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Mild Cognitive Impairment (MCI) is an intermediate stage between healthy and

Alzheimer’s disease (AD). To enable early intervention it is important to identify the MCI

subjects that will convert to AD in an early stage. In this paper, we provide a new

method to distinguish between MCI patients that either convert to Alzheimer’s Disease

(MCIc) or remain stable (MCIs), using only longitudinal T1-weighted MRI. Currently, most

longitudinal studies focus on volumetric comparison of a few anatomical structures,

thereby ignoring more detailed development inside and outside those structures. In this

study we propose to exploit the anatomical development within the entire brain, as

found by a non-rigid registration approach. Specifically, this anatomical development is

represented by the Stationary Velocity Field (SVF) from registration between the baseline

and follow-up images. To make the SVFs comparable among subjects, we use the

parallel transport method to align them in a common space. The normalized SVF together

with derived features are then used to distinguish between MCIc and MCIs subjects. This

novel feature space is reduced using a Kernel Principal Component Analysis method,

and a linear support vector machine is used as a classifier. Extensive comparative

experiments are performed to inspect the influence of several aspects of our method on

classification performance, specifically the feature choice, the smoothing parameter in

the registration and the use of dimensionality reduction. The optimal result from a 10-fold

cross-validation using 36 month follow-up data shows competitive results: accuracy

92%, sensitivity 95%, specificity 90%, and AUC 94%. Based on the same dataset, the

proposed approach outperforms two alternative ones that either depends on the baseline

image only, or uses longitudinal information from larger brain areas. Good results were

also obtained when scans at 6, 12, or 24 months were used for training the classifier.

Besides the classification power, the proposed method can quantitatively compare brain

regions that have a significant difference in development between the MCIc and MCIs

groups.

Keywords: Alzheimer’s disease, Mild Cognitive Impairment (MCI), conversion, MRI, Stationary Velocity Field (SVF),

non-rigid Registration, parallel Transport, SVM classification
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1. INTRODUCTION

Alzheimer’s disease (AD), one of the most common cases of
dementia, is an age related degenerative brain disease. It is
usually diagnosed in people over 65 years old (Alzheimer’s
Association, 2014). Brookmeyer et al. (2007) pointed out that
the current number of AD patients worldwide will increase
fourfold by the year 2050, from 26.6 million to above 100
million. Early detection and treatment is necessary to slow down
the disease progress and decrease the societal cost of AD. If
early treatment could delay the disease onset or slow down
the disease progression by 1 year, this will yield almost nine
million fewer AD patients in the world by 2050 (Brookmeyer
et al., 2007). Different kinds of measurements and biomarkers
have been used in early detection and prediction of AD, e.g.,
structural brain MRI (Frisoni et al., 2010), metabolic brain
alterations measured by fluorodeoxyglucose positron emission
tomography (FDG-PET) (De Santi et al., 2001), and pathological
amyloid depositions measured from cerebrospinal fluid (CSF)
(Leon et al., 2007; Mattsson et al., 2009). Among all these
measurements, Magnetic Resonance Imaging (MRI) plays an
increasingly important role in early detection of Alzheimer’s
disease because of its non-invasiveness, availability, and high
sensitivity to change (Frisoni et al., 2010). Therefore, it is
commonly used as part of the clinical assessment for the
diagnosis of AD.

One of the key questions in Alzheimer’s disease research is to
understand the disease progression over a long period of time,
where it is desirable to find the trend before manifestation of
clinical symptoms. It is known that Mild Cognitive Impairment
(MCI) is an intermediate stage between healthy and diseased,
and possibly predicts the onset of Alzheimer’s disease. However,
not all MCI subjects develop AD. Based on whether the MCI
patient will convert to AD during a study, the MCI group is
typically divided into a stable group (MCIs) and a convertor
group (MCIc). A meta-analysis (Mitchell and Shiri-Feshki, 2008)
on 15 studies showed that the total number of patients who had
progressed to dementia in studies lasting less than 5 years was
27.4%, while the total number of patients who had progressed
to dementia by the end of the studies lasting up to 10 years
was 31.4%. The conversion usually happens within the first 3
years after being diagnosed as MCI and the conversion rate drops
dramatically in later years. Such a finding indicates that the MCIs
group not simply takes longer to convert. Therefore, to early and
sensitively detect AD, it is important to distinguish between cases
that convert fromMCI to AD and the cases that remain stable.

In the last 10 years, many cross-sectional structural MRI-
based methods have been proposed to automatically distinguish
between healthy controls (HC) and AD patients (Fan et al.,
2005, 2007, 2008b; Davatzikos et al., 2008; Klöppel et al., 2008;
Cuingnet et al., 2013), and some of them report a classification
accuracy as high as 90%. Although such methods have diagnosed
Alzheimer’s disease, it is still too late for treatment, since most
drugs approved by the U.S. Food and Drug Administration
(FDA) are more likely to have a significant impact in the early
stages of the disease (Crismon, 1994; Schneider et al., 2006;
Kozauer and Katz, 2013).

Davatzikos et al. (2009, 2011) extended cross-sectional image-
based classification to distinguish between MCIc and MCIs
subjects and directly use healthy and AD brain images to train
a classifier or regressor, and then use an AD-likeness score to
distinguish between MCIc and MCIs (Davatzikos et al., 2009,
2011). These methods can minimize the empirical error that
separates AD and HC subjects, but do not model the dynamic
information of brain changes from healthy to AD. Therefore,
such methods may fail to distinguish between MCIc and MCIs
subjects, since disease progression over time may be more
indicative than a static assessment at a fixed point in time.

