technically not feasible as it requires the calculation, storage,
and inversion of a (3N×3N )-Matrix.

2.2. Introducing the Cascading Mean Field Approach (‘Matryoshka’ Scheme)

For specially selected and simplified situations the problem of the equivalence
of short- and long-range magnetic interactions has been solved in various previous
publications [32–34,36,42,52]. The main strategy is based on the understanding that be-
yond a certain distance from any inclusion the precise local particle arrangement is no
more resolvable. It appears as a homogeneously smeared continuous distribution at larger
distances. Usually this ‘critical’ resolution range is around 10 times the average nearest
neighbor distance [32]. This behavior simply resembles the fact that from a sufficiently
far distance any microstructure appears homogeneous [32–35]. The idea of decoupling
the micro- and macro-effect has been outlined previously [32,33] and it is sketched on the
left side in Figure 1. We emphasize that in the macroscopic limit such a decomposition is
inherently exact.

Figure 1. (Left) Sketch of the decomposition of an MAE sample into short- and long-range effects.
(Right) Formal discretization of sample volume VS into mesoscopic portions Vα, α ∈ [1, N]. On such
scales any particle microstructure appears a homogeneous continuous distribution.

In a first step we divide the macroscopic MAE sample into N mesoscopic partial
volumes Vα, α = 1, N. The length scale of such mesoscopic portions is defined as very small
compared to the macroscopic sample size, but very large compared to typical distances
among neighboring particles, i.e., the local microstructure. The macroscopic limit assures,
so to say, that on a mesoscopic scale any sample volume VS may be perfectly resolved upon
increasing N to an arbitrary large number, whereas any particle microstructure appears
completely diffuse. On the right in Figure 1 a formal portioning of an MAE sample is
sketched. We emphasize that each mesoscopic volume Vα appears from any other volume
Vβ as a homogeneous material point containing the locally averaged volume fraction φα of
magnetizable material.

In the following we denote the limiting range around any reference particle where the
microstructure starts to appear homogeneous as the mesoscopic sphere. One prominent
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consequence of decoupling the micro- and macro-effect is the capability to provide even
analytically representable expressions for the magnetic energy of an entire macroscopic
MAE sample. It can be shown how the macroscopic effect, following from the given form
of the MAE sample, and the microscopic effect, following from the local particle structure,
are intertwined and how this interplay affects the magneto-mechanical properties of
MAEs [32,33]. Nevertheless, although the virtual implementation of the mesoscopic sphere
is generally valid, in previous works we introduced additional simplifying assumptions in
order to obtain a (partially) analytical tractable form. In particular, we want to mention that
we were able to obtain self-consistently the locally varying magnetization field, arising due
to the particle microstructure, and this was done independent of the actual macroscopic
aspect ratio of the sample. Such a decomposed representation of the problem can only be
achieved for the special case of a linear magnetization scheme and assuming an ellipsoidal
sample form. Whenever one considers a more general, i.e., non-linear, magnetization
function in Equation (2) a decomposition is no longer achievable.

In the present work we want to further generalize our existing approach towards less
restrictive assumptions and thereby also towards more realistic situations as likely relevant
for practical purposes. Adapting the idea of a mesoscopic sphere to the general case, we
may rewrite the formal relation in Equation (3) as:

Hα
i = H0 − ν̂α

i ·Mα
i +

N

∑
β 6=α

φβ ĝαβ ·Mβ +
nα

∑
j 6=i

ĝα
ij ·Mα

j . (5)

The notation introduced in Equation (5) strictly separates micro-structural components,
here with lower indices (i, j), from mesoscopic form components, here upper indices (α, β).
Accordingly, parameter N limiting the first sum in Equation (5) corresponds to the number
of mesoscopic volume elements (see Figure 1) to which the macroscopic sample has been
formally discretized. Since ∑N

α=1 Vα = VS the total, or macroscopically averaged, volume
fraction of magnetizable inclusions in the sample, φ, amounts to:

φ =
1

VS

N

∑
α=1

φαVα . (6)

Furthermore, the field quantities follow a hierarchical order, where (·)α
i denotes

the corresponding field in the particle located mesoscopically at position α within the
macroscopic sample and which is microscopically identified as the i− th particle within
the local microstructure, see Figure 1. Regularly, in the macroscopic (or thermodynamic)
limit the index α is a continuous variable scanning the macroscopic form of the sample.
Thus, the sum ∑N

β=1 represents effectively an integral over the sample volume VS. For
convenience we keep here its discrete form and note that an explicit numerical evaluation
of arbitrarily shaped samples requires a corresponding volume discretization anyways.
The tensors ĝ in Equation (5) are adapted accordingly:

ĝαβ :=
Vβ

4π

3rαβrαβ − rαβ2 Î

rαβ5 , (7)

ĝα
ij :=

vα
j

4π

3rα
ijr

α
ij − rα

ij
2 Î

rα
ij

5 . (8)

In Equation (5) we present the relation in a very general form. So we allow each
inclusion to be of a different size, vα

i , and to have an individual self-demagnetization
factor, ν̂α

i . The average local particle density may vary, φα, and therefore the number of
particles representing an actual local microstructure, nα, as well as the micro-structural
dipole operator, ĝα

ij, may be different. In principle, one could here even allow for a locally
varying external magnetic field, H0 → Hα

0 .
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The present notation greatly generalizes our previous studies. Nevertheless, we
introduce several appropriate simplifications since we do not account for all possible
situations here. In the following the external magnetic field is strictly homogeneous. The
particles immersed in the MAE are identical spheres, they are monodisperse in size with
vα

i = v and ν̂α
i = ν̂ = 1

3 Î ; ∀i, α. Furthermore, we consider a homogeneous particle density
on a mesoscopic scale, φα = φ and nα = n ; ∀α. Finally, for simplicity and to keep the
derivation possibly short, we constrain to ĝα

ij = ĝij ; ∀α. Thus, we consider only one
single type of microstructure present in the entire volume of an actual sample. With the
aforementioned simplifications we finally come to the following relation:

Hα
i = H0 − ν̂ ·Mα

i + φ
N

∑
β 6=α

ĝαβ ·Mβ +
n

∑
j 6=i

ĝij ·Mα
j . (9)

Actually, the cases of varying mesoscopic densities φα and/or of varying microstruc-
tures ĝα

ij in different sections α of the sample appear practically relevant and also quite
interesting for an even more comprehensive theoretical description of MAE in external
magnetic fields. Perhaps this will be for future consideration. Nevertheless, for a freshly
synthesized MAE sample it is reasonable to assume that the particles are similarly dis-
tributed all over its volume and thus φα = φ and ĝα

ij ≈ ĝij ; ∀α. Upon applying an external
magnetic field, the local field deforming the specimen may vary on macroscopic scales
resulting in deflection, buckling, or any kind of asymmetric macroscopic distortion. Ac-
cordingly, the microstructure may rearrange differently in the different parts of the sample.
In the present work we neglect such effects and assume uniform rearrangements on a
macroscopic scale. We also want to note that in the course of applying an external magnetic
field the variation of a particle microstructure within an individual sample has been often
disregarded in literature [40,53,54].

Still, Equation (9) for a local magnetic field should be calculated self-consistently when
inserted in Equation (2). We make use of what we call a Cascading Mean-Field description
and implement the following notation:

Mα
i = M + ∆Mα + ∆Mα

i , (10)

where

M :=
1

Nn

N

∑
α

(
n

∑
i

Mα
i

)
=

1
N

N

∑
α

Mα (11)

represents the macroscopic magnetization averaged over all particles in the sample and

Mα := M + ∆Mα =
1
n

n

∑
i

Mα
i , (12)

denotes the mesoscopic magnetization averaged over the particles found in the mesoscopic
volume element Vα. Note, that the deviations ∆Mα and ∆Mα

i are introduced such that
∑N

α ∆Mα = 0 and ∑n
i ∆Mα

i = 0. The cascading scheme is sketched in Figure 2. It visualizes
the three contributions on the micro-, meso-, and macroscale and how the contributions to
the magnetization field are nested into each other, similarly to how it is performed in the
Matryoshka’s toy.
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Figure 2. Splitting the ‘actual’ individual particle magnetization Mα
i into the average magnetization

among all particles M (macroscopic) plus deviations ∆Mα (mesoscopic) and ∆Mα
i (microscopic).

