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Abstract

Studies have shown that mesenchymal stem/stromal cells (MSCs) from bone marrow are

involved in the growth and metastasis of solid tumors but the mechanism remains unclear in

osteosarcoma (OS). Previous studies have raised the possibility that OS cells may receive

support from associated MSCs in the nutrient deprived core of the tumors through the

release of supportive macromolecules and growth factors either in vesicular or non-vesicular

forms. In the present study, we used stressed mesenchymal stem cells (SD-MSCs), control

MSCs and OS cells to examine the hypothesis that tumor-associated MSCs in nutrient

deprived core provide pro-proliferative, anti-apoptotic, and metastatic support to nearby

tumor cells. Assays to study of the effects of SD-MSC conditioned media revealed that OS

cells maintained proliferation when compared to OS cells grown under serum-starved condi-

tions alone. Furthermore, OS cells in MSCs and SD-MSC conditioned media were signifi-

cantly resistant to apoptosis and an increased wound healing rate was observed in cells

exposed to either conditioned media or EVs from MSCs and SD-MSCs. RT-PCR assays of

OS cells incubated with extracellular vesicles (EVs) from SD-MSCs revealed microRNAs

that could potentially target metabolism and metastasis associated genes as predicted by in

silico algorithms, including monocarboxylate transporters, bone morphogenic receptor type

2, fibroblast growth factor 7, matrix metalloproteinase-1, and focal adhesion kinase-1.

Changes in the expression levels of focal adhesion kinase, STK11 were confirmed by quan-

titative PCR assays. Together, these data indicate a tumor supportive role of MSCs in osteo-

sarcoma growth that is strongly associated with the miRNA content of the EVs released

from MSCs under conditions that mimic the nutrient deprived core of solid tumors.
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Introduction

Osteosarcoma (OS) is the eighth most common type of cancer found in children and adoles-
cents, accounting for approximately 20% of all primary bone cancers. The 5-year survival rate
for osteosarcoma has increased from 20% to 70% since the 1970’s. However, for patients with
metastatic disease at initial diagnosis, survival remains at 20–30% [1]. Mutations in the retino-
blastoma and p53 tumor suppressor pathways and increased expression of the proto-
oncogenes c-fos and c-myc are found in the majority of osteosarcomas. The insulin-like growth
factor, VEGF, and transforming growth factor pathways are known to be among the key signal
transduction pathways involved in OS progression. Unfortunately, despite the similar muta-
tions and signaling pathways recognized in the disease, OS tumors have shown a large amount
of heterogeneity which has made it difficult to improve the long term survival of patients with
metastasis at initial diagnosis.
The tumor microenvironment has been demonstrated to play a large role in the growth and

metastasis of osteosarcoma. For example, BMP-2 upregulates osteogenicmarkers through a
Wnt-signaling dependent pathway [2] and mesenchymal stem cells (MSCs) in the tumor
microenvironment produces lactate which fuels the OS cells [3, 4]. The promotion of prolifera-
tion, metastasis, and apoptosis resistance has been linked to stromal-cancer cell paracrine
interactions in numerous studies. Various studies in cell culture and in xenograft models have
demonstrated paracrine interactions between stromal and cancer cells that promote the prolif-
eration and metastasis of cancer cells [5, 6]. MSCs subjected to hypoxic, nutrient poor condi-
tions have been associated with increased secretion of tumor supportive growth factors and
cytokines, including IL-6 [7] and VEGF [8], leading to decreased apoptosis and the promotion
of angiogenesis. Furthermore, changes in tumor cell gene expression can be attributed to the
exchange of short, non-coding 22 nucleotides RNA sequences (microRNAs) that bind to the 3’
untranslated region (UTR) of mRNAs, resulting in their silencing [9, 10]. MicroRNAs have
been investigated as predictors of outcome for colorectal cancer, as promoters of breast cancer
and prognostic indicators in gastric cancer [11–13]. Additionally, microRNAs have been iden-
tified as regulators of bone homeostasis and bonemetastasis, making their role in osteosarcoma
of considerable interest [14]. Previous publications from our laboratory showed that MSCs
from bone marrow act as tumor stromal cells to support tumor cells both through paracrine
and juxtacrinemechanisms [15]. Thus, the exchange of microRNAs and cytokines between
cancer cells and stromal MSCs establishes a feedback loop in whichMSCs in the tumor micro-
environment are kept in an undifferentiated and autophagic state which feeds the cancer cells
with nutrients. Extracellular vesicles (EVs) are small membrane vesicles that are released by all
cell types. Specific nomenclature for EVs includes exosomes (30–100 nm diameter), microvesi-
cles (50–1000 nm), and apoptotic bodies (50–5000 nm). Over the last several years, investiga-
tions into their therapeutic and diagnostic utility has intensified. For the purposes of these
studies we used EVs that were in the size range of exosomes, which we recently characterized
as containing tumor regulatory proteins, metabolites, and microRNAs [16]. In this study, we
set out to characterize the role for MSCs in the growth and survival of osteosarcoma tumor
growth in vitro. Studies using MSCs to mimic the tumor microenvironment revealedmicro-
RNAs from autophagic MSCs have the potential to alter the expression of metabolism and
growth factor associated genes in surrounding tumor cells.