Recently, methods were developed that learn a task-specific
classifier to detect MCI convertors using cross-sectional datasets,
which contain only one scan for each subject belonging to either
the MCIc or the MCIs group (Chupin et al., 2009; Misra et al.,
2009; Querbes et al., 2009; Cuingnet et al., 2011; Koikkalainen
et al., 2011; Westman et al., 2011; Wolz et al., 2011; Cho et al.,
2012; Eskildsen et al., 2013; Guerrero et al., 2014). Among these
methods, different kinds of features are extracted from the image
to train a discriminative model. Popular features include the
hippocampus volume (Chupin et al., 2009), cortical thickness
(Querbes et al., 2009; Westman et al., 2011; Wolz et al., 2011;
Cho et al., 2012; Eskildsen et al., 2013), voxel-basedmorphometry
(VBM) (Misra et al., 2009; Davatzikos et al., 2011) and tensor-
based morphometry (TBM) (Koikkalainen et al., 2011; Wolz
et al., 2011; Eskildsen et al., 2013). These methods also do
not to take the dynamic information of brain changes into
consideration. A second issue is the time at which the scan is
taken, which is somewhat random and frequently in a later stage
of the disease.

Since anatomical development in the brain is due to both
normal aging as well as Alzheimer’s disease progression (Lorenzi
et al., 2012), and since there is individual variation in brain
anatomy, it is hard to distinguish between MCIc and MCIs
from a single scan. Also, AD can be treated as an accelerated
aging process (Davatzikos et al., 2011), i.e., subjects with little
AD-related and more age-related development may have similar
anatomy as AD patients. Older subject are more similar to AD,
and the subject’s age at the baseline scan may introduce bias in
the decision.

To avoid such scan time bias, some methods have started to
include longitudinal image information. Zhang and Shen (2012)
and Liu et al. (2013) use longitudinal structure-wise volumetric
measurements as features for a sparse multi-task classifier.
However, these methods summarize the anatomical development
of the whole brain into a few scalar measurements and lose
detailed anatomical information. Also, they do not model how
the brain anatomy develops over time for the MCIc and
MCIs groups. Similarly, Lorenzi et al. (2015a) summarizes the
longitudinal change of each structure as a regional flux computed
from the longitudinal deformation between the baseline and
follow-up images. Fiot et al. (2012, 2014) directly use the
longitudinal deformation of the hippocampus to distinguish
between MCIs and MCIc, but without considering other brain
structures.

In this study, we propose a new method that encodes
the subject’s longitudinal information by pairwise non-rigid
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registration between its baseline and follow-up images, and
aligns this longitudinal information into a common space for
classification. Our method can both distinguish between MCIc
and MCIs subjects, as well as compute the mean developmental
trajectory of the brain anatomy over time, for each group. In
our approach, the development of the brain is represented by
the anatomical correspondence between the baseline and follow-
up scans from the same subject. In order to make the anatomy
of different subjects comparable, we use the Schild’s Ladder
method (Lorenzi and Pennec, 2013) to transport the anatomical
correspondence to a common template. A Support Vector
Machine (SVM) classifier is learned to separateMCIc fromMCIs.
Our method can additionally be used for groupwise analysis, and
compute the significant regions that develop differently between
the MCIc and the MCIs groups. To investigate the influence of
different parameters on the final result, we compare the effect
of parallel transport, template selection, registration parameters
and follow-up time on the final classification result. Our method
thus features dense as well as longitudinal information, and
can be used for classification as well as in studying groupwise
differences.

The remainder of this paper is structured as follows: we
first describe the dataset selection, image acquisition and
preprocessing in Section 2. In Section 3, we present the proposed
method in detail. The experiments and results are shown in
Section 4. We discuss the results and compare the proposed
method with state-of-the-art methods in Section 5. Finally, the
conclusions are given in Section 6.

2. MATERIALS

2.1. Subjects
All data used in this paper was obtained from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) (http://adni.loni.usc.
edu). The ADNI was launched in 2003 by the National
Institute on Aging (NIA), the National Institute of Biomedical
Imaging and Bioengineering (NIBIB), the Food and Drug
Administration (FDA), private pharmaceutical companies and
non-profit organizations, as a $60 million, 5-year public-private
partnership. The primary goal of ADNI has been to test whether
serial MRI, PET, other biological markers, and clinical and
neuropsychological assessment can be combined to measure the
progression of MCI and early AD. Determination of sensitive
and specific markers of very early AD progression is intended
to aid researchers and clinicians to develop new treatments and
monitor their effectiveness, as well as lessen the time and cost of
clinical trials.

The principal investigator of this initiative is Michael W.
Weiner, MD, VA Medical Center and University of California,
San Francisco. ADNI is the result of efforts of many co-
investigators from a broad range of academic institutions and
private corporations, and subjects have been recruited from over
50 sites across the U.S. and Canada. The initial goal of ADNI was
to recruit 800 subjects but ADNI has been followed by ADNI-GO
and ADNI-2.

We select and define MCI subjects according to the label
that is available for each subject for most of the visits: MCI,

MCI to dementia, or dementia. According to the ADNIMerge
file (https://adni.loni.usc.edu/wp-content/uploads/2012/08/
instruction-ADNIMERGE-packages.pdf)1, there are 837
subjects available that have either the label “MCI” or the label
“MCI to dementia” at baseline. From those subjects we select
only those that have a baseline scan, together with follow-up
scans at 6, 12, 24, and 36 months. We exclude subjects that have
a non-monotone diagnosis, for example going from MCI to
dementia to MCI again, resulting in 143 remaining subjects. We
further exclude subjects with only “MCI” or “MCI to dementia”
labels where the last visit has no diagnosis available, as these
subjects are considered unclear to belong to either the MCIs
or the MCIc group. This finally results in 110 remaining MCI
subjects. A subject is defined as stable if no visit is labeled as
dementia, and as a converter if the label dementia is present. We
then have 43 MCIs and 67 MCIc subjects.

The demographic characteristics of the selected study
population are summarized inTable 1. The diagnosis of each visit
is summarized in Table 2. We can see that some MCIc subjects
convert to AD later than 36 months. Although the maximum
considered time interval in our study is 36 months, we still treat
such subjects as MCIc. We can also see that no subject converted
to AD in the first 6 months after the baseline visit.

