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Characterization of γ‑H2AX foci 
formation under alpha particle 
and X‑ray exposures for dose 
estimation
Ui‑Seob Lee, Dong‑Hyun Lee & Eun‑Hee Kim*

DNA double-strand break (DSB) induction is one of the phenotypes of cellular damage from radiation 
exposure and is commonly quantified by γ-H2AX assay with the number of excess fluorescent foci 
per cell as the main component. However, the number of foci alone may not fully characterize the 
state of DNA damage following exposures to different radiation qualities. This study investigated 
the feasibility of utilizing the focus size distribution and dephosphorylation rate of γ-H2AX to 
identify the type of causative radiation and dose. Human lung epithelial cells and mouse vascular 
endothelial cells were used to observe the expression changes of γ-H2AX foci due to alpha particle 
and X-ray exposures. Results showed that the average number of excess foci per cell linearly increased 
with the dose. The focus size distribution showed a consistent pattern depending on the causative 
radiation type. Three criteria for the identification of causative radiation type were derived from 
experimental focus size distributions and were validated in blind testing with correct identification 
of 27 out of 32 samples. The dose could be estimated based on the proportionality constant specific 
to the identified radiation type with a difference of less than 15% from the actual value. The different 
dephosphorylation rates of γ-H2AX produced from alpha particle and X-ray exposures were effectively 
utilized to determine the individual dose contributions of alpha particles and X-rays under mixed beam 
exposure. Individual doses were estimated to have differences of less than ~ 12% from actual values.

Radiation affects cells in various ways, including DNA damage. DNA double-strand break (DSB) is one of the 
key indicators of biological damage and is mainly detected by γ-H2AX immunofluorescence detection assay. The 
γ-H2AX signals expressed as bright spots (foci) through fluorescence microscopy indicate DNA DSB produc-
tion, and each γ-H2AX focus corresponds to a single DNA DSB production site at low linear energy transfer 
(LET) radiation exposure. The number of those spots (γ-H2AX foci) reflects DNA DSB quantity1 and linearly 
increases with the radiation dose2,3.

High-LET radiation is more effective in causing DNA damage than low-LET radiation. However, the number 
of foci induced by high-LET radiation was not significantly different from that by low-LET radiation for the same 
dose4–6, and more foci were observed from low-LET radiation exposure than from high-LET radiation exposure 
for the same dose7,8. High-LET particles deliver energies at a high density and thus form closely spaced foci9 
that may overlap and be counted as one focus10. The γ-H2AX focus containing overlapping foci is larger than 
an isolated single focus. Since alpha particles can deliver a high dose even with fewer particles, the fluence is 
much lower than that of photons at the same dose. Thus, fewer γ-H2AX foci can be observed. In consequence, 
the superior efficiency of high-LET radiation in inducing DNA damage can be identified with large γ-H2AX 
foci rather than with a large number of foci.

A γ-H2AX focus formed with clustered DSBs may be distinguished from an isolated single focus in dephos-
phorylation rate. After DSB repair, the nearby γ-H2AX proteins are dephosphorylated, and the number of 
γ-H2AX foci decreases2. The dephosphorylation rate indicates the DNA repair capacity and inversely corre-
sponds to the radiosensitivity of cells11,12. Clustered DSBs are less suitable for repair than a simple DSB13. The 
foci generated by high-LET radiation showed a slower reduction over time compared with those produced by 
low-LET radiation4,8,14–16. Alpha particles of high-LET most probably cause complex or dense DNA damages.
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This study aims to investigate the feasibility of judging the causative radiation type and estimating the dose 
based on the pattern of γ-H2AX foci formation and dephosphorylation. The size distribution and dephospho-
rylation rate of γ-H2AX foci were chosen as the key parameters.

Results
γ‑H2AX foci production.  Figure 1 presents the numbers of excess foci per cell (FPC) in BEAS-2B and 
SVEC4-10EHR1 cells irradiated with alpha particles and X-rays at doses of 0.05–1 Gy. The numbers of spontane-
ous FPC in control BEAS-2B cells were 0.513 and 0.560 at alpha particle and X-ray experimental environments, 
respectively, and those in control SVEC4-10EHR1 cells were 0.572 and 0.569, respectively. The number of excess 
FPC measured an hour after irradiation increased with the dose in both cell lines from either alpha particle or 
X-ray exposure. No substantial difference in the number of excess FPC due to alpha particle and X-ray exposures 
was found in both cell lines. Data points of the number of excess FPC were fitted to linear functions with R2 
values over 0.95.

