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Abstract

The biomechanics literature contains many well-understood mechanisms behind typical fracture 

types that have important roles in treatment planning. The recent association of “atypical” 

fractures with long-term use of drugs designed to prevent osteoporosis has renewed interest in the 

effects of agents on bone tissue-level quality. While this class of fracture was recognized prior to 

the introduction of the anti-resorptive bisphosphonate drugs and recently likened to stress 

fractures, the mechanism(s) that lead to atypical fractures have not been definitively identified. 

Thus, a causal relationship between these drugs and atypical fracture has not been established. 

Physicians, bioengineers and others interested in the biomechanics of bone are working to 

improve fracture-prevention diagnostics, and the design of treatments to avoid this serious side-

effect in the future. This review examines the mechanisms behind the bone tissue damage that 

may produce the atypical fracture pattern observed increasingly with long-term bisphosphonate 

use. Our recent findings and those of others reviewed support that the mechanisms behind normal, 

healthy excavation and tunnel filling by bone remodeling units within cortical tissue strengthen 

mechanical integrity. The ability of cortical bone to resist the damage induced during cyclic 

loading may be altered by the reduced remodeling and increased tissue age resulting from long-

term bisphosphonate treatment. Development of assessments for such potential fractures would 
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restore confidence in pharmaceutical treatments that have the potential to spare millions in our 

aging population from the morbidity and death that often follow bone fracture.
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1. Introduction

Relationships between many typical bone fracture types and their mechanisms are well 

understood, are found in the biomechanics literature, and play an important role in treatment 

planning. For example, osteoporotic fracture has been associated with decreased bone 

density at skeletal sites composed predominately of trabecular tissue. Over the past two 

decades bisphosphonate (BP) therapy has been the gold standard used to reduce osteoporotic 

fracture risk by suppressing osteoclast-mediated bone resorption. However, increased 

reports of rare but serious "atypical" femur fracture (AFF) associated with long-term BP 

therapy have intensified examination by the Food and Drug Administration (FDA) and the 

orthopaedic research community (Figure 1) (e.g., Lenart et al., 2008; National Guideline 

Clearinghouse, 2013). This review summarizes work that may hint at the potential 

underlying mechanisms behind the bone tissue damage that produces this atypical fracture 

pattern.

2. Fracture classification

Fractures are classified based on location, the estimated energy that produced them and the 

resulting breakage patterns. Classification criteria inform a great deal about the 

biomechanical environment prior to fracture. Fractures due to pathologic conditions such as 

osteoporosis, Paget's disease, osteogenesis imperfecta, rickets or bone cancer are generally 

closed, have intact overlying skin, and result from low-energy events. Conversely, high-

energy impacts often result in open trauma fractures and are classified by the AO Trauma 

system (Müller, 1980). These typical fractures include those that have at least one large 

crack that completely traverses all cortices, including the entire width of the bone. The 

simple fractures are spiral, oblique and transverse. More complex, higher-energy fractures 

include burst, comminuted with many small bone fragments and/or impacted.

2.1 Osteoporotic fractures and their prevention

Osteoporotic fractures present with typical patterns. They are the result of age-related 

metabolic bone wasting characterized by highly porous, low density bone ends with reduced 

bone strength where trabecular structure is predominantly found (Atkinson, 1965). The 

wasting is due to rates of osteoclastic bone resorption outpacing osteoblastic bone formation, 

resulting in a highly porous structure. Hip fractures usually result from falls that would not 

otherwise produce fractures in non-osteoporotic individuals (Sanders et al., 1998). 

Collapsing crush fractures of the principally cancellous spinal vertebrae are also common 

with osteoporosis (Kleerekoper et al., 1985).
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While osteoporotic fractures normally occur in the predominantly trabecular ends 

(metaphyseal region), cortical bone also plays a role in the propensity to fracture. Cortical 

cross-sectional geometry (i.e., bone structure) includes bone width, cortex thickness and 

distribution of tissue matrix. Bone width and cortex thickness are important to resisting 

failure by local buckling, as structures buckle when they have a slender aspect ratio (small 

width to length) (Beck et al., 2001; Giladi et al., 1987). The distribution of bone about the 

centroidal axis is important because a smaller periosteal versus endosteal adaptive expansion 

of the cortex offsets a propensity to fragility due to the effect on structural cross-sectional 

moment of inertia (Ruff and Hayes, 1982; Smith and Walker, 1964). Thus, bone normally 

adapts to meet biomechanical needs and some of these abilities, such as cortical thickening, 

may be observed in the pathogenesis of AFF (section 3), possibly with imaging techniques 

(Section 4).