Methods and Materials

Cell culture

The human osteosarcoma cell line KHOS was obtained from ATCC. KRSOS osteosarcoma
cells were from a patient derived biopsy from UMMC, Jackson, MS. The study was conducted
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following national and institutional ethical policies, and it was previously approved by the Uni-
versity of Mississippi Medical Center (UMMC) Ethical Committee and the written informed
consent was obtained from all participants. The tumor was mechanically dissociatedwith a
scalpel into 1 mm pieces, disassociatedwith collagenase and plated in 20 mL of DMEM (Invi-
trogen), 10% FBS (Atlanta Biologicals), 1% Penicillin-Streptomycin (Invitrogen). The plates
were maintained at 37°C in humidified 5% CO2 and 95% air, media was changed every 2–3
days and established in vitro. Donor matched mesenchymal stem cells were obtained from the
bonemarrow at the same time as the KRSOS cells and designated as KRSBM. SD-MSCs were
obtained as describedpreviously [16]. Briefly, cells were grown to 80% confluency, washed
three times with phosphate buffered saline and cultured without fetal bovine serum. The fol-
lowing are the different types of media used in the manuscript- Complete conditionedmedia
(CCM): DMEMwith 10% FBS and 1% Penicillin- Streptomycin; Serumdeprivedmedia
(SDM): DMEMwithout FBS and with 1% Penicillin- Streptomycin; Conditionedmedia (CM):
media collected fromMSCs culture plates grown in SDM.

Transwell assay

MSCs or SD-MSCs were plated in inserts of transwell permeable support 0.4 μm pore size
(Corning, Lowell, MA). OS cells (105 cells per well) were plated in the lower chamber of a
12-well transwell plate and incubated under standard conditions. After 24 h, osteosarcoma
cells were switched to serum-freemedia and incubated with inserts containing MSCs or
SD-MSCs for 72 h. Total OS cells DNA content was evaluated using CyQuant assay (Invitro-
gen, Carlsbad, CA) as describedpreviously [17].

Wound healing

KHOS or KRSOS cells were plated at a density at 0.5 x105 cells/well in 12-well sterile, culture
treated plates and incubated to near confluency at 37°C, 5% CO2. The cell monolayer was
scraped in a straight line with a p200 pipet tip. Cells were washed once with 1 ml of the phos-
phate buffered saline (PBS) and then incubated with 1 ml of medium specific for the in vitro
scratch assay. For scratch assays involving EVs treatment, EVs were isolated as previously
described [16, 18], quantified by the bicinchoninic acid assay, and stored at -80°C until used.
For experiments,media contained 2% serum and 50 μg EVs per 1 x 106 cells. Cells were imaged
every 6 hr for 24 hr and the amount of wound closure measured using ImageJ software
analysis.