Foci data collected from alpha particle and X-ray exposures at doses of 0.05–1 Gy were characterized in terms 
of size distribution. The cells had an hour of repair time. The excess foci were registered for each size group. 
Figure 2 shows the percentage of the number of excess FPC belonging to individual size groups in BEAS-2B 
cells (Fig. 2a–g) and SVEC4-10EHR1 cells (Fig. 2i–o). Figure 2h,p present the size distributions of spontane-
ous foci in control BEAS-2B and SVEC4-10EHR1 cells, respectively. The asterisks indicate the size groups with 
significantly different (p < 0.05) percentage depending on the radiation type. For BEAS-2B cells, the radiation 
type-dependency of the size distribution is not substantial at low doses but becomes apparent with improved 
statistics at high doses (> 0.5 Gy). SVEC4-10EHR1 cells responded with less significant dependency of the size 
distribution on the radiation type compared with BEAS-2B cells. For both cell lines and at all doses, the size 
distribution due to alpha particle exposure shifted to large size groups compared with that due to X-ray exposure. 
Table 1 summarizes the average sizes of foci expressed in both cell lines due to alpha particle and X-ray exposures. 
At doses between 0.2 and 1 Gy, the mean foci sizes significantly differed (p < 0.05) between alpha particle and 
X-ray exposures in both cell lines. For each radiation type, the average foci size was consistent regardless of dose.

γ‑H2AX dephosphorylation rate.  Figure  3 shows the normalized numbers of excess γ-H2AX FPC 
decreasing over time in BEAS-2B and SVEC4-10EHR1 cells after irradiation at 0.2, 0.5 and 1 Gy with alpha 
particles and X-rays. Regardless of dose level, the data points for each cell line converged to the same curve 
specific to the radiation type. Figure 4a,b present the fitting curves specific to individual radiation types for 
BEAS-2B and SVEC4-10EHR1 cell lines, respectively. Table 2 lists the constants for the fitting functions of a 
standard form A1e

−t/B1+A2e
−t/B2+A3e

−t/B3 where Bi is the individual dephosphorylation rate, and Ai indicates 
the corresponding contribution to the total number of excess γ-H2AX foci. The value of (ln 2 × Bi) is the half-
life for loss of excess γ-H2AX foci with the corresponding dephosphorylation rate. In both cell lines, the loss of 
excess γ-H2AX foci was observed within a day after irradiation. γ-H2AX dephosphorylation proceeded faster in 
the cells exposed to X-rays than in those exposed to alpha particles with smaller Bi values (0.557, 6.04 < 7.53 for 
BEAS-2B and 2.27 < 5.74 for SVEC4-10EHR1).

Discussion
Number of γ‑H2AX foci as a dose index.  Figure 1 depicts the linear proportionality of the number 
of excess γ-H2AX foci to radiation dose of up to 1 Gy. The specificity of proportionality constant (slope of the 
fitting line) to the radiation type is discernible, but the difference is not significant (p > 0.05). Other studies4–6 

Figure 1.   The numbers of excess γ-H2AX foci per cell in (a) BEAS-2B cells and (b) SVEC4-10EHR1 cells due 
to exposures to alpha particles (squares) and X-rays (circles) at 1 h post-irradiation.  Linear fitting was made 
for each data set from exposures to alpha particles (solid) and X-rays (dashed) (R2 > 0.95). The slopes are given 
in “the number of excess foci per cell per Gy”. Each data point was obtained from four independent experiments.