Additionally, we introduce new tensorial operators:

Ĝi :=
n

∑
j 6=i

ĝij (13)

and

Ĝ
α

:=
N

∑
β 6=α

ĝαβ. (14)

We define the average microscopic structure factor Ĝmicro and the average macroscopic
sample form factor Ĝmacro following our notation via:

Ĝmicro :=
1
n

n

∑
i

Ĝi , (15)

and

Ĝmacro :=
1
N

N

∑
α

Ĝ
α

. (16)

That way we may formalize the Ĝs analogous to Equation (10) as:

Ĝi = Ĝmicro + ∆Ĝi (17)

and
Ĝ

α
= Ĝmacro + ∆Ĝ

α
. (18)

In addition, from Equation (18), resp. Equation (17), follows that the corresponding
sum over α of ∆Ĝ

α
, resp. over i of ∆Ĝi, is equal to zero.

Using the notation convention, given by Equations (10)–(17), we rewrite Equation (9):

Hα
i = H0 +

(
φĜmacro + Ĝmicro − ν̂

)
·M +

(
φ∆Ĝ

α
+ ∆Ĝi

)
·M

+
(

Ĝmicro + ∆Ĝi − ν̂
)
· ∆Mα + φ

N

∑
β 6=α

ĝαβ · ∆Mβ − ν̂ · ∆Mα
i +

n

∑
j 6=i

ĝij ·∆Mα
j . (19)
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The mean value of Equation (19) over all particles gives the average magnetic field H.
Noting that the tensorial dipole operators are symmetric with respect to their indices, i.e.,
ĝαβ = ĝβα and ĝij = ĝ ji, the sum 1

Nn ∑N
α ∑n

i of Equation (19) reads:

H = H0 +
(

φĜmacro + Ĝmicro − ν̂
)
·M + φ

N

∑
α

∆Ĝ
α ·∆Mα

N
+

n

∑
i

∆Ĝi ·〈∆Mi〉S
n

. (20)

Here, 〈∆Mi〉S denotes the mean deviation of the individual particle magnetization,
∆Mα

i , from the mesoscopic magnetization, Mα, as averaged over the sample volume:

〈∆Mi〉S :=
1
N

N

∑
α

∆Mα
i . (21)

At this point we shortly want to discuss the role of the magnetization function L(·)
in Equation (2). Presuming an isotropic linear magnetization behavior would allow us
to keep following a mathematically exact derivation. The reason is that then the average
magnetization M and the average magnetic field H are related linearly allowing a direct
insertion of Equation (20) in the magnetization function, M = χH. Subsequently, it would be
possible to decouple to a great extent the (still exact) relations on the different length scales,
i.e., achieving a partition into two almost independent sets of self-consistent equations: One
for the macroscopic sample form and one for the microscopic particle structure. The case of
isotropic linear magnetization will be discussed in detail in Section 2.4.

2.3. General Magnetization and Linearization

To proceed from Equation (20), the central difficulty is due to the inequality M 6=
L(H) for a general, i.e., non-linear, magnetization function. In order to profit from the
implications of a linear relation we deploy a classical Taylor expansion, which we restrict to
first order to yield a subsequent linearization of the magnetization function. This expansion
shall be developed around an approximate average magnetic field A, which we define
as follows:

A := H0 +
(

φĜmacro + Ĝmicro − ν̂
)
·M . (22)

The approximate A only accounts for the first two terms of the exact H in Equation (20).
We motivate the neglect of the last two terms in Equation (20) by the following reason. One
immediately notes that these terms represent the microscopic, resp. mesoscopic, corrections
to the macroscopic sample averages and involve the solution/knowledge of a huge system
of equations, i.e., since they are in fact coupled: O((3N × 3N)(3n × 3n)). In contrast,
the approximate solution for M, resp. A, in Equation (22) only involves 3 equations, one
for each spatial direction of the global M. From the computational point of view this
represents an enormous benefit. To neglect any correction due to alterations ∆Ĝ and/or
∆M represents the leading order approximation in our cascading mean-field approach.

Beyond the leading order we apply a Taylor expansion around A and approximate
the magnetization Mα

i = L(Hα
i ) in the particle i of mesoscopic domain α as:

Mα
i ≈ L(A) +∇AL(A) ·

{(
φ∆Ĝ

α
+ ∆Ĝi

)
·M +

(
Ĝmicro + ∆Ĝi − ν̂

)
· ∆Mα

− ν̂ · ∆Mα
i + φ

N

∑
β 6=α

ĝαβ · ∆Mβ +
n

∑
j 6=i

ĝij ·∆Mα
j

}
. (23)

Taking on both sides in Equation (23) the mesoscopic average over the microstructure,
1
n ∑n

i , we get:
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Mα ≈ L(A) +∇AL(A) ·
{

φ∆Ĝ
α ·M +

(
Ĝmicro − ν̂

)
· ∆Mα

+ φ
N

∑
β 6=α

ĝαβ · ∆Mβ +
n

∑
j

∆Ĝj · ∆Mα
j

n

}
. (24)

Finally, the mean magnetization field in the entire sample is obtained upon taking
on both sides in Equation (24) the macroscopic average over the sample form, 1

N ∑N
α .

This yields:

M ≈ L(A) +∇AL(A) ·
{

φ
N

∑
β

∆Ĝ
β · ∆Mβ

N
+

n

∑
j

∆Ĝj · 〈∆M j〉S
n

}
. (25)

Here, we make use of the definition 〈∆M j〉S introduced in Equation (21).
The equations above represent the linearized approximation for a general magneti-

zation function L(·). Note, that in case of an isotropic linear magnetization, M = χH, as
well as for anisotropic linear behavior, M = χ̂ · H, the relations are exact.

2.3.1. The Local Magnetization within an Individual Particle

Subtracting both sides of Equation (24) from the corresponding sides of Equation (23),
we end up with the following relation for the ∆Mα

i :

∆Mα
i ≈ ∇AL(A) ·

{
∆Ĝi ·Mα − ν̂·∆Mα

i +
n

∑
j

(
(1− δij)ĝij −

∆Ĝj

n

)
·∆Mα

j

}
. (26)

The form of Equation (26) immediately implies that within the present linearized
approach ∆Mα

i is proportional to Mα for all i. This fact greatly reduces the computational
complexity of the problem. Note that the general solution for ∆Mα

i can be obtained fully
independent of the actual mesoscopic position α within a given sample form. We adopt a
more compact notation by defining:

κ̂ij := (1− δij)ĝij −
∆Ĝj

n
. (27)

The tensors κ̂ij are exclusively determined by the micro-structural arrangement of the
particles, i.e., by ĝij. Furthermore, following the common notation for linear magnetization
scheme, we may construct the prefactor in the r.h.s. of Equation (26) as a generalized
susceptibility tensor:

χ̂A := ∇AL(A) , (28)

and introduce thereby also an effective generalized susceptibility via:

χ̂Aeff
:=
(

Î + χ̂A · ν̂
)−1
· χ̂A . (29)

Accordingly, we rewrite Equation (26):

∆Mα
i ≈ χ̂Aeff

·
(

∆Ĝi ·Mα +
n

∑
j

κ̂ij · ∆Mα
j

)
. (30)

Since each ∆Mα
i consists of 3 components, Equation (30) represents a system of 3n

linear equations. Traditionally, the solution of such a system may by obtained via a direct
procedure, e.g., inverting the problem via Gaussian elimination. Let us introduce some
generalized n× n matrices via:
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[c]ij := χ̂Aeff
· κ̂ij (31a)

[I]ij := Îδij (31b)

s := (I− c)−1 . (31c)

Note, that the entries of the generalized matrices are second-order tensors and cor-
respondingly they effectively represent 3n × 3n matrices. Then, the solution may be
expressed formally as:

∆Mα
i ≈

{ n

∑
j

(
sij · χ̂Aeff

· ∆Ĝj

)}
·Mα. (32)

Alternatively, the form of Equation (30) also allows for an iterative solution procedure
starting with ∆Mα

i ≈ χ̂Aeff
· ∆Ĝi ·Mα as the first estimate. In terms of the formalization in

Equation (31) this yields:

s = I+

{
∞

∑
k=1

(c)k

}
. (33)

Note, the series in Equation (33) may be obtained upon expanding Equation (31c) in a Tay-
lor series around I = (I)−1. The iteration scheme is only meaningful if the increasing powers
(c)k rapidly diminish and, correspondingly, the series in Equation (33) converges. Indeed, for
any distribution of particles this is true for two reasons. Firstly, since particles do not overlap we
have rij ≥ dp, where dp denotes the particle diameter with v = πd3

p/6, in Equation (8) and thus
the entries of ĝij, with i 6= j, as well as those of ∆Ĝj/n, in Equation (27) are correspondingly
small. Secondly, it is important to emphasize that it is the self-demagnetization term ∝ −ν̂
which represents by far the major contribution in the right-hand side of Equation (26).
Hence, upon introducing the generalized effective susceptibility χ̂Aeff

in Equation (29) and
passing over to Equation (30) this self-demagnetization is implicitly, and exactly, taken into
account. Furthermore, by definition, see Equation (29), the components of χ̂Aeff

are bound
to moderate values even though the components of the generalized susceptibility itself,
χ̂A = ∇AL(A), may become very large. In contrast to Equation (26), it is now χ̂Aeff

which
is forming the prefactor in Equation (30), resp. in Equation (31a).

