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Organic semiconductors remain of major interest in the field of bioelectrochemistry

for their versatility in chemical and electrochemical behavior. These materials have

been tailored using organic synthesis for use in cell stimulation, sustainable energy

production, and in biosensors. Recent progress in the field of fully organic semiconductor

biosensors is outlined in this review, with a particular emphasis on the synthetic tailoring

of these semiconductors for their intended application. Biosensors ultimately function

on the basis of a physical, optical or electrochemical change which occurs in the

active material when it encounters the target analyte. Electrochemical biosensors are

becoming increasingly popular among organic semiconductor biosensors, owing to

their good detection performances, and simple operation. The analyte either interacts

directly with the semiconductor material in a redox process or undergoes a redox

process with a moiety such as an enzyme attached to the semiconductor material.

The electrochemical signal is then transduced through the semiconductor material.

The most recent examples of organic semiconductor biosensors are discussed here

with reference to the material design of polymers with semiconducting backbones,

specifically conjugated polymers, and polymer semiconducting dyes. We conclude that

direct interaction between the analyte and the semiconducting material is generally more

sensitive and cost effective, despite being currently limited by the need to identify, and

synthesize selective sensing functionalities. It is also worth noting the potential roles of

highly-sensitive, organic transistor devices and small molecule semiconductors, such as

the photochromic and redox active molecule spiropyran, as polymer pendant groups in

future biosensor designs.

Keywords: conjugated polymer, organic semiconductor, electrochemical, biosensor, material design

INTRODUCTION

Bioelectrochemistry is the study of naturally-occurring, reduction/oxidation (redox) processes
in living systems, encompassing electron transfer in biomolecules, enzyme redox behavior at
an electrode, and interactions between synthetic, electro-responsive materials, and biological
systems (Wu et al., 2017; Cervera et al., 2018; Oliveira-Brett et al., 2019). Recently, these
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natural electrochemical processes have been harnessed in sensors
to detect molecules, including biomolecules relevant to the
diagnosis, and management of human disease (Naveen et al.,
2017). Biosensor materials change their physical, optical, or
electrochemical properties in the presence of analyte molecules,
thus “sensing” the analyte. For example, optical biosensors
undergo changes in optical properties, including optical band
gap and absorption and emission spectra, upon interaction
with an analyte (Alvarez et al., 2011; Wang J. et al.,
2018). Inorganic piezoelectric biosensors have been used as
immunosensors and pesticide chemosensors (Skládal, 2016;
Pohanka, 2017), while calorimetric (thermal) biosensors detect
temperature changes from analyte reactions, and include purely-
enzymatic thermistors (Antonelli et al., 2008; Bhand et al.,
2010), and piezoelectric quartz oscillators (Gaddes et al., 2017).
Electrochemical biosensors, which detect redox reactions of
analyte molecules as electrical signals, are especially promising
with their low cost, high sensitivity and selectivity, and simple
apparatus (Aydin et al., 2018; Moon et al., 2018; Chai and Kan,
2019); they are therefore the focus of this review.

To this end, organic semiconductors are of major interest
since their chemical and electrochemical properties can be
tailored using organic synthesis to the targeted application.
They are the core component of organic bioelectronic
devices for biomolecule sensing (Park et al., 2008; Wang
et al., 2019), cell stimulation (Fidanovski and Mawad, 2019;
Hopkins et al., 2019), and sustainable energy generation
(Chen et al., 2004; Wallace et al., 2005; Li et al., 2017). In
electrochemical biosensors, small molecule semiconductors
are used individually or as polymer pendant groups; for
example, spiropyran derivatives are photochromic and undergo
ring-opening isomerization under various stimuli (Miyagishi
et al., 2019), while organometallic “redox polymers” bearing
pendant ferrocene, and osmium complexes have detected
numerous neurotransmitter molecules (Casado et al., 2016).
However, conjugated polymers (CPs)—polymers with π-
conjugated, semiconducting backbones—exhibit improved
sensitivity in biosensing due to their high electrical conductivity
and efficient, tailorable charge transport characteristics,
permitting rapid signal transduction (Park et al., 2008), and their
biocompatibility allows their biological application (Cevik et al.,
2019). Importantly, their redox-active backbone and propensity
for flexible modification with numerous chemical functionalities
allow them to mediate electrochemical reactions. Similarly,
commercially-available, organic dyes such as methylene blue
are readily electropolymerized, producing polymers with
semiconducting backbones which efficiently mediate charge
transport and redox reactions, with demonstrated utility
in biosensing (Barsan et al., 2015). Given these polymeric
materials’ advantages, this review examines the material design
of all-organic polymers with semiconducting backbones for
electrochemical biosensors. We first discuss the operating
principles and mechanisms of electrochemical biosensors. We
then review the recent syntheses of novel, organic polymers
with semiconducting backbones, including functional CPs and
polymers of organic dyes, and outline their electrochemical
detection of significant biomolecules.