3

Vol.:(0123456789)

Scientific Reports |         (2022) 12:3761  | https://doi.org/10.1038/s41598-022-07653-y

www.nature.com/scientificreports/

Figure 2.   The size distributions of excess γ-H2AX foci in BEAS-2B (a–g) and SVEC4-10EHR1 (i–o) cells 
exposed to 0.05 to 1 Gy of alpha particles and X-rays at 1 h post-irradiation as compared to the size distributions 
of spontaneous γ-H2AX foci in control BEAS-2B (h) and SVEC4-10EHR1 (p) cells. The data was collected an 
hour after irradiation. The asterisks indicate the size groups for which the percentage significantly (p < 0.05) 
differs depending on the radiation type. Each data point was obtained from four independent experiments.
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Figure 2.   (continued)
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Figure 2.   (continued)
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observed minimal difference in the number of foci upon exposure to X-ray and alpha particles. Given that alpha 
particles have larger relative biological effectiveness than X-rays5, the number of foci alone cannot convey the 
radiation quality.

Size distribution of γ‑H2AX foci.  Biological effectiveness in terms of DNA DSB production cannot be 
estimated by the amount of foci formation. Focus size could indicate the severity of cellular response with differ-
ential data between alpha particle and X-ray exposures. The size of γ-H2AX foci in relation to radiation quality 
has been widely reported. Leatherbarrow et al.4 showed that alpha particles produce 1.5 times larger foci than 
γ-rays (0.3 μm2 due to alpha particles and 0.2 μm2 due to X-rays), and Antonelli et al.8 stated 66% size difference 
(2.1 μm2 due to alpha particles and 1.26 μm2 due to X-rays). Foci generated with lithium and nitrogen ions are 
twice larger than those with low-LET radiations7,17. With regard to the difference in the average size of γ-H2AX 
foci, our observation is consistent with previous works. The average size of foci due to alpha particle exposure 
was approximately 40–50% larger than that due to X-ray exposure (Table 1). The present study further shows 
that the causative radiation is distinct in the size distribution of γ-H2AX foci (Fig. 2). At doses up to 1 Gy, both 
cell lines expressed more foci in small size groups when exposed to X-rays than alpha particles. Both cells also 
expressed greater portions of foci in large size groups when exposed to alpha particles than X-rays. For foci 
expressed at 0.05 Gy, the size distribution pattern was inconsistent. Large foci are formed due to clustered DNA 
DSBs, which indicate high biological effectiveness18.

Large γ-H2AX foci from high-LET radiation exposure are generated due to the overlap of nearby foci or 
complex DNA damage. In experiments with cells in vitro and high-LET particles delivered perpendicular to the 
cell layer, the microscope views the cells in parallel to the beam track inside the cells unless the cells are detached 

Figure 2.   (continued)
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Table 1.   The average sizes of γ-H2AX foci expressed in BEAS-2B and SVEC4-10EHR1 cells due to alpha 
particle and X-ray exposures at doses of 0.05 to 1 Gy. Percent difference (3) = {(1) − (2)}/(2) × 100. p value (4) 
from two-tailed Student’s t-test with (1) and (2).

Cell Dose (Gy)

Average size of foci (μm2)

Difference (%) p valueAlpha particles X-rays

BEAS-2B

0.05 1.37(1) ± 0.45 1.11(2) ± 0.20 23.4(3) 0.62(4)

0.1 1.31 ± 0.09 1.05 ± 0.11 24.8 0.12

0.2 1.64 ± 0.12 1.13 ± 0.07 45.1 0.01

0.35 1.56 ± 0.04 1.10 ± 0.06 41.8 0.03

0.5 1.64 ± 0.10 1.15 ± 0.13 42.6 0.03

0.75 1.57 ± 0.15 1.04 ± 0.05 51.0 0.06

1 1.64 ± 0.12 1.12 ± 0.05 46.4 0.01

SVEC4-10EHR1

0.05 1.27 ± 0.04 1.07 ± 0.07 18.7 0.01

0.1 1.73 ± 0.23 1.02 ± 0.06 69.6 0.05

0.2 1.56 ± 0.06 1.07 ± 0.04 45.8  < 0.01

0.35 1.56 ± 0.04 1.12 ± 0.02 39.3  < 0.01

0.5 1.62 ± 0.09 1.12 ± 0.16 44.6 0.04

0.75 1.50 ± 0.08 1.16 ± 0.07 29.3 0.03

1 1.55 ± 0.09 1.00 ± 0.07 55.0 0.03

Figure 3.   The normalized numbers of excess γ-H2AX foci per cell over time in (a) BEAS-2B and (b) SVEC4-
10EHR1 cells irradiated at 0.2, 0.5, and 1 Gy with alpha particles and X-rays. Each data point was obtained from 
four independent experiments.
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from and reattached to the dish bottom19–21. In this view direction, the foci aggregated near the straight track of 
an alpha particle are visualized as a single large focus4,6–8,17. When the irradiation direction is not perpendicular 
to the cell layer, a microscope views the clustered γ-H2AX foci, that encompass multiple, small foci closely 
located along the track of a charged particle, and the distant simple foci attributed to low-LET delta-rays22,23.