It is important to note that the computation of the generalized matrix s, either via
some direct method or iteratively, using Equation (33), is completely independent of
the mesoscopic position α within the sample. Nevertheless, we also note a fundamen-
tal drawback for magnetization functions L(·) beyond the ‘true’ linear magnetization
scheme. Only in this case where M = χH, or general M = χ̂ · H, the here defined χ̂A,
Equation (28), and accordingly also the effective χ̂Aeff

, Equation (29), are pure material
parameters. They simply become χ̂A = χ̂, resp. χ̂Aeff

= χ̂eff. Beyond linear magnetization
functions these parameters depend on the approximate average magnetic field A, given by
Equation (22). Accordingly, the matrix c, and consequently s in Equation (31) depend on
A. Thus, whenever for example the particle content φ is altered, or the average macroscopic
sample form factor Ĝmacro changes (likewise if Ĝmicro changes), or, most prominently, when-
ever just a different external magnetic field H0 is applied, the computation, for example in
Equation (32), must be repeated. This is not surprising, since within such a highly coupled
system as an MAE sample in the applied field, the externally applied field becomes effec-
tively a ‘material’ or internal parameter itself. To cut the matter short, each H0 provokes a
different material behavior and beyond the linear regime its role can not be decoupled, or
resolved, from the other system parameters.

As a reminder, the leading order approximation is defined upon reducing
Equations (20)–(22). In a first step beyond this leading order we will neglect the se-
ries in the brackets in Equation (33) and assume s ≈ I. With this approximation we may
offer up some accuracy but at the same time we yet gain great generality of the approach,
where most parameters are effectively decoupled allowing an efficient and transparent
analysis of a very wide range of conditions and situations.
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2.3.2. The Mesoscopic Magnetization

Let us proceed with an equivalent derivation of the mesoscopic ∆Mα. Subtracting
both sides of Equation (25) from the corresponding sides of Equation (24) we find:

∆Mα ≈ χ̂A ·
{

φ∆Ĝ
α ·M +

(
Ĝmicro − ν̂

)
·∆Mα + φ

N

∑
β

(
(1− δαβ)ĝαβ − ∆Ĝ

β

N

)
·∆Mβ

+
n

∑
j

∆Ĝj ·
(

∆Mα
j − 〈∆M j〉S

)

n

}
. (34)

From Equation (32), we know that ∆Mα
j ∝ Mα = M +∆Mα and accordingly 〈∆M j〉S ∝

M, with identical prefactors. Hence, the last line in Equation (34) transforms to:

n

∑
j

∆Ĝj ·
(

∆Mα
j − 〈∆M j〉S

)

n
= ∆Ĝmicro · ∆Mα , (35)

where the tensor ∆Ĝmicro is defined as:

∆Ĝmicro :=
1
n

n

∑
i,j

{
∆Ĝi · sij · χ̂Aeff

· ∆Ĝj

}
. (36)

Analogue to the derivations for ∆Mα
i we turn to a more compact notation upon

defining a tensor:

κ̂αβ := (1− δαβ)ĝαβ − ∆Ĝ
α

N
, (37)

and via introducing here another, quasi mesoscopic, effective susceptibility:

χ̂Beff
:=
(

Î + χ̂A · (ν̂− Ĝmicro − ∆Ĝmicro)
)−1
· χ̂A . (38)

We will further see that χ̂Beff
reflects somehow an effective bulk susceptibility of the

composite material in the sample. Thus, we may rewrite Equation (34) in similar form as
for ∆Mα

i in Equation (30):

∆Mα ≈ φ χ̂Beff
·
(

∆Ĝ
α ·M +

N

∑
β

κ̂αβ · ∆Mβ

)
. (39)

Again, we end up with a system of linear equations, where apparently ∆Mα ∝
φ χ̂Beff

· ∆Ĝ
α ·M. In the current representation the solution may be again obtained via a

direct or iterative procedure. Adopting the notation of generalized matrices the solution is
formally computed as:

∆Mα ≈ φ

{ N

∑
β

(
Sαβ · χ̂Beff

· ∆Ĝ
β
)}
·M. (40)

Here, the corresponding generalized matrices are defined as:

[C]αβ := χ̂Beff
· κ̂αβ (41a)

S := (I− φC)−1 . (41b)
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Analogue to Equation (33), the S is expanded in a series:

S = I+

{
∞

∑
k=1

(φC)k

}
. (42)

As discussed below, Equation (33), applying our cascading mean-field approach in a first
step beyond the leading order we will approximate S ≈ I. Note that the series in Equation (42)
includes the factor φ. The volume fraction of magnetic/magnetizable inclusions is usually
φ ≤ 0.3 for practically relevant MAEs. Thus, we expect the corrections from the series in
Equation (42) to be considerably smaller compared to I.

2.3.3. The Average Magnetization

Substituting the above derived expressions for ∆Mα and ∆Mα
i , resp. 〈∆Mi〉S, into

Equation (25) the average magnetization among all inclusions in the sample, M, becomes:

M ≈ L(A) + χ̂A ·
{

φ2∆Ĝmacro + ∆Ĝmicro

}
·M . (43)

Here, analogue to Equation (36) we defined a tensor ∆Ĝmacro via:

∆Ĝmacro :=
1
N

N

∑
α,β

{
∆Ĝ

α·Sαβ · χ̂Beff
· ∆Ĝ

β
}

. (44)

Although the relation in Equation (43) effectively represents ‘just’ a system of 3 non-
linear equations for the vector M, it is not feasible to solve it directly. Note, especially, that
χ̂A, χ̂Aeff

, χ̂Beff
, as well as s and S not only depend on A, and thus on M, but are also

non-trivially convoluted with each other. Before applying the present approach with some
general saturating magnetization behavior we first want to turn to the special case of linear
magnetization behavior where most of the principal quantities are decoupled.

2.4. The Case of Isotropic Linear Magnetization

In case that we can assume a perfect linear magnetization behavior the present deriva-
tion benefits from several simplifications. Most prominently, to yield the magnetic energy
in the sample it is fully sufficient to compute only the average magnetization, as we will
see below. In contrast, for the general non-linear case the local deviations from the sample
mean, or to say the actual magnetization in each point / inclusion, need to be known in
order to calculate the magnetic energy of the sample according to Equation (1).

2.4.1. General Relations

In the following, we consider the frequently studied case of an isotropic linear magne-
tization for each inclusion a:

Ma = χ Î · Ha = χHa . (45)

Then, the magnetic energy in Equation (1) reduces to:

Umag = −µ0

2
VSφH0 ·M . (46)

We remind that the total amount/volume of magnetizable material in the sample
equals VSφ. The average magnetization among all inclusions, M, needs to be calculated
self-consistently. Noting, that now χ̂A = χ Î and since ν̂ = ν Î, with ν = 1

3 for spherical
inclusions, we have:

χ̂Aeff
= χ̂eff = χeff Î =

χ

1 + νχ
Î . (47)

Accordingly, we may obtain ∆Ĝmicro in Equation (36) completely independent of any
macroscopic or external parameters like Ĝmacro or H0. The tensor ∆Ĝmicro is here, just
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as it is also the average Ĝmicro in a general case, an entire and exclusive parameter of
the local microstructure. Thus it can be immediately obtained exactly, or to any accurate
precision desired.