ORGANIC SEMICONDUCTING POLYMERS
FOR ELECTROCHEMICAL BIOSENSORS

Operating Principles of Electrochemical
Biosensors
Electrochemical sensors operate as transducers in
an electrochemical cell, facilitating analyte binding or
electrochemical reaction at the surface under an applied
potential (Park et al., 2008; Moon et al., 2018). This potential
is applied using: amperometry, which monitors changes in
current at constant potential; potentiometry, which measures
potential with no current; impedometry, which measures the
steady-state current response to a small alternating potential,
typically using electrochemical impedance spectroscopy (EIS);
and cyclic voltammetry (CV), which measures the current under
a cyclic potential, generating current peaks from redox reactions.
Sensor-analyte electron transfer results in electrochemical
signals which are transduced through the semiconductor into
an underlying electrode, and detected using a potentiostat.
Transistor configurations, including organic electrochemical
transistors (OECTs) introduced by White et al. (1984), utilize an
additional gate voltage to amplify signals and improve biosensor
sensitivity, as recently reviewed (Bai et al., 2019; Wang et al.,
2019). Electrochemical methods in general offer inexpensive,
simple operation, high sensitivity and selectivity, low limits
of detection (LOD), and broad linear detection ranges—all
important criteria for biosensors (Aydin et al., 2018; Moon
et al., 2018; Chai and Kan, 2019). Organic electrochemical
biosensors have two modes of detection mechanism (Figure 1A).
The organic semiconductor can be chemically modified with
functionalities that directly facilitate analyte redox reactions.
Alternatively, the organic semiconductor can be functionalized
with complex moieties, including enzymes (enzymatic sensors),
antibodies (immunosensors), and bacteria (bacterial sensors),
which bind to the analyte, and mediate its reduction/oxidation.
In this review, we refer to these mechanisms as “mode-1” and
“mode-2,” respectively. Both mechanisms require semiconductor
materials combining efficient charge carrier transport within
the material with novel functionalities for either sensing mode.
Consequently, for organic semiconductor-based biosensors,
chemical synthesis is important to access novel material
properties and functionalities tailored to detecting specific
biomolecules. Therefore, we next discuss the recent syntheses
of organic polymers with semiconducting backbones for
electrochemical biosensors, focusing on conjugated polymers,
and polymers of semiconducting organic dyes.

Material Design for Electrochemical
Biosensors
The tailored synthesis of CPs for biosensors has received
significant attention in recent literature. In particular,
electrochemical glucose biosensors have been prominent
since their invention by Clark and Lyons (1962) because
glucose is relevant to many diseases, including endocrine
disorders, and diabetes (Cevik et al., 2019). For example,
the CP poly(dithieno(3,2-b:2′,3′-d)pyrrole) (PDTP) and its
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FIGURE 1 | (A) The two modes of detection mechanism in organic electrochemical biosensors. Mode-1 detection involves direct interaction between polymer

functionalities and the analyte, while mode-2 detection requires additional, biosensing moieties such as enzymes, antibodies, or bacteria to be chemically attached to

the polymer. (B) Chemical structures of organic semiconductors used in electrochemical biosensors in recent literature.
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derivatives have previously attracted interest in organic field-
effect transistors (OFETs), and more recently in electrochemical
glucose biosensors, since their planar structures and fused
ring systems yield high hole mobilities reaching 0.41 cm2

V−1 s−1 and efficient, enzyme-to-electrode charge transport
(Parameswaran et al., 2009; Rasmussen and Evenson, 2013). Azak
et al. (2016) synthesized PDTP derivatives bearing N-substituted
aniline (Figure 1B, semiconductor 1) and biphenylamine
(2) functionalities for “mode-2” glucose detection. The
dithieno(3,2-b:2′,3′-d)pyrrole (DTP)-based monomers were
synthesized using either Cu-catalyzed, Ullmann-type coupling
or Pd-catalyzed, Buchwald-Hartwig coupling of 3,3′-dibromo-
2,2′-bithiophene with aryl amines. Monomers underwent CV
electropolymerization onto a gold substrate, then glucose
oxidase (GOx) enzyme molecules, and gold nanoparticles
(AuNPs) modified with amine functionalities were immobilized
on the polymer surface. AuNPs are commonly incorporated
into biosensors to improve sensor sensitivity and selectivity
(Naveen et al., 2017; Moon et al., 2018). The GOx catalyzed
glucose oxidation in phosphate-buffered solution (PBS, pH
= 7.4) during chronoamperometry. Both PDTP derivatives
afforded wide linear detection ranges, and polymer 2 gave an
especially low LOD of 0.0986µM (Table 1). The biosensors
reliably measured glucose concentrations in spiked human blood
samples (<1% relative standard deviation, RSD), emphasizing
their potential in diabetes treatment.