Apoptosis assay

Drug sensitivity assays were done in triplicate on 24-well plates seeded at passage 3 and a den-
sity of 104 cells/cm2. OS cells were treated with 0.1 μM doxorubicin for 24 h in the presence of
SD-MSC conditionedmedia or alpha-Minimum Essential Medium as control. The level of
apoptosis in living cells was analyzed via the red fluorescent caspase 3 and 7 fluorogenic sub-
strate, MR-(DEVD)2 of the Magic Red™ Caspase detection kit (Immunochemistry Technolo-
gies, Bloomington,MN). Fluorescencemeasurements were made with a Biotek Synergy 4
microplate reader.

Real-time quantitative PCR

Total RNA was isolated from cells using miRVana RNA isolation kit according to manufactur-
er’s protocol (Life Technologies, Valencia, CA). Approximately 2 μg of RNA was used in the
reverse transcription reaction using the miScript SYBR Green kit (Qiagen) with random
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hexamers (Fermentas, Vilnus, Lithuania) according to the manufacturer's instructions. Real-
time RT-PCR was performed in a Biorad myIQ thermocycler using 96-well plates. The reac-
tions were prepared according to the standard protocol for one-step SYBR Green RT-PCR
(Applied Biosystems, Cheshire, UK). The thermal cycle conditions were 95°C for 4 min fol-
lowed by 40 cycles of 30 sec at 95°C, 30 sec at 55°C and 30 sec at 70°C. Averaged cycle of
threshold (Ct) values of GAPDH duplicates (for genes) or RNU-6B duplicates (for micro-
RNAs) were subtracted from Ct values of target genes to obtain ΔCt, and then relative gene
expression was determined as 2−ΔCt.

Statistical analysis

Statistical analysis was performedwith Excel (Microsoft, Redmond,WA) and GraphPad Prism
(La Jolla, CA). Statistical significancewas calculated using either two-tailed Student’s t-test or
one-way analysis of variance (ANOVA). Data is presented as the means, and error bars indi-
cate the standard deviation. A p-value of<0.05 is considered to be significant.

Results

Serum-deprived MSCs protect OS cells from nutrient deprivation

induced cell death

Osteosarcoma cells placed in serum-deprived conditions showed a significant decrease in both
cell number and DNA content after being cultured in serum-free conditions for 72 h (Fig 1A
and 1B). The cell number of KRSOS cells grown in the presence of SD-MSC inserts was more
than 3-fold higher than OS cells grown without serum, but there was only a 20% increase in
the cell number of serum-deprivedOS cells grown in the presence of inserts containing MSCs
(Fig 1A). DNA content measurement followed the same pattern as that observedwith cell
number. Similarly, the presence of SD-MSC inserts restored KHOS cell viability by more than
2-fold as measured by direct cell counting and more than 3-fold by DNA quantification
(Fig 1B). As observedwith KRSOS cells, there was no significant increase in KHOS survival
when grown in the presence of MSCs, supporting the hypothesis that SD-MSCs release the
growth factors and microRNAs that support OS growth.

SD-MSC conditioned media protects OS cells against drug induced

apoptosis

As a second approach to test for the role of pro-survival factors present in the serum-deprived
supernatant of MSCs, osteosarcoma cells were incubated in the presence of 0.1 μM doxorubicin
and grown in the presence of conditionedmedia from SD-MSCs (CM). In the presence of
doxorubicin plus conditionedmedia and doxorubicin plus EVs, KRSOS exhibited a close to
100% and KHOS exhibited a 80% increase in cell survival compared to KRSOS and KHOS cells
in the presence of doxorubicin in complete culture media (CCM) respectively (Fig 2A and 2B).
Furthermore, caspase activation was significantly decreased in both KRSOS and KHOS cells
treated with doxorubicin (Fig 2C and 2D) in the presence of SDM. These data indicate media
from SD-MSCs have anti-apoptotic properties.