2.1.1 Bisphosphonate mechanisms of action—BPs are the most commonly 

prescribed drug for the prevention of osteoporotic fracture (FDA, 2011). By suppressing 

resorption, BPs and other anti-resorptive agents slow the loss of bone mass at the hip and 

spine (Rodan and Fleisch, 1996). Consequently, fracture risk is reduced (Seeman and 

Delmas, 2006). Non-nitrogen containing, first-generation BPs have fallen out of favor, 

especially in the U.S. because they may affect mineralization, although a few are still used 

clinically including clodronate (Bayer), etidronate (Warner Chilcott) and tiludronate 

(Sanofi) (Russell, 2011). Nitrogen-containing BPs administered orally and intravenously 

(i.v.) have captured the majority of the clinical market. The orals most commonly prescribed 

are alendronate (Merck, Sharp & Dohme), ibandronate (Genentech) and risedronate 

(Sanofi), and the most commonly prescribed i.v. administered BPs are pamidronate 

(Novartis) and zoledronate (Novartis Pharma AG) (Rogers et al., 2011). Many are now 

becoming available in generic form.

Each BP ultimately acts to slow resorption by osteoclasts (OC). However, osteocytes, the 

terminally differentiated osteoblasts (OB) embedded in the bone matrix during formation 

(Figure 2), are now believed to be the primary activators of resorption (section 3.1) 

(Bonewald, 2011; Schaffler, 2003). Damage may trigger osteocyte apoptosis to signal and 

target for resorption (Bentolila et al., 1998; Cardoso et al., 2009; Herman et al., 2010; 

Verborgt et al., 2002). In order for resorption to occur, pre-OCs are recruited to a site at 

which proliferation and differentiation cues are present to drive the OCogenesis, and the 

resulting OCs have to attach onto exposed mineral and begin normal bone resorption (Burr, 

2002; Parfitt, 2002). BPs exploit the mechanism by which OC membrane rigidity is 

regulated through cholesterol synthesis for attachment of the OC to bone and push OCs 

toward apoptosis, thus altering osteoclast activity (Rogers et al., 2011), so less bone is 

removed and the normal, coupled-action of OBs to form new bone and fill the OC pits is 

lower (Parfitt, 1982). Thus, long-term BP treatment may affect bone quality through many 

bone multi-cellular unit (BMU)-related cortical tissue features, including a flux in osteocyte 

numbers (section 3.1.1).

Suppression of bone resorption and remodeling initially alters tissue-level micro-architecture 

and composition positively, most notably by slowing the loss of trabecular micro-

architecture, quantified as number, thickness and interconnectedness of plate-like and rod-
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like elements (Boivin et al., 2000). Suppression of resorption may also have added 

biomechanical effects by allowing OB to more completely fill existing resorption cavities, in 

addition to the prevention of new stress risers that resorption cavities may eventually 

become, especially in cancellous bone (Dempster, 2003; Easley et al., 2012; McNamara et 

al., 2006). Regardless of mechanism(s), the short-term benefit of BPs is clear as large 

randomized trials have demonstrated that BPs greatly reduce osteoporotic fracture risk 

(Black et al., 1996).

2.2 Stress fractures

Since some retrospective assessments of atypical fractures propose similarities with 

common stress fractures, research in that field may yield potential mechanisms (Lappe et al., 

2005; Schilcher and Aspenberg, 2009). While some similarities exist, stress fractures are 

different from pathologic and traumatic fractures. Stress fractures typically occur as a result 

of excessive loading cycles ("fatigue") within healthy bone tissue and may be exacerbated in 

lesser quality ("insufficient") bone (Giladi et al., 1987; McKenna et al., 2014; Shane et al., 

2014). While insufficient-type stress fractures have been observed in patients with 

osteomalacia and hypophosphatasia, fatigue-type stress fractures are solely observed in high 

load-bearing sites like the femur, tibial shaft (most frequent), metatarsals and calcaneus. 

Fatigue fractures are a result of repetitive activity in high-performance athletes, including 

runners and race horses, and elevated activity for military recruits when their training begins 

(Giladi et al., 1987).