The authors subsequently developed PDTP biosensors
without AuNPs (Azak et al., 2018). They synthesized
alkoxyamine-functionalized PDTP (3) via Buchwald-Hartwig
coupling and performed CV electropolymerization onto an
indium tin oxide (ITO)-glass substrate. The electron-donating
alkoxyamine side groups were chosen over alkyl amine groups to
reduce the energy requirement for monomer oxidation during
electropolymerization. GOx was immobilized by covalently
bonding to polymer amine groups, assisted by glutaraldehyde
(GA) crosslinking. Glucose was detected in PBS (pH= 7.0) with a
low LOD of 0.348µM, superior to many electrochemical glucose
biosensors (Table 1). The bound enzymes exhibited impressive
storage stability, retaining 80% enzymatic activity after 20
days—a significant step toward improving biosensor longevity.
The same group synthesized N-decylamine-substituted DTP
monomer by Buchwald-Hartwig coupling, as reported previously
(Udum et al., 2014), followed by electrochemical polymerization
onto a glassy carbon electrode giving polymer 4 (Cevik et al.,
2019). They then fabricated enzymatic and bacterial biosensors
for glucose by utilizing the decylamine functionalities to
immobilize GOx and Gluconobacter oxydans (G. oxydans)
onto the surface. G. oxydans has demonstrated utility in
electrochemical biosensors for numerous functionalities (Katrlík
et al., 2007). Both biosensors detected glucose via amperometry
in PBS at optimized pH. While the bacterial biosensor exhibited
more reliable detection in the presence of other molecules,
the GOx biosensor was superior overall with a lower LOD (22
vs. 81µM) and broader linear dynamic range (0.045–50.0 vs.
0.19–50.0 mM).

Buber et al. (2018) explored an alternative glucose sensor
involving a novel, bithiophene-phenazine-based CP (5) without

amine functionalities as a GOx-immobilization substrate. The
monomer, 10,13-bis(4-hexylthiophen-2-yl)dipyridol[3,2-a:2′,3′-
c]phenazine (HTPP), was synthesized by Stille coupling of
thiophene and phenazine precursors, phenazine reduction
to amines, and condensation with an aromatic dione (Esmer
et al., 2011). The polymer was deposited using CV onto a
graphite substrate. Structurally, the polymer was designed to
improve GOx adhesion via hydrophobic interactions with
hexyl side chains and intermolecular π-π interactions with
the numerous aromatic rings. Through GA crosslinking,
GOx was immobilized on the surface to oxidize and
detect β-D-glucose in PBS by measuring molecular oxygen
consumption using amperometry. After optimization, the
sensor exhibited superior sensitivity (105.12 µA mM−1 cm−2),
and LOD (2.88µM) to comparable published systems, and
accurately measured glucose levels in commercial beverages
(<10% deviation from product label).