2.2. Acquisition and Preprocessing
All selected scans are T1-weighted 1.5T MR images acquired
with machines from Philips, Siemens or GE. Acquisitions
were made in different clinical centers across North America
according to the ADNI acquisition protocol (http://adni.loni.usc.
edu/methods/mri-analysis/mri-acquisition/). To enhance the
standardization among scans acquired from different clinical
sites and platforms, pre-processing and post-precessing is
made to correct certain image artifacts (Jack et al., 2008). In
our study, all the images downloaded from ADNI are from
the MP-RAGE sequence and pre-processed by ADNI. In the
ADNI pre-processing and image correction pipeline, images
from the Philips machine are intensity corrected by the N3
method (Sled et al., 1998), while images from Siemens or GE
machines are grad-warped, followed by B1 bias field correction
and N3 intensity non-uniformity correction. All images were
preprocessed through the same fully automatic pipeline, as
described by Coupé et al. (2015). Inside this pipeline, the
inhomogeneities are corrected by N3, the brain is extracted
by BEaST (Eskildsen et al., 2012), and the intensity is linearly
normalized to the MNI template intensity. After preprocessing
each image independently using these identical steps, all follow-
up images are registered to its baseline image using a similarity
transform (rigid plus isotropic scaling) with elastix (Klein
et al., 2010).

3. METHODS

In this section, we present the proposed method and briefly
describe how to perform a group analysis on the MCIc and MCIs

1The latest version of this file was updated in 2012, so it only contains part of the

data of the current ADNI dateset.
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TABLE 1 | Demographic characteristics of the studied longitudinal dataset (from ADNI).

Group Number Baseline age Gender Baseline MMSEa Follow-up MMSE

MCIc 67 74.4± 6.9 [55.1− 87.7] 43M / 24F 26.6± 1.7 [24− 30] 22.4± 4.5 [10− 30]

MCIs 43 75.5± 6.8 [57.8− 86.4] 35M / 8F 27.7± 1.9 [24− 30] 27.9± 2.1 [22− 30]

aMMSE means Mini-Mental State Examination.

TABLE 2 | Diagnosis distribution at each visit and MMSE of each group at each visit (in term of months).

Baseline 6 12 24 36 Last diagnosed visit

MCI 110 104 91 63 56 43

MCI to dementia 0 6 13 13 8 0

Dementia 0 0 6 34 46 67

MCIs MMSE 27.7± 1.9 27.9± 2.1 28.2± 1.8 27.7± 2.3 28.0± 2.1

MCIc MMSE 26.6± 1.7 25.4± 2.4 25.6± 2.4 23.6± 4.0 22.4± 4.5

groups. The proposed pipeline is summarized in Figure 1. First,
see Section 3.1, we describe how to represent the anatomical
development between the baseline and follow-up images using
LogDemons non-rigid registration (Vercauteren et al., 2009), and
how to normalize the anatomical development in a common
template space by building a Schild’s Ladder on the image
manifold. Second, see Section 3.2, we describe the features that
describe the anatomical development, a dimensionality reduction
step that uses kernel principle component analysis (KPCA),
and the Support Vector Machine (SVM) classification method.
Finally, group-wise analysis between the MCIc and the MCIs
group is detailed in Section 3.3.

3.1. Normalization of Anatomical
Development
3.1.1. Symmetric LogDemons Registration
In this work, the symmetric LogDemons method (Vercauteren
et al., 2009) is used to compute non-rigid diffeomorphic
transformations between baseline and follow-up scans to
estimate brain development, and also between different subjects
for normalization by parallel transport. Originating from the
Demons method (Thirion, 1998), symmetric LogDemons uses
the stationary velocity field (SVF) v to parameterize the
diffeomorphic deformation ϕ by the exponential map ϕ =

Exp(v), which is used to align the moving image F with the fixed
imageM. The following cost function is optimized:

v∗ = argmin
v

‖(F −M ◦ Exp(v))‖2

+ ‖(M − F ◦ Exp(−v))‖2 + Reg(v; σ ),
(1)

where the first two terms measure the dissimilarity of F and
M after forward and backward deformation, and the third
(Reg(v; σ )) regularizes the SVF by smoothing it with a Gaussian
kernel with standard deviation σ . The resulting stationary
velocity v∗ is the optimal solution that minimizes the above cost
function. According to Cachier et al. (2003), this problem can be
decomposed into an alternativeminimization problem, for which
a more efficient computation is proposed in (Vercauteren et al.,

2009). As proven in Lorenzi and Pennec (2013), the deformation
trajectory can be represented as a one-parameter geodesic path,
controlled by a virtual time parameter t:

ϕt(v) = Exp(v, t) = Exp(v× t). (2)

For t = 1 we obtain the deformation between fixed and moving
image.

3.1.2. Parallel Transport by Schild’s Ladder
It is not possible to directly compare SVFs from different subjects,
since they have different coordinate systems. It is therefore
necessary to normalize the SVFs to a common template space,
for which we employ the parallel transport method (do Carmo,
1992). In our approach, we use the Schild’s Ladder parallel
transport method (Lorenzi and Pennec, 2013) to deform the
subject space follow-up image I1 to its corresponding image
T1 in the template space, and compute the normalized SVF
by symmetric LogDemons registration from T0 to T1. The
Schild’s Ladder method is summarized by the following steps and
illustrated in Figure 2.

1. Compute the diffeomorphic deformation ϕT0→I1 to deform
the template image T0 to the follow-up image I1 in the subject
space, and the corresponding SVF vT0→I1 .

2. Define the half-space image P = T0 ◦ ϕ
T0→I1
0.5 .

3. Compute the diffeomorphic deformation ϕI0→P that deforms
the subject space baseline image I0 to image P.

4. Define the template space follow-up image T1 as the double

deformed subject baseline image as T1 = I0 ◦ ϕ
I0→P
2 .

5. Compute the SVF v that deforms T0 to T1, which transports
the subject’s anatomical correspondence into the template
space.

Lorenzi and Pennec (2013) proposed an alternative
implementation of Schild’s Ladder using the Baker-Campbell-
Hausdorf (BCH) approximation to work directly on the velocity
field. In this implementation, different subjects tend to have
different SVF amplitude, need a different number of BCH
approximation steps and possibly use multiple ladders. In this
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FIGURE 1 | Illustration of the proposed pipeline for longitudinal brain development analysis.

work, We use a computationally attractive approach that omits
the BCH approximation and requires only a single ladder per
normalization. However, the method proposed by Lorenzi and
Pennec (2013) could also be used in the proposed framework.
In our approach, the Schild’s Ladder is applied to each subject’s
baseline and follow-up image pair independently.