From Equation (43) with L(A) = χA or, equivalently, from Equation (20) with M =
χH we get the exact relation:

M = χeff

{
H0 +

(
Ĝmicro + φĜmacro + ∆Ĝmicro + φ2∆Ĝmacro

)
·M
}

. (48)

Then, we explicitly find:

M = χeff

{
Î − χeff

(
Ĝmicro + φĜmacro + ∆Ĝmicro + φ2∆Ĝmacro

)}−1
· H0 , (49)

and the magnetic energy in the sample is given upon insertion into Equation (46).
This result requires some remarks. Most importantly, all terms in Equation (48),

resp. Equation (49), are completely independent of each other, except for ∆Ĝmacro. When-
ever an individual parameter of a given sample changes we may adjust that parameter
correspondingly without the need to recalculate the other terms. The only coupling in
case of a linear magnetization behavior is entering via ∆Ĝmacro. The calculation of this
tensor is explicitly dependent on the microstructure in the form of the prefactor χ̂Beff

in
Equation (44). For linear isotropic magnetization this effective susceptibility reads:

χ̂Beff
= χeff

(
Î − χeff(Ĝmicro + ∆Ĝmicro)

)−1
. (50)

If required, for example in microscopic simulation models, the calculation of the local
magnetization field Mα

i in each inclusion can also be formulated yet exactly in the case
of a linear magnetization scheme. Substituting Equations (32) and (40) into Equation (10)
we find:

Mα
i =

(
Î + χeff

n

∑
j
sij · ∆Ĝj

)
·
(

Î + φ
N

∑
β

Sαβ · χ̂Beff
· ∆Ĝ

β

)
·M . (51)

Although it is remarkable that the results, Equations (48)–(51), can be expressed in
such a compact and yet exact form for linear magnetization behavior we should be aware of
the non-trivial coupling entering via Equation (50). Clearly, a different local arrangement of
the particles changes the micro-structural contributions Ĝmicro and ∆Ĝmicro. Accordingly,
χ̂Beff

also needs to be updated, which requires a recalculation of the macroscopical ∆Ĝmacro.
Similar implications arise in the exact form for the individual Mα

i in Equation (51).
In addition, in the case of linear magnetization it is therefore worth considering an

approximation which allows for a computationally more efficient calculation. Implement-
ing the leading order approximation as introduced around Equation (22) we would simply
neglect ∆Ĝmacro and ∆Ĝmicro in Equation (49) yielding an approximate average magnetiza-
tion field which we denote M(1). As suggested above, beyond the leading order we apply
s ≈ I and S ≈ I in the following. Then, ∆Ĝmicro in Equation (36) is estimated as:

∆Ĝmicro ≈
χeff
n

n

∑
i

(
∆Ĝi

)2
. (52)

Accordingly, we obtain an approximation for χ̂Beff
in Equation (50) and the local

magnetization fields Mα
i in Equation (51) are approximated via:

Mα
i ≈

(
Î + χeff∆Ĝi

)
·
(

Î + φ χ̂Beff
· ∆Ĝ

α
)
·M(1) . (53)
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In addition, we can estimate ∆Ĝmacro because with S ≈ I Equation (44) reduces to:

∆Ĝmacro ≈
χeff
N

N

∑
α

(
∆Ĝ

α · χ̂Beff
· ∆Ĝ

α
)

. (54)

Furthermore, Equations (52) and (54) can be inserted in Equation (49) yielding an
improved average magnetization. Whether, or how, to approximate χ̂Beff

, resp. ∆Ĝmicro

and ∆Ĝmacro, depends on the characteristics of the actual MAE sample, the desired degree
of precision, and the available computation resources.

2.4.2. Alternative Formulation of the Role of the Effective Mesoscopic Susceptibility

An alternative way for consideration of the microstructure contribution will become
very enlightening here. We consider an isotropic linear magnetization scheme in which
Equations (24) and (32) are exact with L(A) = χA and ∇AL(A) = χ Î. With Equation (22)
and the definition of ∆Ĝmicro in Equation (36) we can rewrite Equation (24):

Mα = χ

{
H0 + φĜ

α ·M + φ
N

∑
β 6=α

ĝαβ · ∆Mβ +
(

Ĝmicro + ∆Ĝmicro − ν̂
)
·Mα

}
. (55)

Using here the definition in Equation (14) as well as that of χ̂Beff
for isotropic linear

magnetization in Equation (50), we finally arrive at:

Mα = χ̂Beff
·
{

H0 + φ
N

∑
β 6=α

ĝαβ ·Mβ

}
. (56)

This is a quite compact and remarkable result. Although it is exclusively determined
for the case of an (isotropic) linear magnetization behavior, it clearly shines a bright light
on the interpretation of effective susceptibility χ̂Beff

. Apparently, Equation (56) exactly
represents the dipole calculation scheme of the magnetization distribution within a body
containing a volume fraction φ of magnetizable material, which obeys itself a bulk mag-
netization behavior of the composite as reflected by the susceptibility χ̂Beff

. Generally,
and depending on the actual microscopic particle distribution, this new effective bulk
susceptibility χ̂Beff

is anisotropic, although the original bulk susceptibility of the inclusion
material is isotropic χ̂ = χ Î. Accordingly, once the χ̂Beff

for a given microstructure, via
calculating Ĝmicro and ∆Ĝmicro, is known, it is also possible to apply alternative solution
approaches like well-established Finite-Element Methods for an anisotropic magnetization
behavior in a given sample body. The form of the microstructure determines the effective
magnetization behavior on meso-, resp. macroscale, just like it does χeff = χ/(1 + χν) on a
particle scale. For an isotropic [33], as well as for an ‘isotropic-like’ [32,34], particle distribu-
tion the micro-contributions vanish, Ĝmicro → 0 and ∆Ĝmicro → 0, and thus χ̂Beff

= χeff Î.
An anisotropic microstructure likewise gives rise to an anisotropic χ̂Beff

.
Beside a better understanding of how the different length scales in an MAE may be

separated and at the same time also influence each other, the important message here is
how alternative, and computationally advantageous, approaches can enter the formalism to
obtain a comprehensive, detailed, and accurate, but at the same time effort- or complexity-
reduced description of the magnetization fields in an MAE sample. The above-derived
relations and interpretations concern the case of a linear magnetization behavior. In the
following we want to consider the corresponding implications for the general case of a
more realistic magnetization scheme.
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2.5. Cascading Approximation Scheme for Saturating Magnetization

To be able to provide an accurate approximate description of the magnetization fields
in the case of non-linear magnetization behavior, it is necessary to adopt a cascading
scheme and start with the leading order in the form:

M(1) = L
(

A(M(1))
)
= L

(
H0 +

(
φĜmacro + Ĝmicro − ν̂

)
·M(1)

)
. (57)

For some given composition, i.e., microstructure, sample shape or volume fraction
of magnetizable particles, all terms in Equation (57) are computed independently. In
the simplest, or leading order, we may assign each particle in the sample this average
magnetization M(1) as obtained upon solving just a single 3-dimensional equation, i.e.,
Equation (57). Beyond the simple leading order (Mα

i ≈ M(1), ∀i, α) we consider the
following procedure.

From the solution of Equation (57) we not only find a first approximation for the aver-
age magnetization among all particles, but also an approximation for the average magnetic
field A. Using Equations (28) and (29) we obtain the tensors χ̂A and χ̂Aeff

. Furthermore,
one can then proceed to calculate χ̂Beff

via Equations (36) and (38). Analogously to the case
of linear magnetization in Section 2.3 we use s ≈ I and S ≈ I. The local magnetization
Mα

i of an individual particle is then evaluated in the next approximation step as:

Mα
i ≈

(
Î + χ̂Aeff

∆Ĝi

)
·
(

Î + φ χ̂Beff
· ∆Ĝ

α
)
·M(1) . (58)

This result is similar to the approximation in the case of a linear magnetization
behavior in Equation (53). Note however a small difference, the tensorial representation of
χ̂Aeff

, since it may become anisotropic in the case of a saturating magnetization behavior.
We want to highlight that the present approximation approach is completely deter-

mined if the tensors Ĝ
α

and Ĝi are evaluated for a given sample form and microstructure.
From these, one directly derives the averages Ĝmacro and Ĝmicro, as well as the deviations
∆Ĝ

α
and ∆Ĝi. With Equation (57) the calculation of magnetization fields requires only

one single three dimensional self-consistent equation. The rest of the computation are
straightforward addition and multiplication functions.