Donor-acceptor CPs, containing electron donor and acceptor
repeat units, exhibit efficient electrochromic switching, and
applications in OFETs and solar cells (Soylemez et al., 2019),
and also possess biosensing capabilities. Soylemez et al.
(2019) synthesized a donor-acceptor CP (6) containing furan
(donor) and thiazole (acceptor) moieties in a “proof-of-concept”
glucose biosensor. The monomer, 2,5-di(furan-2-yl)thiazolo[5,4-
d]thiazole, was synthesized in a mild, single-step reaction and
underwent CV electropolymerization onto a graphite electrode.
The polymer exhibited reversible electrochromic behavior with
fast redox switching times (0.3 and 0.4 s). After immobilizing
GOx with GA crosslinking, glucose was detected in beverages
with good sensitivity (65.44 µA mM−1 cm−2) and reasonable
LOD (12.8µM). Although these values are inferior compared
to Buber et al. (2018), this work emphasizes the wide
range of CP designs applicable to biosensing. CPs have also
been used to detect neurotransmitters including dopamine, a
neurotransmitter involved in several neurological conditions
including Alzheimer’s disease. Dopamine binds strongly and
selectively to boronic acids, permitting mode-1 dopamine
detection. However, the low physiological concentration of
dopamine necessitates high biosensor sensitivity and selectivity
(Jiang et al., 2017). As such, Dervisevic et al. (2017a)
copolymerized thiophene and 3-thienylboronic acid by CV onto
pencil graphite, producing a PT derivative (7) with boronic
acid groups. In dopamine solution, these groups immobilized
dopamine molecules at physiological pH, altering the devices’
impedimetric response. This permitted selective dopamine
detection in human urine with a wide linear range (7.8–125µM)
and very low LOD (0.3µM). This CP also selectively detected
tumor cells (Dervisevic et al., 2017b): electrodes coated with
electropolymerized CP were submerged in a medium containing
human Caucasian gastric adenocarcinoma (AGS) cancer cells,
which generate abnormally large quantities of sialic acid (1,000×
greater). Through EIS, the boronic acid-functionalized CP
detected sialic acid with high selectivity and a low cell LOD
(10 cells mL−1), highlighting its potential in reliable, early
cancer diagnosis.

Akhtar et al. (2017) developed an innovative biosensor
for the neurotransmitter acetylcholine associated with various

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 4 September 2019 | Volume 7 | Article 237

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Hopkins et al. All-Organic Semiconductors for Electrochemical Biosensors

TABLE 1 | Summary of biosensor configurations, mechanisms, and performances.

SC Additional species Analyte Detection

mechanism

Detection method Sensitivity (µA

mM−1 cm−2)

LOD/Linear range

(µM)

References

1 GOx, AuNPs Glucose Mode-2, enzymatic CA NR 50.0/100–2,500 Azak et al., 2016

2 GOx, AuNPs Glucose Mode-2, enzymatic CA NR 0.0986/50–1,000 Azak et al., 2016

3 GOx Glucose Mode-2, enzymatic CV NR 0.348/50–900 Azak et al., 2018

4 GOx Glucose Mode-2, enzymatic AM NR 22/45–50,000 Cevik et al., 2019

4 G. oxydans Glucose Mode-2, bacterial AM NR 81/190–50,000 Cevik et al., 2019

5 GOx Glucose Mode-2, enzymatic AM 105.12 2.88/25–1,000 Buber et al., 2018

6 GOx Glucose Mode-2, enzymatic AM 65.44 12.8/5–700 Soylemez et al.,

2019

7 — Dopamine Mode-1 EIS NR 0.3/7.8–125 Dervisevic et al.,

2017a

7 — Sialic acid (AGS

cells)

Mode-1 EIS NR 10/10–106 d Dervisevic et al.,

2017b

8 Acetylcholinesterase/

choline oxidase, AuNPs

Acetylcholine Mode-2, enzymatic CA NR 0.6/0.7–1,500 Akhtar et al., 2017

9 Anti-IL-1β antibodies Interleukin 1β Mode-2,

immunosensor

EIS NR 3 × 10−6/1 ×

10−5–0.003c
Aydin et al., 2018

10 GOx Glucose Mode-2, enzymatic CA/EIS NR 10/10–10,000 Savva et al., 2019

10 Lactate oxidase Lactate Mode-2, enzymatic CA NR 10/10–1,000 Pappa et al., 2018

11a — Sodium ions Mode-1 CA/CV/SS 37a 20/10–106 Wustoni et al., 2019

11b — Potassium ions Mode-1 CA/CV/SS 49a 100/100–106 Wustoni et al., 2019

12 GDH, NAD+ Glucose Mode-2, enzymatic AM NR 4.0/10–1,000 Dilgin et al., 2018

12 — Creatine Mode-1 DPV 0.133b 0.2/0.5–900c Pandey et al., 2018

SC, Semiconductor; GOx, glucose oxidase; AuNPs, gold nanoparticles; GDH, glucose dehydrogenase; NAD+, nicotinamide adenine dinucleotide; SCNs, single-walled carbon

nanotubes; CA, chronoamperometry; CV, cyclic voltammetry; AM, amperometry; EIS, electrochemical impedance spectroscopy; DPV, differential pulse voltammetry; SS, steady-state

OECT measurements; NR, not reported.
aUnits are µA decade−1.
bUnits are µA ng mL−1.
cUnits are ng mL−1.
dUnits are cells mL−1.