3.1.3. MCI Template Selection
In our study, a template image is needed for the transportation
of the SVFs. The template needs to be selected in an adaptive
and unbiased way to fit the study population and minimize the
registration error. In our approach, we use the multidimensional
scaling method to select the least biased template from the
baseline images of our study population, according to Park
et al. (2005), as shown in Figure 3. The selected image is an
approximation of the group mean image in the given image
manifold.

To learn the mean of a population, we first compute the
pairwise geodesic distances between two images i and j as di,j =
|vi,j|

2
2 =

∑
q∈I

〈vi,j(q), vi,j(q)〉, where vi,j is the SVF that aligns

these two images and 〈·, ·〉 denotes the inner product. The
multidimensional scaling (MDS) method is used to map each
high-dimensional geodesic distance on the image manifold into

a 2D Euclidean space. The optimal MCI template image is then
selected as the nearest neighbor of the arithmetic average in the
2D space, shown as the green dot in Figure 3. Compared to
other commonly used unbiased template construction methods
(Joshi et al., 2004; Lorenzen et al., 2005), this method is easy
to implement and very suitable for parallel computing. To
investigate the influence of a pre-defined general population
template and a study-specific template, in the experiments we
compare the MDS-based template with the commonly used MNI
template.

3.2. Classification
In our study, we use the linear support vector machine (SVM) as
the classificationmethod. Given the training set {fi, yi}, where fi is
the feature vector and yi is the label of subject i (MCIc or MCIs),
we compute the optimal linear SVMmodel {w, b} by minimizing
the cost function:

{w, b} = argmin
w,b

‖w‖22 + c

N∑

i= 1

max (0, 1− yi(〈w, fi〉 + b)), (3)

where {w, b} are the learned parameters of the linear model. The
feature(s) used in the SVM could be the normalized SVF itself
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FIGURE 2 | Using Schild’s Ladder to transport the SVF from subject space to a common reference space.

FIGURE 3 | Illustration of MDS-based template selection. Step 1: Compute a matrix containing the pairwise distances between globally aligned baseline images;

2: Map images into a low dimensional space (shown as blue circles) using MDS; 3: Find the image (shown as the green dot) closest to the mean point (shown as red

star) in the low dimensional map.

(shown as the green arrow in Figure 2), or features derived from
it, or a combination of them. In this paper, we only use the SVF of
a single time interval, i.e., from baseline to one of the follow-up
images. We consider the following additional features:

• Jacobian Determinant (JD): defines the local volume ratio
before and after registration. If it is larger than 1, the local
volume increases and vice versa.

• Divergence (Div): locally defines how much volume flows in
(Div > 0) or out (Div < 0).

• Geodesic Length (GL): defines the path length that a particle
travels in the deformation trajectory.

• Deformation (Def): the deformation field generated from the
normalized SVF using the exponential map φ = Exp(v).

• Combination of features: concatenate all these features into a
longer feature vector.

Note that instead of the normalized SVF (green arrow in
Figure 2) we could have also used the standard SVF that does not
employ Schild’s ladder (red arrow in Figure 2) as a distinguishing
feature. We will compare the two in the experiments.

For our particular application the feature dimensionality of
the original feature gi ∈ R

D described above for each subject
i is much larger than the number of training samples N, i.e.,
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the number of subjects. To reduce the effect of overfitting on
the classifier, we therefore employ dimensionality reduction on
the original feature vector gi ∈ R

D by mapping it to a space
of reduced dimension thereby obtaining a new feature vector
fi ∈ R

d, d ≪ D. For each subject i, the original feature gi ∈ R
D

is first z-score normalized, after which it is downsampled with a
factor of 4 in each direction using nearest neighbor interpolation,
and only voxels within the brain mask are considered. This yields
features hi ∈ R

D2 . Since all features are based on the normalized
SVF, they are aligned to the template space, and there is therefore
no need to normalize them again as for example used in VBM.
Secondly, we use a dimensionality reduction method based on
Principal Component Analysis (PCA) for its simplicity, thereby
mapping the downsampled feature hi to a low dimensional
space fi ∈ R

d, d ≪ D2. As the standard PCA approach is
computationally unattractive for large feature sizes, we use the
Kernel PCA (KPCA) approach (Schölkopf et al., 1997). For
KPCA the kernel K(i, j) represents the pairwise relation between
subjects i and j in the high dimensional space R

D2 . For the linear
case, the kernel is chosen as the inner product between two
feature vectors hi and hj: K(i, j) = 〈hi, hj〉. For the Gaussian case,

K(i, j) = exp(−
(hj − hi)

2

2θ2
), where θ is the standard deviation of the

Gaussian kernel. A standard PCA is then applied to the kernel K
to obtain a low-dimensional representation fi, by projecting the
kernel representation K(i, :) = {K(i, 1), · · · ,K(i,N)} ∈ R

N to the
computed eigen vectors. This low-dimensional representation fi
is then used in the SVM, see Equation (3). We test the with linear
as well as the Gaussian kernel in the experiments below.

3.3. Group Analysis
Given a set of normalized SVFs from two clinical groups, we
can find the regions that differ in anatomical development,
by computing the voxelwise two-sample Hotelling’s T-square
test. To compute the Hotelling’s T-square test, we treat SVFs
from the two different groups (MCIc and MCIs) as two vector
distributions. For each voxel position, we have two matrices of
size n1 × 3 and n2 × 3, where n1 and n2 are the number of
subjects in the MCIc and MCIs group, respectively. Each row
in the matrix stores the SVF at this position, which is also one
element in the vector distribution.