SD-MSC conditioned media and SD-MSC derived EVs increase wound

healing in OS cells

The increase in the metastatic potential of osteosarcoma and other cancers had been previously
attributed to soluble factors secreted by MSCs [19–21], yet few studies had examined them.We
determine the wound healing rate of OS cells incubated either with SD-MSCmedia or EVs
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isolated from SD-MSCmedia. Compared to control, the rate of wound closure in KHOS cells
exposed to SD-MSC conditionedmedia or 110k supernatant (that is EV free) was greater at the
6, 12, and 18 h time points, respectively, congruous with previous reports (Fig 3A). Corre-
spondingly, EVs fromMSCs (4days) and SD-MSCs (12days) increased the wound closure rate

Fig 1. Comparative analysis of OS survival in the presence of mesenchymal stem cells (MSCs) or

serum-deprived MSCs (SD-MSCs). (A) KRSOS cells grown with either complete culture media (CCM) or

media without serum (SDM) in the presence of transwell inserts with donor-matched MSCs or SD-MSCs. (B)

KHOS grown in either CCM or serum-free media in the presence of inserts containing either MSC or serum-

deprived MSC cells. Data presented as means ± SD, Columns, mean of three independent experiments; bars,

standard deviation (SD).

doi:10.1371/journal.pone.0166027.g001

MSCs Support Osteosarcoma Proliferation

PLOS ONE | DOI:10.1371/journal.pone.0166027 November 3, 2016 5 / 14



of KHOS cells by more than 50% of the relative amount at those time points (Fig 3B). This data
supports previous studies backing the hypothesis that EVs transport tumor regulatorymicro-
RNAs and metabolites [16, 22].

Would healing property of EVs is associated with altered expression of

microRNAs and gene targets

Some studies have shown that microRNAs play an important role in osteoblast differentiation
and bone formation [23–25]. Furthermore, microRNAs can be transferred between cells via
EVs and several microRNAs have been implicated in osteosarcoma growth [26–28]. In

Fig 2. Apoptosis analysis of OS cells incubated with conditioned media from serum-deprived MSCs.

(A and B) DNA quantification of KRSOS and KHOS osteosarcoma cells treated with 0.1 μM doxorubicin for

24 h in the presence of complete culture media (control), SD-MSC media (CM) or EVs from SD-MSCs (EVs).

(C) OS cells treated with doxorubicin in the presence of either SDM, CCM. Caspase activity measured as an

increase in the amount of fluorogenic DEVD2, a caspase 3 substrate. The data presented as the means ± SD

of 3 independent experiments, *P < 0.05. (D) Western blot of cleaved caspase-3 in KRSOS and KHOS

treatment with doxorubicin in the presence of SD-MSC EVs.

doi:10.1371/journal.pone.0166027.g002
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consideration of the potential contribution of microRNAs to OS growth, we investigated the
common downstream targets and the underlyingmolecularmechanisms of tumor growth sup-
portivemiRNAs. A schematic for data analysis is shown in Fig 4A and 39 miRNA with poten-
tial role in tumor growth were short-listed for further analysis. To further narrow down the
target genes we used in silico algorithms (TargetScan, PicTar, miRanda) to predict common
target genes of the short listed 39 miRNA. A number of genes were targeted by these micro-
RNAs from which 21 genes were selected for further study. We then used quantitative RT-PCR
analysis to validate genes identified as possible targets of the microRNAs (Fig 4B), focusing on
genes associated with metastasis and cellular response to nutrients. Quantitative RT-PCR assay
to confirm the expression of 29 of the 39 short listed miRNA following bioinformatics assays is
shown in Fig 4C. The microRNA with one of the higher differential expression, hsa-miR-148a,
has been identified as a prognostic biomarker in osteosarcoma patients, with high expression
levels correlating with decreased overall survival [29].
Next as a proof of concept we have tested expression of a cluster of four miRNAs with

potential binding sites that regulate the pathway of focal adhesion point kinase1 or PTK2
(Fig 5A). One gene that is ontologically connected to metabolism (PTK2) and 4 microRNAs
that have putative targets in LKB1 /PTK1 and STK11/FAK1 pathway. Liver kinase β1 (LKB1,
also known as STK11) is a serine/threonine kinase that has multiple cellular functions