In the following we will work out the here developed approximation scheme for some
examples to demonstrate its applicability in practice.

3. Application to Selected Examples

In this section we want to apply the present approach to some example calculations.
In the first situation we consider the distribution of a finite number n of particles obeying
some specific saturating magnetization behavior under the application of an external field
H0. We compare the approximation results to the exact computation of the 3n× 3n system
of self-consistent non-linear equations. In a second example we derive tensors Ĝmacro and
∆Ĝ

α
for the meso- and macroscopic effects for a sample of cylindrical form. To prove the

accuracy of our approach against an exact calculation for an entire macroscopic sample
with, at the same time, a fully resolved particle structure on a local scale in 3 dimensions
would require a tremendous computational effort for the ‘true’ or precise description.
For our approximation scheme such calculation is straightly feasible upon combining the
subsequent example schemes for micro- and macroscale in Equations (57) and (58). We
may set up a 2-dimensional model in the future where an exact calculation of ∼ O(106−7)
particles defining a 2D quasi-macroscopic sample is feasible.

3.1. Microstructure Calculation for Finite Number of Inclusions

To compare exact results from solving the full non-linear set of equations self-consistently
and the approximation from the here developed approach for an actual particle configura-
tion we introduce the following properties. We characterize the magnetization behavior of
the particles via an isotropic saturating magnetization of the form:
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L(H) = L(H)
H(r)
|H(r)| = Ms

(
coth(ζH)− 1

ζH

)
H(r)
|H(r)| . (59)

This function represents a Langevin-type behavior, and using the parameters Msat =
868 kA/m and ζ = 0.0218 m/kA it was shown to adequately reproduce the magnetization
behavior of micron-sized carbonyl iron particles [39,40]. The function in Equation (59) is
plotted in Figure 3 together with its linear approximation, i.e., M = χ H in the limit H → 0.
Apparently, the linear approximation is only adequate as far as H < 100 kA/m. Hence, it
is crucial to account for saturating effects and consider a more realistic form of the mag-
netization behavior, i.e., beyond the linear approximation, to reasonably model authentic
experimental situations. Nevertheless, because of its great computation benefits and to
obtain a first approximate description, the linear magnetization assumption represents a
substantial modeling strategy in theory [16,32,33,44,48,49,55].

 0

 200

 400

 600

 800

 0  200  400  600  800

M
 i
n
 k

A
/m

Field H in kA/m

Langevin function

Linear approximation

Figure 3. A plot of the Langevin-type saturating magnetization function in Equation (59) with
Msat = 868 kA/m and ζ = 0.0218 m/kA. Additionally, the linear approximation in the low field
limit is displayed, i.e., M = χH with χ = ζMsat

3 ≈ 6.31.

Upon solving a system of non-linear equations of the form as presented in
Equations (2)–(4) the exact magnetization field within the dipole model is found. In
the following we consider some selected particle arrangements of a small number n of
identical spherical inclusions, with the same particle volume v and magnetization property
according to Equation (59). Under the application of an external field H0, the induced
magnetization field Mi in particle i located at ri is given through:

Mi = L
(

H0 −
1
3

Mi +
v

4π

n

∑
j 6=i

3(rij ·M j) rij − r2
ij M j

r5
ij

)
. (60)

This system of 3n× 3n equations we solve via the Newton–Raphson technique [56].
The average of these individual magnetization fields Mi over all n particles defines the
exact average magnetization:

M =
1
n

n

∑
i

Mi . (61)

The application of the approximation scheme to a finite number of particles is straight-
forward. First, we obtain the Ĝi ∀ i ∈ n according to Equation (13) and calculate its average
Ĝmicro via Equation (15). The leading order approximation Equation (57) with pure mi-
crostructure effect is then calculated via the single 3-dimensional self-consistent equation:

M(1) = L
(

H0 −
1
3

M(1) + Ĝmicro ·M(1)
)

. (62)
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With ∆Ĝi = Ĝi − Ĝmacro, the magnetization field Mi in each particle i beyond the
leading order is adopted from Equation (58) and approximated as:

Mi ≈ M(1)
i =

(
Î + χ̂Aeff

· ∆Ĝi

)
·M(1) . (63)

The effective susceptibility tensor χ̂Aeff
results from Equations (28) and (29) with

A = H0 − 1
3 M(1) + Ĝmicro ·M(1). In the present case of an isotropic saturating magnetiza-

tion, the susceptibility tensor χ̂A is obtained via:

χ̂A = ∇L(A) =
L(A)

A
Î +

(
L′(A)− L(A)

A

)
eAeA . (64)

We compare the solution of Equation (60) for all i ∈ n to our approximation approach
Equation (63). In order to quantify the precision of our scheme, we use the relative absolute
error δMi in the following form:

δMi =

∣∣∣M(1)
i −Mi

∣∣∣
|Mi|

, (65)

and find both, the maximum, max{δMi, i ∈ n}, and the average error among all particles:

〈δMi〉 =
1
n

n

∑
i

δMi . (66)

For example, in the case of a simulation or any other explicit treatment of an MAE
sample it is necessary to describe the magnetization fields in the corresponding many-
particle system. Here, we want to consider a system of 100 particles arranged randomly at
a volume fraction φ = 0.3 inside some fictitious boundaries assuring that the particles do
not overlap each other. In the first case the sample boundaries are specified by a cube, and,
thus, it should more or less represent a part of an isotropic microstructure. In the second
case we set the boundaries to an elongated cylinder imitating a part of a rather chain-like
particle structure. The main axis of the cylinder is aligned with the x-axis. The randomly
generated particle configurations in both cases are visualized in Figure 4. In the following
the diameter of one spherical particle defines the unit length in the system.

In the first case, see top of Figure 4, we set each side of the boundaries an equal length
of lx = ly = lz ≈ 5.59. Accordingly, the volume fraction of magnetizable particles in the cell
becomes φ ≈ 0.3. For the arrangement shown in the top of Figure 4 we find the following
average microstructure tensor expressed in Cartesian coordinates:

Ĝmicro =




8.91× 10−5 −2.65× 10−3 −1.81× 10−3

−2.65× 10−3 −1.8× 10−3 −5.06× 10−4

−1.81× 10−3 −5.06× 10−4 1.72× 10−3


 . (67)

Using this Ĝmicro in Equation (62), we find an approximation for the average magneti-
zation among all particles, M(1). The exact magnetization fields are calculated according to
Equation (60). In Table 1 we compare precise and approximate calculations. Exemplary, we
apply two different external fields H0. In the first line in Table 1 we summarize the results
for a moderately low H0 aligned along the x-axis. In the second line, a moderately large
field inclined with respect to the cubic cell is applied.

The comparison between exact M and approximate M(1) shows a quite reasonable
agreement for both H0. In addition to it, both the average magnetization is obtained in
good accordance and the individual magnetization field within each particle is found to be
rather accurate. On average the deviations of the approximate M(1)

i from the precise Mi
are less than 1%. The maximal error here is found to be just . 2.2%. In the Supplemen-
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tary Materials we provide a full list of all Mi and M(1)
i (i ∈ [1, 100]) to demonstrate the

remarkable accuracy of our approximation scheme. We highlight that this high degree of
precision is achieved already in the quite simple form provided via Equations (62) and (63).
The computation benefit compared to the full solution in Equation (60) on the other
hand is striking as the approximation only requires the self-consistent solution of a single
3-dimensional equation.
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for a moderately low H0 aligned along the x-axis. In the second line a moderately large
field inclined with respect to the cubic cell is applied.

Figure 4. Visualization of the particle arrangements considered here. Top: Randomly generated
microstructure within a cubic cell. Bottom: Randomly generated microstructure within an elongated
cylinder with its main axis along x-direction. The visualization is preformed using OVITO [57].