4. EXPERIMENTS AND RESULTS

In this section, we perform several experiments to investigate
the influence of different aspects of our method on the
classification results and compare the MCIc and MCIs groups.
First, we experimentally validate different SVF smoothing
strengths σ for the LogDemons registration. Second, we compare
the performance of the different features, with and without
dimensionality reduction. Third, we assess the effect of parallel
transport on the classification. Fourth, the proposed MDS-based
template is compared with the well-known MNI template, and
the result shows that a study-specific template performs much
better than a pre-defined general population template. Except for
this experiment, all experiments use theMDS-based template. To
prove the importance of both longitudinal and dense information

as feature characteristics, we compare our results with two
alternative type of features: the gray matter density map at
baseline from (Klöppel et al., 2008) and the regional flux feature
proposed by Lorenzi et al. (2015a). In our re-implementation
these two methods are not exactly the same as the original
ones, we only use the proposed features. The same linear SVM
classification method and the same dataset are used. We also
investigate the influence of follow-up time by using different
follow-up times (6, 12, 24, and 36 months). We compute a
statistical distance map between the MCIc and MCIs group. This
map highlights the regions that develop differently between the
MCIc and the MCIs groups.

In the experiment’s default setting, for each subject, the follow-
up image is first rigidly registered to the baseline image, and then
the subject space is globally aligned to the template space using
affine registration, both using elastix (Klein et al., 2010). For
the LogDemons registration method, we use a multi-resolution
approach with the default number of iterations (15 iterations in
the first resolution, 10 iterations in the second resolution and
5 iterations in the highest resolution) and default second order
BCH approximation (Hernandez et al., 2009; Vercauteren et al.,
2009). For KPCA using the Gaussian kernel we use a standard
deviation equal to 1.

The liblinear toolbox (Fan et al., 2008a) is used for linear SVM
classification. The parameter c used in the SVM classification is
chosen by a grid search over the discrete set {10−3, 10−2, 10−1,
0.5, 1, 2, 5, 10, 50, 102, 103}.

We use 10-fold cross-validation to test the performance of
the proposed classification method, and use all the images for
group analysis. In our classification experiment, we use accuracy
(ACC), sensitivity (SEN), specificity (SPE), F1 score and area
under the ROC curve (AUC) to measure the performance of the
classification.

4.1. Smoothing Parameter in LogDemons
Since the LogDemons registration quality is influenced by the
smoothing parameter σ , we inspect the influence of σ on the
final classification accuracy using σ ∈ {0, 1.5 (default), 3, 6}. For
each σ , we recompute Schild’s Ladder, and train the linear SVM
classifier on the SVF feature with linear KPCA dimensionality
reduction. The result of the 10-fold cross-validation with
different σ is shown in Figure 4.

We can see that when σ = 0, both the ACC and AUC is lower
than the other settings of σ . As σ increases from 1.5 to 6, both
ACC and AUC decrease, but are still better than σ = 0. The
setting σ = 1.5 gives the best classification performance, and is
used in further experiments.

In this experiment, we perform classification based on the
SVF feature itself, the derived features (JD, GL, Div, Def) and
the combination of all the features. For each feature, we test
KPCA with the linear as well as the Gaussian kernel. The
resulting ROC curves are shown in Figure 5. We can see that for
each single feature, in general the linear kernel performs better
than the Gaussian kernel, and also is better than the original
feature without KPCA. For the combination of all features, the
Gaussian kernel performs substantially better than the linear
kernel and the original feature without KPCA. While for single
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FIGURE 4 | Classification result of the proposed method using the SVF

feature with varying SVF smoothing parameter σ . KPCA with a linear

kernel is used, employing the MDS-based template.

features the independence assumption of a linear kernel may
still approximately hold, for the combination of related features
(all derived from the SVF) this does not hold anymore. In that
case the Gaussian kernel may be more appropriate, and indeed
performs better. It can also be observed that the SVF and the
deformation are the best performing single features, and that the
combination of all features, using the Gaussian kernel, performs
best overall.

4.2. With and without Parallel Transport
As discussed before, parallel transport is a necessary step to align
the subject’s features into a common space. Here, we compare
the SVF feature with and without normalization by parallel
transport, shown as the green and red arrows in Figure 2. We
show the effect of normalization both on the original features, as
well as on the dimensionality reduced version by KPCA using a
linear kernel (this was the best kernel for SVF as a single feature,
see Figure 5). The resulting ROC curves are shown in Figure 6.
From this figure it is clear that the normalization by parallel
transport is a necessary step for both theoretical and performance
benefits.

4.3. Influence of Template Space
Although the template space selection is not the main goal of this
work, we briefly compare the template image selected by theMDS
method, see Section 3.1.3, with the MNI152 template (Fonov
et al., 2009). For both templates, we use the same LogDemons
registration parameters (σ = 1.5), and perform classification
using the combination of all features and the Gaussian kernel for
dimensionality reduction. The resulting ROC curve is shown in
Figure 7.

4.4. Comparison with Alternative Methods
To compare with other methods fairly, we use the same linear
SVM classification on the same dataset. For this experiment, we
re-implement the dense gray matter density feature computed

from the baseline image (Klöppel et al., 2008) and the sparse
regional flux feature (Lorenzi et al., 2015b) as alternative
methods. Our re-implementation is slightly different from
the original paper. For the gray matter density feature, we
computed the voxel-based morphometry (VBM) feature using
the SPM8 toolbox (http://www.fil.ion.ucl.ac.uk/spm/software/
spm8/), while in Klöppel et al. (2008) the authors use SPM5. For
the sparse regional flux feature, we used structural flux, which
is also used in Lorenzi et al. (2015b) and computed as the sum
of divergences inside brain regions. Like Lorenzi et al. (2015b),
we use the Automated Anatomical Labeling (AAL) segmentation
(Tzourio-Mazoyer et al., 2002) by mapping it into the MDS-
based template space. We use structural flux computed on all
brain regions in the ALL segmentation, as well as computed only
on selected brain regions (hippocampi, medial temporal lobes,
posterior cingulate, and ventricles) as in Lorenzi et al. (2015b).
For each of these approaches, we report the classification result
in Figure 8. We can see that the proposed methods substantially
outperform the others.