In this study, cells were exposed to alpha particles in one direction from the bottom, but were realigned on 
a slide glass via cyto-centrifugation after exposure. When the microscope viewed the cells on the slide glass, 

Figure 4.   The normalized numbers of excess γ-H2AX foci per cell over time in (a) BEAS-2B and (b) SVEC4-
10EHR1 cells irradiated with alpha particles and X-rays. Each data point was obtained from four independent 
experiments.

Table 2.   The constants for exponentially decaying fitting functions of a standard form 
A1e

−t/B1+A2e
−t/B2+A3e

−t/B3. *Bi’s and (ln 2 × Bi)’s in hr.

Cell line Radiation

Constants*

A1 B1 ln 2 × B1 A2 B2 ln 2 × B2 A3 B3

BEAS-2B
Alpha particles 0.435 7.53 5.22 0.273 3.08 × 104 2.13 × 104 0.288 4.12 × 10146

X-rays 0.197 0.557 0.386 0.603 6.04 4.19 0.200 3.85 × 1086

SVEC4-10EHR1
Alpha particles 0.462 5.74 3.98 – – 0.548 1.07 × 10141

X-rays 0.628 2.27 1.57 – – 0.383 98.1
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the alpha tracks in the hit cells were oriented in a random direction. Hence, the foci formed along the alpha 
track could be viewed separately. The average size of foci measured in the present work was consistent with that 
reported in other studies where cells were visualized without realignment after irradiation. Hence, we conclude 
that clustered or simple individual γ-H2AX foci formed due to alpha tracks have little overlap in microscopic 
images taken in the track direction. In addition, the average size of foci was almost unchanged at doses of 
0.2–1 Gy (Table 1), implying that the dose is reflected in the total number of foci, not in their size. Figure 1 

Figure 5.   Judgment of the causative radiation type based on γ-H2AX foci size distribution by three criteria: 
(a) the average size of foci, (b) the percentage of foci that belong to two smallest groups and (c) the ratio of the 
number of foci per cell in the smallest group to that in the fourth smallest group. Three criterion values from 
alpha particle (black filled squares) and X-ray (red filled circles) exposures for each of 16 BEAS-2B (a-1,b-1,c-1) 
and 16 SVEC4-10EHR1 (a-2,b-2,c-2) test samples are displayed in contrast to the reference values (black and 
red lines for alpha particle and X-ray exposures, respectively). Arrows point to wrong judgments.
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depicts the dose-dependency of the number of excess foci. Given that individual foci represent individual spots 
of DNA damage, large foci are most likely due to clustered DNA damage.

The foci size distribution would change due to dephosphorylation of γ-H2AX over time after radiation 
exposure8,15 and hence the quantitative comparison may perform differently depending on the time-point of 
foci analysis. Since simple DSBs (indicted by small foci) are more repairable than clustered DSBs (indicated by 
large foci)8,10, it is presumed that the size distribution shifts to larger groups over time, similar to the result in 
Costes et al.10.

Feasibility test of identifying the causative radiation type and dose based on the focus size 
distribution.  Figure 2 depicts a consistent pattern in both cell lines, that is, the γ-H2AX foci shifted to large 
size due to alpha particle exposure. Table 1 shows that the average size of γ-H2AX foci due to alpha particle 
exposure was larger than that due to X-ray exposure. The average size of foci in each cell line varied with the 
causative radiation type but remained approximately the same at doses between 0.2 and 1 Gy. In this section, the 
feasibility of identifying the causative radiation type based on the cell-specific reference focus size distribution 
was discussed.