Table 1. Comparison between exact calculation and approximate results for the 100-particle configu-
ration inside cubic boundaries, see top in figure 4, upon applying two different external fields H0.
The corresponding field components (x, y, z) are grouped in vectorial notation. The field quantities
H0, M and M(1) are denoted in A/m.

H0 M M(1) 〈δMi〉 max(δMi) min(δMi)


300000
0
0







545418
−2822
−2054







543159
−2598
−1780


 9.67× 10−3 2.16× 10−2 2.0× 10−3




300000
300000
100000







466232
464915
154510







466187
465122
154893


 4.92× 10−3 9.85× 10−3 8.48× 10−4

The comparison between exact M and approximate M(1) shows a quite reasonable
agreement for both H0. In addition to it, not only the average magnetization is obtained in
good accordance, also the individual magnetization field within each particle is found to
be rather accurate. On average the deviations of the approximate M(1)

i from the precise Mi
are less than 1%. The maximal error here is found to be just . 2.2%. In the supplementary
material we provide a full list of all Mi and M(1)

i (i ∈ [1, 100]) to demonstrate the remarkable
accuracy of our approximation scheme. We highlight that this high degree of precision
is achieved already in the quite simple form provided via Equation (62) and Equation
(63). The computation benefit compared to the full solution in Equation (60) on the other
hand is striking as the approximation only requires the self-consistent solution of a single
3-dimensional equation.

Let us consider now the case where the particles are arranged inside a small but
elongated cylinder with its main axis aligned along the x-direction. The aspect ratio Γ of
length to diameter is chosen to be Γ = 6 and the volume is adjusted such that the n = 100
spherical particles occupy again a volume fraction of φ ≈ 0.3. The particle structure is
visualized in the bottom of figure 4. The tensor Ĝmicro we found for this case reads:

Ĝmicro =




5.73× 10−2 1.57× 10−3 −3.64× 10−3

1.57× 10−3 −3.01× 10−2 −4.42× 10−3

−3.64× 10−3 −4.42× 10−3 −2.72× 10−2


 . (68)

Figure 4. Visualization of the particle arrangements considered here. (Top) Randomly generated
microstructure within a cubic cell. (Bottom) Randomly generated microstructure within an elongated
cylinder with its main axis along x-direction. The visualization is preformed using OVITO [57].

Table 1. Comparison between exact calculation and approximate results for the 100-particle config-
uration inside cubic boundaries, see top image in Figure 4, upon applying two different external
fields H0. The corresponding field components (x, y, z) are grouped in vectorial notation. The field
quantities H0, M and M(1) are denoted in A/m.

H0 M M(1) 〈δMi〉 max (δMi) min (δMi)


300, 000
0
0







545, 418
−2822
−2054







543, 159
−2598
−1780


 9.67× 10−3 2.16× 10−2 2.0× 10−3




300, 000
300, 000
100, 000







466, 232
464, 915
154, 510







466, 187
465, 122
154, 893


 4.92× 10−3 9.85× 10−3 8.48× 10−4

Let us consider now the case where the particles are arranged inside a small but
elongated cylinder with its main axis aligned along the x-direction. The aspect ratio Γ
of length to diameter is chosen to be Γ = 6 and the volume is adjusted such that the
n = 100 spherical particles occupy again a volume fraction of φ ≈ 0.3. The particle
structure is visualized in the bottom of Figure 4. The tensor Ĝmicro we found for this
case reads:

Ĝmicro =




5.73× 10−2 1.57× 10−3 −3.64× 10−3

1.57× 10−3 −3.01× 10−2 −4.42× 10−3

−3.64× 10−3 −4.42× 10−3 −2.72× 10−2


 . (68)

Apparently, and in contrast to the cubic cell in Equation (67), the tensor in Equation (68)
exhibits much larger absolute values in the diagonal elements. This property reveals the
rather anisotropic structure compared to the cubic boundaries. Clearly, Gmicroxx adopts the
largest value here because the elongated structure is aligned along x.

Please note the following: Ideally, for an isotropic distribution of particles inside cubic
boundaries Ĝmicro vanishes. When averaging over several randomly generated particle
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distributions inside a cubic cell, all entries of Ĝmicro in Equation (67) equally diminish.
In contrast, averaging over several randomly generated distributions inside elongated
cylindrical boundaries result in only the non-diagonal elements in Equation (68) to vanish,
whereas the diagonal elements converge towards a finite value of O(10−2). Since Ĝmicro
is traceless and due to cylindrical symmetry then Gmicroyy = Gmicrozz = − 1

2 Gmicroxx on
average. In addition, with increasing particle number n the absolute values of all elements
in Equation (67), resp. the non-diagonal elements in Equation (68), diminish. For a single,
explicit structure of n = 100 particles we usually find that such ‘negligible’ elements are of
order O(10−3) in maximum absolute value.

Again, upon using Equation (68) in Equation (62) we find an approximation for
the average magnetization among all particles, M(1) and the individual M(1)

i are found
via Equation (63). The precise solution is calculated according to Equation (60). We
consider the same two H0 as in the case of cubic boundaries. In Table 2 we compare the
corresponding results.

Table 2. Comparison between exact calculation and approximate results for the 100-particle config-
uration inside elongated cylindrical boundaries, see bottom image in Figure 4, upon applying the
same two external fields H0 as in the cubic case. The corresponding field components (x, y, z) are
grouped in vectorial notation. Magnetic and magnetization fields are denoted in A/m.

H0 M M(1) 〈δMi〉 max(δMi) min (δMi)


300, 000
0
0







585, 871
1780
−3357







584, 846
1556
−3579


 6.44× 10−3 1.44× 10−2 6.93× 10−4




300, 000
300, 000
100, 000







505, 700
440, 194
141, 853







505, 471
440, 561
141, 820


 4.45× 10−3 1.28× 10−2 7.98× 10−4

Again, we find very reasonable agreement between the full and the approximate calcula-
tion. On average, the absolute deviations 〈δMi〉 are clearly below 1%. The maximum error
found for an individual particle is just ∼1.44%. The full list of all Mi and M(1)

i is provided in
the Supplementary Materials. Clearly, upon comparing the results in Table 1 and 2, we note
that upon applying identical H0 the particles arranged in an elongated structure along the
x-axis feature considerably larger components of the magnetization field in x-directions as
compared to particles arranged inside a cubic cell.

3.2. Macroscopic Shape Effect for a Cylindrical Sample

According to our approach the relevant quantity describing the effect on the magneti-
zation field due to the macroscopic shape of a sample is given by the tensorial operator
defined in Equation (14). There, for the sake of consistency with the microscopic operator
in Equation (13), it is expressed in a discrete form. Formally, Equation (14) represents the
discretization of the volume integration over the entire sample body. With Equation (7)
in Equation (14) and the number of volume elements, N → ∞ the mesoscopic volume
elements become infinitesimal, Vβ → dV. Thus, turning to a continuous representation
α→ r we have to calculate the following integral equation:

Ĝ(r) =
1

4π

∫

VC

d3r′
3(r′ − r)(r′ − r)− |r′ − r|2

|r′ − r|5 Θ(|r′ − r|) . (69)

Function Θ(r) denotes the Heavyside function, which is a defined unity for r > 0
and zero otherwise, in order to omit the pole at r = r′, i.e., α 6= β in Equation (14). The
integration in Equation (69) is taken over the volume of the cylindrical sample VC and
shall be performed for each component of Ĝ. In the following we denote the symmetry, or
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main, axis of the cylinder as the x-direction and the perpendicular circular plane shall be
generated by y and z, see Figure 5. The origin of the coordinate system is defined as the
center of the cylinder’s mass.

Due to cylindrical symmetry of the sample and the form of the integrand in Equation (69),
e.g., Ĝ is symmetric with tr(Ĝ) = 0, one can conclude that Gyy = Gzz = − 1

2 Gxx and Gyz =
Gzy = 0. Furthermore, the two remaining cross-terms Gxy = Gyx and Gxz = Gzx must be
equivalently centrosymmetric with respect to the cylinder main axis. Thus, expressed in
Cartesian coordinates we find:

Ĝ =




Gxx Gxρ
y
ρ Gxρ

z
ρ

Gxρ
y
ρ −Gxx

2 0
Gxρ

z
ρ 0 −Gxx

2


 . (70)

The cross-term we denote here Gxρ as it describes the interrelation between the sym-
metry axis along ex and the lateral direction along eρ, with ρ =

√
y2 + z2. Finally, due to

symmetry considerations Gxx and Gxρ can only depend on the ‘height’ position x and the
lateral coordinate ρ. The functions Gxx(x, ρ) and Gxρ(x, ρ) are given in Appendix A.