Fig 3. Effects of EVs and conditioned media from SD-MSCs on OS wound healing. (A) KHOS cell

monolayer was scratched with a p200 micropipette tip, incubated with CCM or SD-MSC conditioned media,

and imaged every 6 hrs, after replacing the media with serum free media, SD-MSC conditioned media or EV

free media. (B) Scratched KHOS cell monolayer treated with EVs from SD-MSCs for either 4 days or 12 days

and imaged every 6 hrs after replacing the media with SDM + EVs. Wound closure area was determined by

ImageJ software analysis. Data presented as the means of three independent measurements. * P< 0.05, **
P< 0.01, *** P< 0.005 compared to untreated controls.

doi:10.1371/journal.pone.0166027.g003
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Fig 4. (A) Schematic procedure for determining microRNAs and genes associated with changes in OS cells

after treating with to EVs from MSCs (4day EVs) and SD-MSCs (12day EVs). (B) Quantitative RT-PCR

validation of changes in metastasis and metabolism associated genes after OS incubation with MSCs and

SD-MSC-EVs. (C) Quantitative RT-PCR showing changes in expression of shortlisted miRNA after MSC-EVs

treatment.

doi:10.1371/journal.pone.0166027.g004

Fig 5. miRNA transferred by EVs regulate PTK2 and expression. (A) Quantitative RT-PCR showing

changes in expression of four miRNA after MSC-EVs treatment. (B) Quantitative RT-PCR expression of

downstream target PTK2/FAK. (C) Quantitative RT-PCR showing downregulation of FAK1repressor LKB1.

doi:10.1371/journal.pone.0166027.g005
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including the regulation of cell polarity and motility. It is shown that LKB1 represses FAK sig-
naling via a FAK-LKB1 complex to regulate FAK site maturation. Experimental validation of
predictedmiRNA targets revealed an increase in the expression of focal adhesion kinase
(PTK2) genes (Fig 5B), implicating EV-mediated miRNA transfer in high grade, aggressive
osteosarcomas, in agreement with previous observations [30, 31].
Another significant observationwas the slight decrease in the gene expressions of NFE2L2

(Nrf2, an important mediator in the ability of cells to adapt to oxidative stress. Additionally,
increased SLC16A1 (MCT1) expression and increasedGRSF1 expression have been previously
shown to decrease doxorubicin sensitivity and attenuate oxidative phosphorylation, respec-
tively [32] [33] (Fig 6B). The decreased expression of NFE2L2 is characteristic of the paradoxi-
cal role of NFE2L2 in cancer progression. Decreased levels would be expected to increase
tumor cell susceptibility to apoptosis, yet NFE2L2 deficiencymay increase the risk of pulmo-
nary metastasis [34] although the significance of decreased expression of the gene in osteosar-
coma is not well understood.However, reactive oxygen species are knownmediators of PTK2
activation. In fact, the regulation of NFE2L2, and PTK2 expression are linked indirectly

Fig 6. (A) A simplified interaction schema between EV-derived miRNAs and changes in gene expression in

osteosarcoma cells (B) Metabolic pathways involved in osteosarcoma metastasis highlighting the lactate

importer MCT1 (SLC16A1) and oxidative phosphorylation pathways (ATP5B). (C) Cell migration pathway in

osteosarcoma associated with exposure to EV miRNAs emphasizing the interaction between the focal

adhesion (PTK2) and oxidative stress pathways (NFE2L2).

doi:10.1371/journal.pone.0166027.g006
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through FGF7, a member of the fibroblast growth factor family involved in wound repair and
tumor development [35] [36] (Fig 5C).