4.5. Comparing Follow-Up Time
All the above results are based on the 36month follow-up images.
The same approach can be used on shorter time intervals. We
performed an experiment on the 6, 12, 24, and 36 month follow-
up images, using the combination of all features with Gaussian
kernels for KPCA. Classification was repeated 500 times, each
time with a different randomization in a 10-fold cross-validation.
From Figure 9, it can be appreciated that when using a Gaussian
kernel, the accuracy does not change a lot with different time
intervals, and even the 6 month follow-up image can give a high
accuracy and AUC. We performed Wilcoxon signed-rank tests,
comparing the results of the different time intervals with those
of the 36 month interval. The results are reported in Table 3. We
can see that similar classification performance can be obtained
with each time interval, but 12 and 24 month follow-up give
slightly better classification performance than 6 month follow-
up. The 36 month follow-up seems slightly worse, which may
be attributed to an increase in registration difficulty for larger
anatomical differences.

4.6. Group Analysis
Based on the aligned SVFs of all subjects, see Section 3.1.2, we
can do a group analysis to show the differences in development
between the MCIc and MCIs groups. Before the group testing,
we first performed a voxelwise Shapiro-Wilk test inside each
group for each voxel in the brain mask, 82.2% voxels in MCIc
group and 74.1% for the MCIs group fit the normal distribution.
Then,we compute a voxelwise two-sample Hotelling’s T-square
test on the SVFs of the MCIc and the MCIs groups. Finally, we
use the FDR method (Benjamini and Yekutieli, 2001) to correct
the voxelwise independent p-value map for multiple comparison
testing. The resulting FDR corrected p-value map (p ≤ 0.001)
is shown in Figure 10. The corpus callosum and hippocampus
show significant differences (p ≤ 0.001), which are confirmed by
other MCI conversion studies (Wang et al., 2006; Zhang et al.,
2013; Elahi et al., 2015).
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FIGURE 5 | ROC analysis of classification with different features with and without dimensionality reduction. All experiments in this figure use the

MDS-based template.

FIGURE 6 | ROC of classification using the downsampled SVF feature with and without normalization, using the MDS-based template. (A) Without

KPCA, (B) with a linear KPCA.
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FIGURE 7 | ROC analysis of the MDS-based template and the MNI152

template using the combination of all features and KPCA with the

Gaussian kernel.

FIGURE 8 | ROC of classification using the proposed SVF feature (using

linear KPCA), the proposed combination of features (using Gaussian

KPCA), the structural longitudinal feature using all brain regions, the

structural longitudinal feature using a subset of brain regions, and the

dense cross-sectional feature, on the same study population.

4.7. Summary of All the Results
The experimental results on the 36 month follow-up data are
summarized in Table 4, for different features, KPCA kernels and
LogDemons smoothing parameters. Note that here we performed
the 10-fold cross-validation once instead of repeatedly as in
Table 3. From Table 4 we can see that the optimal choice is
the combination of all features, using a LogDemons smoothing
parameter of σ = 1.5 and including dimensionality reduction
using KPCA with a Gaussian kernel. Based on this table, we

FIGURE 9 | Classification results for the different follow-up images,

using the combination of all features and KPCA with a Gaussian

kernel. All experiments in this figure are employing the MDS-based template.

employed the optimal pipeline for different follow-up data,
shown in Table 3, and compute a two-sample Hotelling’s T-
square test on the normalized SVFs.

Considering a single feature, using the linear kernel, we
furthermore see from Table 4 that the SVF and Def features
perform the best, while the GL feature performs worst. The JD
and Div features perform better than GL, but worse than SVF
and Def. This may be related to the information content these
features carry: SVF and Def encode the point-wise development
as a vector field, JD and Div encode the local volume change but
only as a scalar field, while GL only measures SVF amplitude, i.e.,
neighboring and directional information is missing.

5. DISCUSSION

5.1. Analysis of the Experimental Results
In the smoothing parameter experiment, the worst performance
for the SVF feature was obtained for σ = 0. Since in this
case no regularization is performed, the resulting deformation
may not be diffeomorphic and fails to represent real anatomical
correspondence. The best performance is obtained for σ =

1.5. Too rigorous smoothing filters out the high frequency
components in the SVF, and such details are important to
distinguish between MCIc and MCIs subjects. σ = 1.5 seems a
good compromise between regularization and the preservation
of detail.

In the experiment that compares the classification
performance of different features, the combination of all
features outperforms any single feature in both ACC and AUC.
By comparing different kernels, we find that the Gaussian kernel
with the default parameter outperforms the linear kernel for the
combination of all features.

From the ROC curves in Figure 5, we can see that for
most of the features, KPCA dimensionality reduction largely
improves classification performance. By introducing the max-
margin mechanism, in theory the SVM classifier (Cortes and
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TABLE 3 | Comparing different follow-up times, using the combination of all features and Gaussian kernel KPCA.

6 months 12 months 24 months 36 months

ACC
Mean (Q1,Q3) 0.89 (0.87,0.91) 0.90 (0.87,0.93) 0.92 (0.90,0.95) 0.89 (0.87,0.91)

p-value 0.3955 0.0225 0.0000 −

AUC
Mean (Q1,Q3) 0.91 (0.90,0.92) 0.90 (0.87,0.93) 0.95 (0.94,0.97) 0.91 (0.90,0.93)

p-value 0.0335 0.0027 0.0000 −

SEN
Mean (Q1,Q3) 0.92 (0.90,0.95) 0.98 (0.98,0.98) 0.97 (0.99,1.00) 0.90 (0.86,0.95)

p-value 0.0144 0.0000 0.0000 −

SPE
Mean (Q1,Q3) 0.87 (0.84,0.90) 0.85 (0.82,0.90) 0.89 (0.85,0.93) 0.88 (0.85,0.91)

p-value 0.1685 0.0000 0.5500 −

F1
Mean (Q1,Q3) 0.87 (0.85,0.89) 0.88 (0.86,0.91) 0.90 (0.88,0.95) 0.86 (0.85,0.89)

p-value 0.1886 0.0001 0.0000 −

Here, we report the mean, first quartile (Q1) and third quartile (Q3) of the results of a 10-fold cross-validation, together with p-values of a Wilcoxon signed-rank test comparing shorter

time intervals with the 36 months time interval.