The following observation points were chosen as criteria to identify the causative radiation: ① the average 
size of foci, ② the percentage of foci that belong to the two smallest size groups (0.205–0.823 μm2) and ③ the 
ratio of the number of excess FPC in the smallest group (0.205–0.463 μm2) to that in the fourth smallest group 
(1.29–1.85 μm2). The reference value related to each criterion was derived from the cell-specific size distributions 
upon 0.2–1 Gy exposure as shown in Fig. 2. Black and red lines in Fig. 5 indicate the cell-specific (BEAS-2B 
in a-1, b-1 and c-1; SVEC4-10EHR1 in a-2, b-2 and c-2) reference values relating to alpha particle and X-ray 
exposures, respectively. Significant differences between the reference values for alpha particle (black line) and 
X-ray (red line) exposures were confirmed at 99% confidence level (p values < 0.0007) in all six categories (three 
criteria per cell line × 2 cell lines) by a two-tailed t-test.

The causative radiation type can be determined as follows: (1) when cells (BEAS-2B or SVEC4-1EHR1) are 
exposed to unknown radiation, three criterion values of ①, ② and ③ are derived by analysing the size dis-
tribution of γ-H2AX foci in the irradiated cells; and (2) the causative radiation is judged by the proximity of a 
sample criterion value to the corresponding reference value. In the present study, sixteen sample sets of focus size 
distributions for each of BEAS-2B and SVEC4-10EHR1 cells were prepared to demonstrate the scheme. Black 
and red dots in Fig. 5 are the criterion values derived from test samples. The arrows indicate the test samples 
that were judged wrong in blind testing. Correct judgment of the causative radiation type was made by all three 
criteria, for 81% (13 out of 16 cases) of test sets with BEAS-2B cells and 87% (14 out of 16 cases) of test sets with 
SVEC4-10EHR1 cells.

The proportionality of the number of excess γ-H2AX FPC to dose was confirmed. The approximate radiation 
type-specific proportionality constants for BEAS-2B and SVEC4-10EHR1 cells are shown in Fig. 1 as slopes in 
units of the number of excess FPC per Gy. After the causative radiation type is identified, the dose can be esti-
mated based on the number of excess γ-H2AX FPC according to the corresponding linear fitting function in 

Figure 6.   Mean dose estimates for test samples according to the radiation type-specific linear fitting functions 
in Fig. 1 in comparison with true doses: (a) BEAS-2B and (b) SVEC4-10EHR1 cells. Each error bar indicates 
one standard error of the estimated dose. Percent difference of the mean dose estimate from the true dose is 
written next to the bar. Each mean dose estimate was obtained from three to five independent experiments.
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Fig. 1. Figure 6 presents the estimated doses from 16 test sample sets for each cell line in comparison with the 
actual doses. The estimated dose differed by less than 15% from the actual dose.

γ‑H2AX dephosphorylation rate.  The repair rate of DSBs implies the severity of cellular damage. Repair 
becomes difficult when a large number of DNA DSBs are generated locally. Accordingly, high-LET radiations 
induce slower DNA repair than low-LET radiations. In the report of Ugenskiene et al.15, helium-3 particle and 
X-ray exposures resulted in foci half-lives of approximately 10.7 and 2.9 h, respectively. The residual fraction of 
initial γ-H2AX foci was around 40% at 24 h after helium-3 particle exposure. Antonelli et al.8 found that the half-
life of γ-H2AX foci upon X-ray exposure was less than 2 h, and that upon alpha particle exposure was between 4 
and 8 h. In addition, approximately 30% of γ-H2AX foci remained after alpha particle exposure. Jezkova et al.24 
confirmed a half-life between 2 and 4 h from γ-ray exposure and a remaining signal ratio of around 85% even at 
4 h after Boron-11 and Neon-20 particle exposures.

In this study, BEAS-2B cells showed the shortest half-lives of 5.22 h when exposed to alpha particles and 
0.386 h when exposed to X-rays (ln 2 × B1 values in Table 2). Under X-ray exposure, DSB repair proceeded with 
the dominant (A2 = 0.603) half-life of 4.19 h. SVEC4-10EHR1 cells showed the shortest half-lives of 3.98 h when 
irradiated by alpha particles and 1.57 h when irradiated by X-rays. Foci remain after 24 h in the portions (Ai in 
Table 2) that correspond to the long half-lives (ln 2 × Bi ≫ 24 h in Table 2).