Discussion

The ability of SD-MSC conditionedmedia and EVs to increase survival and reduce apoptosis
correlates with previously published results demonstrating that EVs fromMSCs can supply
proteins, metabolites and microRNAs to support tumor growth [16]. Several studies have
shown that tumors have the ability to manipulate their stromal environment via the transport
of microvesicular contents, including interleukins, monocyte chemotactic protein-1 (MCP-1),
macrophage inflammatory protein- 1 beta (MIP-1β), and chemokines [37]. These microenvi-
ronmental changes can influence tumor progression as well as the effectiveness of chemother-
apy. Such changes may even inhibit the growth of normal cells, promote the growth, and clonal
expansion of neoplastic progenitor cells. Once established, tumor cells can inhibit the differen-
tiation of mesenchymal stem cells in the surrounding stroma and induce them to produce cyto-
kines and other factors that support tumor growth [15]. While the release of metabolites and
cytokines all undoubtedly play a role in tumor stroma interaction, our current understanding
of tumor-stroma co-evolution is far from complete due to the number of different metabolites,
cytokines and microRNAs in the tumor microenvironment.
In the present study, comparison of the effects of MSCmedia and derived EVs revealed sim-

ilar effects of the two treatments on OS survival. Our results revealed significant downregula-
tion of hsa-miR-195 and hsa-miR-124 in parallel with an upregulation of hsa-miR-148a.
Consistent with these results, Cai et al. have previously reported hsa-miR-195 levels in sera
from osteosarcoma patients were significantly lower than those in healthy controls [38], and
hsa-miR-124 overexpression has been shown to inhibit migration in MG-63 and U2OS cells
[39]. Additionally, the increased expression of hsa-miR-148a is significantly associated with
tumor size and distant metastases [29]. RT-PCR validation of predictedmiRNA targets
revealed an increase in the expression of matrix metalloproteinase (MMP1) and focal adhesion
kinase (PTK2), implicating EV-mediated miRNA transfer in high grade, aggressive osteosarco-
mas, in agreement with previous observations [30, 31]. The association between PTK2 gene
expression and EV treatment in these experiments correlates with the known role of PTK2 in
cell migration and supports previous studies pinpointing the importance of PTK2 expression
on patient survival [40]. The increase in cyclin D1 expression in parallel with PTK2 and
MMP1 expression strongly suggests a specific connection between decreased hsa-miR-195 lev-
els and OS aggressiveness. More generally, comparison of the differentially regulated genes
with a database of known and predicted protein interactions confirmedmetastasis, oxidative
stress, and metabolic signaling pathways were involved (Fig 6B and 6C). Increase in the expres-
sion of the monocarboxylate transporter, SLC16A1 adds to the hypothesis. These data reveal
OS cells exposed to SD-MSCs increase their ability to uptake lactate, which has been associated
with poorer clinical outcomes [41]. The migratory response of cancer cells has also been corre-
lated with increased SLC16A1 (MCT-1) expression [42]. The convergence of the oxidative
stress and focal adhesion pathways as shown in Fig 6 are consistent with previous observations
associating cell motility and tumor aggressiveness with reactive oxygen species intermediates
[43] and are emblematic of the delicate balance between redox signaling, healthy cells, and
pathology.
Our results have shown that cell-to-cell communication via EVs from SD-MSCs can signifi-

cantly affect the metastatic potential of OS cells. Although several studies have identified
microRNAs and target genes that can be associated with osteosarcomametastasis, few have
studied the implications of tumor-associated mesenchymal stem cells on the metastasis and
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prognosis of OS. Our data has correlated specificmicroRNA with downregulation of predicted
gene targets and is consistent with previous studies which have shown that EVs,<100nm vesi-
cles secreted by cells, can significantly affect the growth characteristics of cells in close proxim-
ity to the secreting cell. However, there are numerous examples of miRNAs repressing
translation of endogenousmRNAs without appreciably affecting the mRNA level [44, 45],
which may confound RT-PCR analysis in which miRNA expression does not correlate with
gene expression. Additionally, comparison of only two cell lines that do not allow us to general-
ize the contribution of the tumor stroma to the progression of OS as there are examples of
MSCs inhibiting growth in other tumor types [46–48]. Further studies will be required to deter-
mine if miRNAs can be transferred in physiologically relevant amounts to account for these
results or if they can be attributed to other components secreted within EVs.
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