The tensor Ĝmacro is found upon averaging Ĝ over the sample volume:

Ĝmacro =
1

VC

∫

VC

d3r Ĝ . (71)

Apparently, the cross-terms immediately vanish due to the centrosymmetric form and
we find:

Ĝmacro =



〈 fmacro〉 0 0

0 − 〈 fmacro〉
2 0

0 0 − 〈 fmacro〉
2


 . (72)

Here, 〈 fmacro〉 describes the volume average of Gxx according to Equation (71). We
denote the height, or length, of the cylindrical sample as L and its cross section diameter as
D. Then, for being a scale-free quantity, 〈 fmacro〉 can only be a single parametric function
of the aspect ratio Γ = L

D . In Ref. [36] we plotted the dependency 〈 fmacro〉(Γ) for a
cylinder in comparison to the corresponding results for a spheroid and a rectangular
rod. There, we also show that for φ→ 1, i.e., hypothetically pure magnetizable material,
we obtain the relation 1/3 − 〈 fmacro〉 = N‖, with N‖ the demagnetization factor of a
bulk magnetic cylinder homogeneously magnetized along its main axis. The function
N‖(Γ) = 1/3− 〈 fmacro〉(Γ) we derive by the present method exactly resembles previously
reported findings [58,59]. In addition to the compliance with the demagnetizing factor, our
here derived formalism features a great flexibility in predicting the magnetization field
inside a composite sample in an approximation description.

Let us shortly consider the approximation scheme introduced in Section 2.5. With
some prescribed microstructure, i.e., Ĝmicro in the compound MAE and given Ĝmacro,
e.g., Equation (72) we immediately may predict the average magnetization among all
magnetizable inclusions in approximate, but general form via Equation (57). In the most
elementary case of a homogeneous-like, or random isotropic, particle structure we have
simply Ĝmicro = 0̂ [33,34,52]. Neglecting the microscopic contribution, Equation (57)
characterizes primarily the sample shape effect:

M(1) = L
(

H0 +
(

φĜmacro − ν̂
)
·M(1)

)
. (73)

Just via the solution of this 3-dimensional equation we find a first approximation
for the average magnetization field M ≈ M(1) without the necessity to reconsider the
full sample if the magnetization property L(H), the applied field H0, or the amount φ of
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inclusion particles is modified. Furthermore, in the case of a homogeneous-like, or random
isotropic, particle structure Equation (58) is adopted to read:

M(1)(r) =
(

Î + φχ̂Aeff
· ∆Ĝ(r)

)
·M(1) . (74)

Thus, we immediately note that ∆Ĝ(r) = Ĝ(r)− Ĝmacro, describes the mesoscopic
deviations in the magnetization field due to the macroscopic shape effects. In Figures 5 and 6
we display our results for the diagonal component ∆Gxx = Gxx − 〈 fmacro〉 for different
aspect ratios of the cylinder (Γ = 1.0, Γ = 0.1, and Γ = 5.0).
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Figure 5. (Left) Sketch of the coordinate system used to display the results. We use cylindrical

coordinates (x, ρ, ϕ) with
(

x, ρ =
√

y2 + z2, ϕ = arcsin( y
ρ )
)

. The origin is located in the center of

mass of the cylinder. In reduced units X = x
L and P =

ρ
D accordingly X ∈ [− 1

2 , 1
2 ], P ∈ [0, 1

2 ] and
ϕ ∈ [0, 2π). (Right) Plotting ∆Gxx(X, P) for a cylinder with aspect ratio Γ = L

D = 1.

Due to symmetry considerations it is obvious that ∆Gxx = ∆Gxx(x, ρ) can only depend
on the height position x and the radial position ρ. We introduce dimensionless units
X = x

L and P = ρ
D , to represent ∆Gxx(X, P) with X ∈ [− 1

2 , 1
2 ] and P ∈ [0, 1

2 ]. The
angular coordinate ϕ = arcsin( y

ρ ) with ϕ ∈ [0, 2π) is not relevant. Furthermore, since
from Equation (69) we note the symmetry x → −x for Gxx we also find ∆Gxx(−X, P) =
∆Gxx(X, P) and display our results for the cut X ∈ [0, 1

2 ] and P ∈ [0, 1
2 ], see left sketch in

Figure 5. On the right in Figure 5, ∆Gxx(X, P) is plotted via a 2-dimensional color map for
a symmetric cylinder, i.e., Γ = 1. It clearly indicates, that by applying an external field H0
along the x-direction, the magnetization field into the same direction x (accordingly Gxx) is
reduced at the top, and correspondingly also at the bottom, of the cylinder compared to the
average magnetization field. In contrast, at the lateral, or outer, fringe the magnetization
field is enhanced compared to the average magnetization. These variations are due to the
specific cylindrical form of the sample.

In Figure 6 the corresponding ∆Gxx(X, P) for an oblate (Γ = 0.1) and a prolate
(Γ = 5) cylinder are shown. The results are somehow similar to the case Γ = 1, but also a
systematic difference is visible. Clearly, in the case of an oblate cylinder the region with
reduced magnetization (compared to the average M) is largely grown. For Γ = 0.1 it
spans an entire part inside the sample (for all positions with p < 0.39) from the top to the
bottom. The reduction effect in that region is relatively small (Gxx ≈ −0.1). In contrast, the
part in the lateral fringe, where an enhancement effect occurs is reduced in size but the
enhancement effect itself is increased instead (Gxx ≈ 0.35). In the case of a prolate cylinder,
with Γ = 5, the situation is exactly reversed. Here, the enhancement region is clearly
widened (spanning through the entire cylinder where X ∈ [−0.34, 0.34]), but quantitatively
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weakened. And the reduction effect is now of a large absolute magnitude, but concentrated
to a small slice on the top (and the bottom) of the cylinder.
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Figure 6. The function ∆Gxx(X, P) for a cylinder with aspect ratio Γ = 0.1 (Left) and Γ = 5 (Right).
To illustrate the oblate, resp. prolate, form of the cylinders we stretched the axes.

Regarding the cross-term ∆Gxρ(X, P) = Gxρ(X, P), we plot the corresponding 2-
dimensional color map for a symmetric cylinder Γ = 1 on the left in Figure 7. Since
this function is antisymmetric with respect to X → −X the full length of the cylinder
is displayed here. Obviously, in the largest part of the cylindrical body the cross-term
nearly vanishes. Only right at the edges does it adopt quite large absolute values, positive
on the top (x ∼ L

2 ) and negative on the bottom (x ∼ − L
2 ). In fact, due to the perfectly

shaped edge in the geometrical representation of a cylinder we encounter a discontinuity
exactly at ρ = D

2 and x = ± L
2 . Any real body can not obey such mathematically shaped

edges and thus we consider such discontinuity as a modeling artifact here. Nevertheless,
the discontinuity is fortunately only of a logarithmic order and we expect our function
Gxρ to be yet reasonable if ρ < D

2 or |x| < L
2 . In order to give an idea about the ‘full’

centrosymmetric property of the cross-terms in Equation (70) we sketch it in vectorial
form Gxρ

yey+zez
y2+z2 on the right in Figure 7. The application of an external field H0 along the

positive x-direction imposes, additionally to the magnetization field along x, as well as
components in the lateral direction. At the edge on the bottom of the cylinder this lateral
magnetization field is oriented ‘inwardly’ to the main axis. In contrast, on the top of the
cylinder it is oriented ‘outwardly’ to the edge.