Asaithamby et al.25 showed that the repair rate was constant from 10 mGy to 1 Gy of γ-ray doses. Rothkamm 
and Lobrich26 also observed no difference in DNA DSB repair rate at X-ray exposures of 20 mGy to 2 Gy, except 
for an very slow DNA repair rate at 1.2 mGy. Dose independent repair rate was confirmed also at high doses 
of 3–90 Gy27,28. By contrast, Neumaier et al.29 reported a meaningful change in DSB repair rate due to different 
X-ray doses and mentioned that the repair rate varied depending on the number of DSBs present in a volume. 
This finding was indicative of the difficult repair of clustered DSBs. In the present study, no significant difference 

Figure 7.   The numbers of excess γ-H2AX foci per cell in BEAS-2B (a,b) and SVEC4-10EHR1 (c,d) cells 
observed over time at 0, 1, 2, 4, 6, 12, and 24 h after mixed beam exposure. Cells were exposed to alpha 
particles at either 0.5 or 0.1 Gy and then to X-rays at 0.1, 0.2, or 0.5 Gy. Each data point was obtained from four 
independent experiments.
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in dephosphorylation rate (or repair rate) was observed after exposure at three doses of 0.2, 0.5 and 1 Gy (Fig. 3). 
We conclude that DSB repair rate is affected by the DNA damage concentration in a limited volume, and the 
repair rate remains the same except at exposure to utmost doses.

Individual dose estimation based on dephosphorylation rate of γ‑H2AX.  Radiation causes DNA 
damages by directly transmitting energy to DNA or generating ROS around DNA. These physical or physico-
chemical processes are hardly interrupted by each other. The repair rate of each focus is also not obstructed by 
the presence of other foci. Hence, the total number of γ-H2AX foci would be equal to the sum of the numbers 
generated by individual radiations. In this study, dephosphorylation rate showed dependency on the causative 
radiation type, which determines the complexity of DNA DSBs. Consistent rates of γ-H2AX dephosphorylation 
were observed regardless of the number of γ-H2AX foci when exposed to the same type of radiation at different 
doses up to 1 Gy (Fig. 3). Dephosphorylation of γ-H2AX upon exposure to one type of radiation would proceed 
at its own rate, regardless of whether the neighbouring foci were formed by the same or different types of radia-
tion. These interpretations are supported by Staaf et al.6, who showed via γ-H2AX assay that alpha particles and 
X-rays affect cells in an additive way. Although some cellular responses following DNA damage were expressed 
in a different manner from additivity30, the total number of foci remained to be the sum of the numbers of 
γ-H2AX foci formed by individual radiation types.

Figures 7 shows the total numbers of excess γ-H2AX FPC in BEAS-2B (Fig. 7a,b) and SVEC4-10EHR1 
(Fig. 7c,d) cells observed at 0, 1, 2, 4, 6, 12, and 24 h after exposure to alpha particles at Dα (= 0.1, 0.5 Gy) and 

Figure 8.   Dose estimates of alpha particles and X-rays that fit the experimental data of excess γ-H2AX foci 
per cell in (a) BEAS-2B and (b) SVEC4-10EHR1 cells in Fig. 7 in comparison with the actual doses. Each error 
bar indicates one standard error of the estimated dose. Each dose estimate was obtained from four or more 
independent experiments.
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then X-rays at DX (= 0.1, 0.2, 0.5 Gy). Each data point was obtained from four independent experiments of mixed 
beam exposure. The expected numbers of excess foci attributed to each of alpha particle exposure at Dα and X-ray 
exposure at DX would decrease over time after irradiation according to Eqs. (1) and (2), respectively, where the 
values of Ai and Bi depend on the cell line and radiation type, as listed in Table 2.