FIGURE 10 | Voxelwise two-sample Hotelling’s T-square test on the SVFs between the MCIc and the MCIs groups. The corpus callosum and the

hippocampus show significant differences between these two groups. The color spots just outside the brain region are caused by smoothing of the SVFs during the

LogDemons registration.
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TABLE 4 | Summary of the experimental results on baseline and 36 months follow-up images.

Feature σ KPCA ACC AUC SEN SPE F1

La G L G L G L G L G

Baseline gray matter density − No 0.62 0.61 0.14 0.93 0.22

Regional flux, all regions − No 0.66 0.57 0.16 0.98 0.27

Regional flux, selected regions − No 0.72 0.64 0.44 0.90 0.55

JD 1.5 Yes 0.74 0.73 0.73 0.32 0.63 0.14 0.81 0.96 0.65 0.23

Div 1.5 Yes 0.73 0.69 0.72 0.65 0.77 0.19 0.7 1.00 0.69 0.32

GL 1.5 Yes 0.67 0.63 0.66 0.50 0.63 0.30 0.70 0.94 0.60 0.43

SVF 1.5 Yes 0.76 0.66 0.80 0.64 0.70 0.86 0.81 0.58 0.70 0.69

Def 1.5 Yes 0.75 0.68 0.80 0.48 0.72 0.16 0.79 1.00 0.70 0.28

Combination 1.5 Yes 0.78 0.92b 0.79 0.94 0.74 0.95 0.81 0.90 0.73 0.90

Combination 0 Yes 0.62 0.87 0.45 0.91 0.02 0.91 1.00 0.85 0.04 0.85

Combination 3 Yes 0.76 0.85 0.69 0.85 0.67 0.93 0.81 0.79 0.68 0.82

Combination 6 Yes 0.66 0.86 0.62 0.89 0.37 0.77 0.84 0.93 0.46 0.82

Combination 1.5 No 0.68 0.69 0.65 0.70 0.61

aL means the linear kernel function, G means the Gaussian kernel function.
bBold indicates the best performance.

TABLE 5 | Previous methods and results on classification of MCIs vs. MCIc.

Article Data and feature Feature typea C / Lb Period (month) N (MCIs,MCIc) ACC (SEN/SPE)

Chupin et al., 2009 Hippocampus and amygdalae segment R C 0–18 134, 76 64 (60 / 65)

Misra et al., 2009 Whole brain, ROIs VBM R C 0–36 76, 27 82 (−/−)

Querbes et al., 2009 Cortex thickness R, DRs C 0–24 50, 72 73 (73 / 69)

Koikkalainen et al., 2011 Whole brain TBM V C 0–36 215, 164 72 (77 / 71)

Cuingnet et al., 2011 Hippocampus segment R C 0–18 134, 76 67 (62 / 69)

Whole brain VBM(GM) V C 71 (57 / 78)

Cortical thickness V C 70 (32 / 91)

Davatzikos et al., 2011 Whole brain VBM V, DRs C 0–36 170, 69 56 (95 / 38)

Westman et al., 2011 Cortical thickness and subcortical volumes R C 0–12 256, 62 59 (74 / 56)

Wolz et al., 2011 Hippocampus segment R C 0–48 238, 167 65 (63 / 67)

Whole brain TBM V C 64 (65 / 62)

Hip and amygdalae ROI, manifold learning R, DRm C 65 (64 / 66)

Cortical thickness V C 56 (63 / 45)

Combination of above 68 (67 / 69)

Cho et al., 2012 Cortical thickness V, DRm C 0–18 131, 72 71 (63 / 76)

Coupé et al., 2012 Hip and entorhinal cortex segment V C 0–48 238, 167 74 (74 / 74)

Zhang and Shen, 2012 Whole brain ROIs volume R, DRs L 0–24 50, 38 78 (79 / 78)

Eskildsen et al., 2013 Cortial ROIs TBM R C 0–48 227, 161 68 (68 / 69)

Liu et al., 2013 Whole brain ROIs volume R, DRs L 0–24 185, 164 71 (71 / 71)

Guerrero et al., 2014 Whole brain, manifold learning V, DRm C 0–24 114, 116 71 (75 / 67)

Lorenzi et al., 2015b Whole brain regional flux R L 0–36 110, 86 65 (67 / 63)

Proposed method SVF, Parallel Transport V, DRm L 0–36 43, 67 76 (70 / 81)

Proposed method Combined, Parallel Transport V, DRm L 0–36 43, 67 92 (95 / 90)

aFeature Type: R means ROI-based feature; V means voxel or vertex based feature; DRm means dimensionality reduction by feature mapping; DRs means dimensionality reduction by

feature selection. S means using single modality data, while M means using multi-modality data.
b L means longitudinal feature; C means cross-sectional feature.

Results are self-reported on different data.
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Vapnik, 1995) is able to deal with small sample sizes and high-
dimensional features. However, in the real world, a small training
set often fails to provide enough information to separate a high-
dimensional feature space. As a result, dimensionality reduction
is necessary for the SVM.

From the ROC curves in Figure 6, we can see that the
normalization step can improve the classification performance.
This result strongly supports the use of normalized features in
classification.

When comparing the proposed method with two alternative
methods on the study dataset, we can see that the proposed
method outperforms them, as shown in Figure 8. Since the
main difference between the MCIc and MCIs subjects is their
different pathological and anatomical development, using only
the baseline image does not provide such information. As a result,
using the gray matter density of the baseline image performs
worst among the three methods. The sparse regional flux feature
also fails to obtain full developmental information, because it
only measures the overall flux of the pre-defined structures
and ignores many details. It is for example quite possible
that two different developments have the same structural flux.
Secondly, from the results in Table 4, dimensionality reduction
using KPCA on the divergence feature slightly outperformed
the method that aggregated divergence information over brain
regions (the regional flux method). This may indicate that
regional aggregation is not an optimal dimensionality reduction
method, at least for this particular feature.