neurological and physiological conditions. They used a dual-
electrode, microfluidic device to improve enzyme loading,
and minimize signal interference. The monomer, 2,2′:5′,2′′-
terthiophene-3-(p-benzoic acid), was synthesized by boronic acid
functionalization of 3′-bromo-2,2′:5′,2′′-terthiophene, Suzuki
coupling with 4-bromobenzonitrile, and alkaline hydrolysis of
nitrile groups to carboxylic acid groups (Kim et al., 2012).
This monomer underwent CV electropolymerization, depositing
polymer 8 onto an AuNP-coated “reaction electrode” and a
porous, Au-coated “detection electrode.” Acetylcholinesterase
was immobilized on the reaction electrode and choline oxidase
was immobilized on the detection electrode. Detection involved
successive conversion of acetylcholine into choline at the
reaction electrode, then into betaine and hydrogen peroxide
at the detection electrode. Reduction of hydrogen peroxide
by hydrazine released electrons which were detected by
chronoamperometry. The sensor exhibited a wide dynamic
range (0.7 nM−1,500µM), very low average LOD (0.6 nM), and
high selectivity to acetylcholine from the multi-step reaction
sequence. This sensor monitored the in-vitro extracellular release
of acetylcholine by leukemic T-cells triggered by calcium ions.
Aydin et al. (2018) utilized self-assembled films of a densely
carboxylated PT derivative, poly(3-thiophene malonic acid)
(P3-TMA, 9), as electrochemical immunosensors for the protein
Interleukin 1β (IL-1β) involved in human immune response. The

polymer was synthesized by chemical oxidation of the methyl
ester monomer, then hydrolysis yielding ionizable, carboxylic
acid groups. These groups both bound to a treated ITO
substrate with hydroxyl surface functionalities, forming a self-
assembled P3-TMA monolayer, and immobilized anti-IL-1β
antibodies on the monolayer permitting biorecognition. Selective
immunodetection of IL-1β antigen in human serum and saliva
was demonstrated with a very low LOD (3 fg/mL), two orders of
magnitude lower than the next-best, CP-free system (300 fg/mL).

CP-based OECT configurations are gaining
popularity as sensitive electrochemical biosensors. OECT
biosensors commonly utilize water-processable poly
(ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS)
(Liao et al., 2019), for example in conjunction with lipid
bilayers to detect the ion pore α-hemolysin (Zhang et al.,
2016). Recent OECT biosensors have explored alternative CPs
with tailored structures. Giovannitti et al. (2018) synthesized a
naphthalene-bithiophene-based donor-acceptor copolymer (10)
and introduced glycol side chains via amine-anhydride coupling
to improve ion transport in OECTs. The CP was coated with
GOx or lactate oxidase without enzyme immobilization and used
for glucose (Savva et al., 2019), or lactate (Pappa et al., 2018)
detection, respectively, with good LODs (both 10µM). Wustoni
et al. (2019) synthesized thiophene derivatives functionalized
with 15-crown-5 and 18-crown-6 ethers to selectively trap
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sodium and potassium ions, respectively, two important
ions in cell signaling. Each monomer was copolymerized
with ethylenedioxythiophene (EDOT) onto OECTs using
various electropolymerization methods. Under an optimized
OECT gate potential, the copolymers (11a/11b) performed
selective, real-time detection of sodium and potassium ions
with good LODs (20/100µM), broad linear detection ranges
(10–106/100–106 µM), and comparable sensitivities to the
“gold-standard” PEDOT:PSS.