Here kα and kX are the slopes for alpha particles and X-rays, respectively, as shown in Fig. 1.
Assuming that the actual doses of Dα and DX are unknown, the function in Eq. (3) was defined to obtain DFα 

and DFX values that best fit the data points in Fig. 7:

Each curve in Fig. 7 fitted the relevant data points with good correlations (R2 > 0.95). Figure 8 depicts the com-
parison between the derived values of DFα for alpha particles and DFX for X-rays and the corresponding actual 
doses Dα and DX under six different conditions of mixed beam exposure (0.1 or 0.5 Gy of alpha dose and 0.1, 
0.2, or 0.5 Gy of X-ray dose) for each cell line. Individual doses of alpha particles and X-rays were approximated 
by DFα and DFX , respectively, with less than 12.1% of error, except for the case of (0.1 Gy of alpha dose + 0.1 Gy 
of X-ray dose) where the individual dose estimates deviated significantly from the actual.

Application and limitations.  Conventional biological dosimetry, which examines the chromosomal 
abnormalities in blood lymphocytes, is useful in determining systemic exposure levels to penetrating gamma-
rays and neutrons. Chromosome abnormalities take 3–7 days to be observed31. The γ-H2AX assay has advantage 
of obtaining analysis results for a large amount of samples in a short time31. Compared to other methods, analysis 
can be performed with less labor and cost, so γ-H2AX assay can be actively used when many people are exposed 
to radiation. γ-H2AX assay can be utilized to classify the exposed individuals prior to other dosimetric meth-
ods. A limitation of the γ-H2AX assay is that the signal is not long-lasting31,32. Therefore, the γ-H2AX assay is 
practical for use as an early triage in a radiological emergency response system. The characteristics of γ-H2AX 
foci formation in terms of foci size and distribution may find use in mixed-beam exposure incidents where rapid 
determination of exposure levels via biopsy is required. The application is the theme of future studies.

In this study, the characteristics of γ-H2AX induction were investigated with 2D images of γ-H2AX foci. The 
cells became thinner than their original thickness (~ 5 μm) during dehydration, and the z-directional resolution 
was not sufficient to distinguish overlapping foci. The actual geometry of γ-H2AX foci, if obtained from 3D 
image analysis, could have further informed details of differences in foci size and distribution due to different 
radiation LETs.

Conclusion
γ-H2AX assay was adopted to measure DNA DSBs induced by X-ray and alpha particle exposures. The γ-H2AX 
foci were counted, and their sizes were measured. The average number of excess γ-H2AX foci formed by radia-
tion exposure was highly (R2 > 0.95) correlated with the dose. Size distribution was used to identify the causative 
radiation type. Radiation type (high or low-LET) was identified at more than 80% (27 out of 32 cases) correctness 
by employing the three criteria based on focus size distribution. The dephosphorylation rate of γ-H2AX was 
also specific to the radiation type. γ-H2AX dephosphorylation proceeded more slowly upon exposure to alpha 
particles than to X-rays. Owing to the radiation-type specific dephosphorylation rate of γ-H2AX, doses attributed 
to individual radiation types could be derived by examining the change rate of total number of γ-H2AX over 
24 h after mixed beam exposure. The doses of alpha particles and X-rays were estimated with an error of less 
than 12.1%, except for the mixed beam at minimum doses.

Methods
Cell lines and culture.  Experiments were performed with two cell lines, human lung epithelial cells (BEAS-
2B) [Catalog No. CRL-9609, American Type Culture Collection (ATCC), Manassas, VA, USA] and mouse 
vascular endothelial cells (SVEC4-10EHR1) (Catalog No. CRL-2161, ATCC). BEAS-2B cells were cultured in 
LHC-9 medium (Catalog No. 12680-013, Thermo Fisher Scientific, Waltham, MA, USA) with phenol red indi-
cator (Catalog No. PCS-999-001, ATCC). SVEC4-10EHR1 cells were grown in the mixture of 90% Dulbecco’s 
Modified Eagle Medium (DMEM) (Catalog No. SH30022.01, Hyclone, UT, USA) and 10% heat-inactivated fetal 
bovine serum (Catalog No. 30-2020, ATCC). BEAS-2B and SVEC4-10EHR1 cells in flasks were incubated at 
37 °C with 5% humidity and 10% CO2. Culture medium was changed at least three times a week. The cells were 
seeded on a 4 μm-thick Mylar-bottomed dish 1 day prior to irradiation.