When comparing the results from follow-up data with
different time intervals, we can see that even the short time
interval (6 months for example) obtains a promising result.
Previous results (Zhang and Shen, 2012; Liu et al., 2013) also
showed that including short time interval follow-up data into
the feature space can improve the results. As reported from
Jack et al. (2013), brain structural changes may occur several
years before Alzheimer’s disease manifests itself. Similar to the
sigmoid curve, the largest changes may happen at the mid-stage
of the disease, rather then in the end stage. From Table 2, we can
see that most MCIc patients have converted to “Dementia” or
“MCI to Dementia” in the first 2 years. It is therefore possible
that short follow-up times can still offer enough information
for classification. This may indicate that the differences in
development between the MCIc and MCIs groups appear even
in the early stage of MCI, which is useful for early prediction of
Alzheimer’s disease.

5.2. Relation with Methods from Literature
In the last 5 years, predicting conversion from MCI to AD
has received increasing attention, and many methods have been
proposed based on structural MR images. The classification
performance reported from some state-of-the-art methods are
listed in Table 5. A direct comparison between these methods is
difficult because of the different choice of cohort, preprocessing
steps, validation strategy and reported measurement. However,
from the reported performance and the method summary, some
observations can be made.

Several methods focus only on one or two brain structures
that are believed to be directly related to the disease progression.

Chupin et al. (2009) used the hippocampus and amygdala volume
to obtain an accuracy of 64%. Coupé et al. (2012) focussed on
the hippocampus and assigned an AD-likeness score to it. With
the help of a better and more complex preprocessing pipeline,
this method reported an accuracy of 74%. Wolz et al. (2011) and
Cuingnet et al. (2011) reported accuracies of 67% and 65%, based
on the hippocampus. These method use only cross-sectional
information, and ignore the development over time.

Manymethods use whole brain features in theMCI prediction
task, either voxelwise or region-wise. Such whole brain features
include Voxel Based Morphometry (VBM), Tensor Based
Morphometry (TBM) and cortical thickness. Davatzikos et al.
(2011) used cross-sectional VBM features to obtain an accuracy
of 56%. Misra et al. (2009) used data-driven ROIs to extract
ROIwise cross-sectional VBM features and reported a high
accuracy of 82%. Asmentioned in Guerrero et al. (2014), the ratio
of positive and negative samples in this study is quite unbalanced,
so that the reported result is hard to compare with othermethods.
Koikkalainen et al. (2011) used cross-sectional region-wise TBM
on the whole brain to obtain an accuracy of 72%, while Eskildsen
et al. (2013) focussed on cortical ROIs obtaining an accuracy of
68%. Several methods (Querbes et al., 2009; Westman et al., 2011;
Wolz et al., 2011; Cho et al., 2012) used cross-sectional cortical
thickness to predict MCI conversion. Querbes et al. (2009) used
the cortical thickness within ROIs to obtain an accuracy of 73%.
However, there is a bias in the ROI generation step as pointed
out by Guerrero et al. (2014). Westman et al. (2011) used both
subcortical structure volume and cortical thickness in predefined
ROIs as features to achieve an accuracy of 59%. Cho et al. (2012)
used a vertex wise cortical thickness to achieve an accuracy of
71%.

Beside these methods based on cross-sectional whole brain
features, somemethods extract longitudinal whole brain features.
Liu et al. (2013) used the ratio of gray matter volume in baseline
and follow-up images within 93 ROIs as features to obtains
an accuracy of 71%. Zhang and Shen (2012) use longitudinal
features from multi-modal data to train a multi-kernel SVM
and achieved a good performance (accuracy of 78%). Lorenzi
et al. (2015b) extracted the flux from the non-rigid registration
between baseline and follow-up image of each structure as
features.

From this summary we can see that both longitudinal as
well as whole brain features are very powerful. Therefore, the
proposed method is a meaningful choice since for the first
time it exploits a dense whole brain feature (the SVF) that
was derived from longitudinal information. Importantly, in our
method the two visits are not treated independently as in Zhang
and Shen (2012); Liu et al. (2013) but are related through
registration. Moreover, our feature directly models anatomical
change. The proposed method furthermore features a relatively
straightforward skull stripping, and uses simple linear SVM
classification and pre-processing steps.

5.3. Group-Specific Template Selection
In the proposed method, a template image T0 is needed. Many
VBM-based methods (Fan et al., 2007; Davatzikos et al., 2008,
2009, 2011; Fan et al., 2008b) use the MNI template during
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analysis. However, the MNI template maybe not a suitable choice
for our application: (1) TheMNI template is learned from a group
of young and healthy subjects, while our study is on aged and
MCI subjects; (2) The MNI template is averaged and blurred,
potentially resulting in a sub-optimal registration, losing details.
The results from Section 4.3, furthermore support the use of a
template selected from the MCI population.

5.4. Future Work
Although our method obtains a good classification result, there
are still some points that can be improved. For the anatomical
correspondence estimation, the proposed method uses only
one follow-up image. State-of-the-art image regression methods
(Singh et al., 2015; Sun et al., 2015) compute the developmental
trajectory from multiple follow-up images, which may help to
estimate an improved correspondence. For the dimensionality
reduction, we only use KPCA. Better dimensionality reduction
methods, such as t-distributed Stochastic Neighbor Embeddings
(t-SNE) (Van der Maaten and Hinton, 2008) may help to increase
the classification performance. This study uses a relative small
dataset, and a larger dataset may help the classifier to learn a
better model. Including more types of features, like gray matter
density, cortical thickness or structure volume, may also improve
the result, as different types of features can represent different
properties of the brain.

6. CONCLUSION

In this paper, we propose a newmethod to detectMCI conversion
using the combination of normalized features from longitudinal
structural MR images, with KPCA dimensionality reduction.
Using the proposed method, we obtain a high classification
performance. The alignment of SVFs in the template space
enables a statistical comparison between the MCIc and MCIs
group on a voxel level. This facilitates the inspection of
differences, which were found in the hippocampus and the
ventricles.

We conclude that the estimation of structural change in
the brain over time can aid in predicting if MCI will evolve
to Alzheimer’s disease. Such finding may be useful for early
identification of AD patients, to delay the disease onset or to
slow down the disease progression. Therefore, it may be useful to
improve the quality of life of the patient and decrease the societal
cost related to AD.
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