Alternatively to CPs, semiconducting dyes are commercially
available and readily undergo electropolymerization forming
redox-active polymers. The earlier use of organic dye-based
polymers in electrochemical biosensors has been reviewed
(Barsan et al., 2015). However, here we summarize the
many recent biosensing applications of poly(methylene
blue) (PMB, 12), a prominent redox-active polymer, with
one mode-1 and one mode-2 electrochemical biosensor.
Dilgin et al. (2018) electropolymerized methylene blue onto
poly(amidoamine)-coated, disposable graphite electrodes using
CV, and immobilized glucose dehydrogenase (GDH) on the
PMB with GA crosslinking. Aided by nicotinamide adenine
dinucleotide (NAD+), this PMB-GDH system facilitatedmode-2,
amperometric glucose detection via several reactions. First, GDH
oxidized glucose and reduced NAD+ to NADH; the underlying
PMB then re-oxidized NADH; finally, an electrochemical
potential re-oxidized PMB generating an electrical signal. This
sensor selectively detected glucose in artificial blood serum
and commercial dextrose solutions under flow conditions with
a reasonable LOD (4.0µM). Considering the disadvantages
of enzymatic biosensors, including poor storage stability and
high cost, Pandey et al. (2018) fabricated a non-enzymatic,
mode-1 PMB biosensor for creatinine, an indicator of renal
dysfunction. Dendritic PMB nanofibers were synthesized using
CV onto a Cu-doped carbon nanofiber substrate, producing
a polymer/metal/carbon nanocomposite sensor. Through
PMB and creatine coordination to Cu centers, this sensor
showed excellent selectivity, sensitivity (0.133 µA ng mL−1),
and LOD (0.2 ng mL−1), with consistent measurements in
clinical human saliva samples (1–2% RSD). Examples abound
of recent electrochemical biosensors with polymers including
PMB (Koyun and Sahin, 2018; Li et al., 2018; Wang and Ma,
2018; Bollella et al., 2019a,b), poly(alizarin yellow R) (Amini
et al., 2019), poly(azure A) (Agrisuelas et al., 2018), poly(azure
B) (Porfireva et al., 2019; Stoikov et al., 2019), poly(azure C)
(Liu et al., 2019), poly(brilliant cresyl blue) (da Silva et al., 2019),
and poly(thionine) (Shamspur et al., 2018; Wang Y. et al., 2018;
Zhao and Ma, 2018; Chai and Kan, 2019; Stoikov et al., 2019),
demonstrating the versatility of organic dyes in designing novel,
semiconducting polymers for biosensors.

CONCLUSIONS

Organic semiconducting polymers are a highly versatile,
promising class of materials for biosensors since their organic
synthesis can be tailored to achieve various functionalities
for different applications. This versatility is evidenced by
the numerous, innovative techniques in recent literature
to synthesize organic biosensor materials. Electrochemical

biosensors have especially great potential for widespread, in-
vivo application, since recent biosensor materials exhibit high
sensitivity, LODs as low as 0.0986µM, and broad linear
ranges spanning five orders of magnitude. Novel electrochemical
transistor configurations including OECTs enhance sensitivity
through signal amplification and represent a popular new
direction in biosensor design. Mode-2 biosensors utilizing
complex moieties are most common and historically well-
established; here the organic semiconductor only transduces
the electrochemical signal, while additional moieties including
enzymes and bacteria are primarily responsible for detection.
Consequently, numerous semiconductor functionalities have
been developed to bind to these moieties, including amine
groups for enzymes, and fused-ring backbones which also
improve charge transfer. Developing chemical functionalities
with improved enzyme binding may also reduce the current
overdependence on GA crosslinking for enzyme adhesion.

Recent mode-1 biosensors, which directly mediate analyte
redox, exhibit competitive LODs, and detection ranges compared
to mode-2 biosensors (Table 1). Both mechanisms can achieve
selectivity by introducing specific functionalities, including GOx
for glucose, and boronic acids for dopamine. However, Pandey
et al. (2018) note that mode-2 biosensors often suffer from
reduced storage stability and higher cost from the additional,
detecting moiety. Conversely, mode-1 biosensors are uncommon
since they require the identification and synthesis of selective
biosensing functionalities replacing naturally-occurringmoieties.
While both mechanisms are worth pursuing, future syntheses
should also investigate novel semiconductors for mode-1
detection to complement established, “mode-2” technologies.
Continued development of mode-1 biosensors would likely
increase their impact in multiplying opportunities for low-cost,
disposable devices for clinical use, especially when combined
with “disposable” electrode materials including pencil graphite
(Dilgin et al., 2018).

One material design strategy to expand the scope of mode-1
biosensors would involve introducing small molecule organic
semiconductors such as spiropyran as pendant groups on
aliphatic or conjugated polymers. As part of a growing trend
toward small molecule semiconductors in biosensors, spiropyran
derivatives are becoming increasingly common in optical
biosensors due to their reversible photochromism under
various stimuli. Recently, Li et al. (2013) utilized silyl-modified
spiropyran for optical fluoride detection in biological media,
while Shao et al. (2018) used siloxane polymers with spiropyran
pendant groups for optical silver and iron(III) ion detection.
Tao et al. (2016) extended the use of spiropyran derivatives
to mode-1 electrochemical detection of fluoride. Future
developments in synthesizing small molecule semiconductors
as polymer pendant functionalities would help establish their
viability in mode-1 electrochemical detection, expanding our
ever-growing “library” of organic semiconductors for
electrochemical biosensors.
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