Irradiation.  Cells were exposed to alpha particles and X-rays individually or were sequentially exposed in the 
order of alpha particles and X-rays. Alpha particle irradiation was conducted by using the SNU-ALPHACELL, 
the alpha particle irradiation system at Seoul National University (SNU) made for studying cellular response to 
alpha emissions from natural sources21. Cells were exposed to alpha particles emitted from an Americium-241 
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disc source at a distance of 30 mm. X-ray exposure was made in the SNU-HARDX facility33, where the YXLON 
450-D08 beam tube (Germany) operated at 150 kVp and 3.60 mA. Both alpha particle and X-ray exposures were 
made at a constant rate of 0.356 Gy/min to deliver doses up to 1 Gy. One of the authors performed a blind test to 
identify the radiation type and dose with the irradiated samples.

γ‑H2AX assay.  Cells were detached from Mylar dishes 0 to 24  h after irradiation. Cells harvested from 
Mylar dishes were centrifuged to be attached onto a slide glass in the cyto-centrifuge (Catalog No. Rotofix 32A, 
Hettich, Tuttlingen, Germany). Hydrophobic barrier lines were drawn on the slide glass using a PAP pen to pre-
vent reagent loss during centrifuge operation. Samples were handled carefully to avoid cell loss during the entire 
process. The cyto-centrifugation process took 1 h. The detailed subsequent experimental process was described 
in Lee et  al.34. The attached cells were washed with PBST, the Dulbecco’s phosphate buffered saline (DPBS) 
(Catalog No. 14040-117, Gibco, Grand Island, NY, USA) containing 0.05% tween 20 (Catalog No. T9100-010, 
GenDEPOT), and fixed in 4% paraformaldehyde (Catalog No. 163-20145, Wako Pure Chemical Industries, Ltd., 
Japan). After fixation, the cells were washed twice with ice-cold PBST, permeabilized with 1% Triton X-100 
(Catalog No. T9500-010, GenDEPOT, TX, USA) solution for 10 min, washed again three times with PBST, and 
blocked with 10% bovine serum albumin (BSA) (Catalog No. A0100-010, GenDEPOT) in PBST. These samples 
were stained with anti-γ-H2AX phosphor S139 antibody (Catalog No. Ab2893, Abcam, Cambridge, UK) and 1% 
BSA in PBST solution. After 1 h, the cells were washed with PBST three times and treated with goat anti-rabbit 
IgG H&L fluorescein isothiocyanate antibody (Catalog No. Ab6717, Abcam) in 1% BSA solution for 1 h. After 
immunostaining, the cells were washed three times with PBST, and stained with 4′6-diamidino-2-phenylindole 
in a fluoroshield mounting medium (DAPI) (Catalog No. Ab104139, Abcam). A cover slip was put over the cells 
with care not to let air bubbles in. At least three independent experiments were conducted for one data value, 
and about 500 to 700 cells per individual sample were analyzed.

Foci counting and size measurement.  Images of γ-H2AX foci were taken using a fluorescence micro-
scope (Catalog No. BX53F, Olympus, Tokyo, Japan) with a 40 × UplanSApo objective. The number of γ-H2AX 
foci per cell (FPC) was counted by employing the open-source software “CellProfiler” (version 2.1.1, Broad 
Institute’s Imaging Platform, USA). The number of excess FPC in treated cells was obtained by subtracting the 
number of FPC in control cells from the count in treated cells. Dephosphorylation of γ-H2AX was examined by 
counting the foci at different elapsed time points of 0, 1, 2, 4, 6, 12, and 24 h after radiation exposure.

The CellProfiler formed images with a pixel size of 0.25595 μm. The area of each focal image in the cells 
was measured and classified into nine groups, ranging from 0.205 μm2 to 16.7 μm2. Foci in control cells were 
also sorted by size. For each size group, the number of foci in control cells was subtracted from the number of 
foci in treated cells to obtain the number of excess foci in the treated cells. A normalized size distribution was 
determined with the numbers of excess foci sorted by size for each radiation treatment condition (radiation type 
and dose) (Supplementary Fig. 1).

Statistical analysis.  Two-tailed student’s t-test was performed to determine whether the difference 
between observed values is significant to recognize the influence of treatment and its condition. The significance 
was judged at 95% confidence level of null hypothesis (p < 0.05).
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