For completeness, we plot in Figure 8 the analogue results for ∆Gxρ(X, P) in the case
of an oblate cylinder, Γ = 0.1 on the left, and a prolate cylinder, Γ = 5 on the right.
Apparently, the cross-term is almost identical for variations of the cylinder aspect ratio. Yet
one systematic difference may be identified. In an oblate cylinder the major contribution to
∆Gxρ(X, P) is found at the edges along the x-axis. In prolate cylinders, the principal part
exists at the edges along the radial axis.
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Figure 7. (Left) The function ∆Gxρ(X, P) = Gxρ(X, P) for a cylinder with aspect ratio Γ = 1.
Note, to visualize the property ∆Gxρ(−X, P) = −∆Gxρ(X, P) we plot here the full cylinder length
X ∈ [− 1

2 , 1
2 ]. (Right) Illustration of the central symmetry of the cross terms in Equation (70). We

sketch the lateral magnetization (in y-z-plane) on the top and bottom of the cylinder upon applying
an external field H0 along the positive x-direction.
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Figure 8. The function ∆Gxρ(X, P) for a cylinder with aspect ratio Γ = 0.1 (Left) and Γ = 5 (Right).
To illustrate the oblate, resp. prolate, form of the cylinders we stretched the axes.

4. Conclusions

To understand the behavior of an MAE sample it is vital to capture the full extent
of the magnetic interactions, which drive the changes of material properties under the
application of an external magnetic field. From fundamental magneto-statics one immedi-
ately notes that these interactions are energetically equivalent on different length scales.
Consequently, any comprehensive description of MAE samples is sophisticated as several
orders of magnitude in length scale must be bridged. In the present work we developed an
approximation approach which allows to greatly decouple the short- and long-range effects
to the magnetization field in MAE composites. This is achieved upon introducing a Cas-
cading Mean-Field scheme where we split the magnetization of an individual particle into
three contributions: The macroscopic average magnetization field among all particles in the
sample, the deviations due to the mesoscopic position within the sample volume, and the
deviations resulting from the microscopic location with respect to the surrounding particle
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structure. In order to cover practically relevant situations, the derivation is performed in a
possibly general manner. The intrinsic magnetization behavior of the inclusion material,
the shape of the macroscopic sample, the actual form of the local microstructure, the overall
amount of the inclusion particles, as well as the externally applied field can be adjusted
according to the actual conditions without the need to restart the full computation all over
again. This flexibility exemplifies the potential of our Cascading Mean-Field approach.

As a demonstration example for the mesoscopically varying magnetization fields due to a
non-ellipsoidal shape of a macroscopic sample we considered a cylindrical form. Our results
reveal that deviations from the macroscopic average are found most notably near the sample
boundaries and strongly depend on the aspect ratio of the cylinder, see Figure 6. In particular,
the cross-term ∆Gxρ, coupling lateral to parallel components, displays quite large values, up
to order unity near the sample edges, see Figure 7. Thus, for a sample with volume fraction
φ of magnetizable particles, the relative mesoscopic deviations from the macroscopic
magnetization average can reach O(φ). In order to illustrate the application of our approach
for a resolved particle microstructure we considered an ensemble of 100 inclusions and
compared the approximation result to the full self-consistent solution of the problem. These
comparisons, as summarized in Tables 1 and 2, clearly demonstrate the high accuracy of our
approach and the relative errors usually range in the order of just ∼1%.

The explicit particle arrangements are usually considered in computer simulations [37,
40,45–49,53,60–62], where it is essential to calculate the magnetization fields in individual
particles to account for the corresponding magnetic interactions. The present approach
allows for an approximate but very compact and yet accurate estimate of the local fields
in individual particles situated in an arbitrary mesoscopic portion of the sample. In
this way, we believe that our results represent a substantial progress and will help to
develop more refined hybrid models to bridge the gap among the several length scales
necessary to characterize MAE samples comprehensively. Currently, our approach is based
on the dipole model to account for magnetic interactions. This adaptation represents a
commonly applied modeling strategy towards MAEs. The here presented scheme, where
different effects on different length scales are considered as nested into each other like
in the famous Matryoshka toy, can be extendable in future works to account for a more
adequate description of magnetic interactions among closely- located particles where the
dipole approach reaches its limits [63]. As a prospective extension of the Matryoshka toy,
upon introducing a fourth element which accounts for dipole corrections, it should be
additionally helpful that such modifications are bound to very short ranges.

Beyond the computation benefit for application in simulations and/or hybrid models
we want to emphasize that the cascading mean-field approach also provides a systematic
framework to understand and to study the interplay between different effects directly.
This is possible as our scheme provides a compact analytic, or at least semi-analytic,
notation describing the leading effects on different length scales. Note, such analysis is
achieved through the understanding that modifications in magnetization fields due to
particle (re)arrangements, sample deformations, or altered external fields induce changes
in the magnetic energy. Correspondingly, investigating the energetic minimum provides
systematic insights to the behavior of an MAE. In a previous work [36] we used the
leading order approximation of our approach for an efficient combination of theory and
experiment to clarify some field-induced effects in MAEs. Furthermore, our scheme
allows to study in detail the role of potential particle rearrangements and macroscopic
deformations, as well as to consider subsequently the influence of different mechanical
couplings and analyze the consequences. Accordingly, the current Cascading Mean-Field
approach represents a consequent continuation of our previous work [32–34,52] towards a
fundamental generalization of the idea to establish a unified theoretical description of the
behavior of MAEs under an applied magnetic field.

Supplementary Materials: The following are available online at https://www.mdpi.com/2073-436
0/13/9/1372/s1.
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Appendix A

The calculation of the 3-dimensional integral in Equation (69) is not straightforward,
especially due the necessity of cutting off the pole at r = r′. In the following we derive
partially analytic closed forms, i.e., we may leave some parts of Equation (69) as numerically
derived integrations. There may be yet several more mathematically involved solution
methods allowing for representations with more or full analytically closed terms. However
for the present example we consider partially numerical forms as sufficient.

In Figure A1 we sketch our decomposition scheme of the integral Equation (69) into
three parts.

Figure A1. Sketch of the decomposition of a cylindrical sample to solve the integral in Equation (69).

The first part refers to the innermost sub-cylinder, red colored in Figure A1, and
accounts for the contribution right above, resp. below, the position r. The second part, blue
colored in Figure A1, captures the encapsulating cylinder around the red one where yet
a full angular integration, i.e., ϕ′ ∈ [0, 2π] is viable. Finally, the third part describes the
non-shaded rest in Figure A1. With such decomposition we find for Gxx:

Gxx = −2
3
+

Γ
2

(
1
2 + X

)

√(
1
2 − P

)2
+ Γ2

(
1
2 + X

)2
+

Γ
2

(
1
2 − X

)

√(
1
2 − P

)2
+ Γ2

(
1
2 − X

)2

−F
(

Γ(1− 2X), P
)
−F

(
Γ(1 + 2X), P

)
. (A1)

Here, we use dimensionless cylindrical coordinates X = x
L and P = ρ

D with L the
length, or height, of the cylinder and D its diameter. The aspect ratio of the cylinder is
then Γ = L

D . In the first line in Equation (A1) the analytically closed form for the first and
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the second part of the decomposition (red- and blue-colored sub-cylinder in Figure A1)
are given. In the second line the remaining part is condensed in function F (W, P) which
reads here:

F
(

W, P
)
=

W
2π

1+2P∫

1−2P

dη η
arccos

(
4P2+η2−1

4Pη

)

(η2 + W2)
3/2 . (A2)

This 1-dimensional integral can be solved numerically.
For the cross-term Gxρ, we find the following form:

Gxρ =

A
(

4P
1+4Γ2( 1

2+X)2+4P2

)

2π
√

1 + 4Γ2( 1
2 + X)2 + 4P2

−
A
(

−4P
1+4Γ2( 1

2+X)2+4P2

)

2π
√

1 + 4Γ2( 1
2 + X)2 + 4P2

+

A
(

−4P
1+4Γ2( 1

2−X)2+4P2

)

2π
√

1 + 4Γ2( 1
2 − X)2 + 4P2

−
A
(

4P
1+4Γ2( 1

2−X)2+4P2

)

2π
√

1 + 4Γ2( 1
2 − X)2 + 4P2

. (A3)

The function A(V) is defined as:

A(V) = 3F2

(
1
4

,
3
4

, 1;
1
2

,
3
2

; V2
)
+

(1 + V)E
(

2V
1+V

)
− K

(
2V

1+V

)

V
√

1 + V
, (A4)

where 3F2 denotes the generalized hypergeometric function, E represents the complete
elliptic integral of the second kind, and K represents the complete elliptic integral of the
first kind.
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