Stress fractures normally present oblique to the diaphysis when incomplete, affecting a 

single cortex within the shaft of long bones (Shane et al., 2014). They are associated with a 

painful, periosteal healing response with cortex thickening acting to attempt a stabilization 

of the fracture gap. A similar generalized cortical thickening has been observed prior to 

some AFFs and is classified as a minor feature that may be due to a localized periosteal 

reaction of the lateral cortex (Shane et al., 2014). In the case of a stress fracture such a callus 

formation is usually followed by normal bone remodeling and healing if the repetitive 

activity that is the root cause of the fracture is eliminated (McKenna et al., 2014). Likewise, 

unless normal remodeling is restored after an initial AFF indicator, such as cortical 

thickening, the deficit may allow progression to fracture.

2.3 Atypical fractures

Recently, a subset of mainly female osteoporotic patients on long-term anti-resorptive 

therapy, principally with BPs, has sustained fractures with a pattern that is atypical of 

osteoporotic, traumatic or stress fractures. Differences from stress fractures are fewer and 

include location, angle of progression across the cortex and activity level of the presenting 

patient (Shane et al., 2014). These atypical fractures may start as an incomplete transverse 

fracture (Figure 3) that sometimes advances to a complete fracture through all cortices of the 

subtrocanteric or diaphyseal femur. The ulna has been recently proposed as another site of 

atypical fracture in isolated clinical case studies (Ang et al., 2013; Bjorgul and Reigstad, 

2011; Tang and Kumar, 2011). Additionally, in some retrospective reviews, approximately 

20% of patients exhibiting an atypical fracture have a similar bi-lateral finding, usually at 

the same location on the contralateral limb at first clinical presentation or within a short 
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window of < 6 months. One possible explanation for this type of fracture is that over many 

years of treatment, bone tissue treated with BPs may age differently, with lower tissue 

turnover than in the drug-naïve condition. Eventually, the rate of damage initiation and 

accumulation may outpace the suppressed remodeling process, and mechanical integrity 

becomes compromised.

The uncommon features of these fractures have raised concern for long-term effects on bone 

health due to the use of BPs. Many clinical reports, meta-analyses and reviews of BP-

associated atypical fracture cases have been published since the first recognition of this 

problem in 2008 (Gedmintas et al., 2013; Lenart et al., 2008; Lenart et al., 2009; Neviaser et 

al., 2008). In response, an American Society for Bone and Mineral Research (ASBMR) task 

force recently reviewed all literature pertaining to reports of AFF, demonstrating the most 

common presentation location along the lateral cortex of the femoral diaphysis, outside of 

the neck and/or intertrochanteric regions with a transverse orientation or "short oblique" 

(<30 degrees from a transverse plane) trajectory (Figure 3) (Shane et al., 2014; Shane et al., 

2010). The radiographic features also demonstrate localized periosteal or endosteal 

thickening of the lateral cortex at the site of initial fracture (cortical beaking or flaring) and 

non- or minimal comminution, i.e., few fragments. A minor feature of AFF, groin or thigh 

pain, is a symptom causing patients to seek additional medical attention prior to 

experiencing a complete fracture. While the ASBMR report concluded an association with 

BP use, osteonecrosis of the jaw (ONJ) was only briefly addressed as a problem related to 

BPs, principally associated with high-dose cancer treatments (Allen and Burr, 2009; 

Compston, 2011; Subramanian et al., 2013). High-dose BPs are effective treatments to 

prevent cancer metastases to bone and have had similar incidences of ONJ in cancer trials 

(1–2% of patients) that appear to be a consequence of marked inhibition of bone resorption 

(Clezardin et al., 2011; Gartrell et al., 2013; Saad et al., 2012; Woo et al., 2006). Though 

they exist, there are few reports of AFF in the cancer population on high-dose BPs (Chang et 

al., 2012; Grasko et al., 2009; Hayashi et al., 2014; Iwata et al., 2014; Puhaindran et al., 

2011; Waterman et al., 2011; Wernecke et al., 2008). One plausible reason may be the 

relatively short amount of time that cancer patients have been maintained on BPs due 

principally to the morbidity and guarded life expectancy for patients with metastatic bone 

disease (Saad et al., 2012). Meanwhile, the incidence of BP-associated AFF increases with 

long-term use (>3–5 years); dose time may have a large influence on this side effect 

(Abrahamsen et al., 2009; Dell et al., 2012; FDA, 2011; Lenart et al., 2009; Shane et al., 

2014). Thus, whether the advent of new therapeutic options that allow cancer patients longer 

life will lead to greater reports of AFF remains to be seen. Mechanisms behind AFF and 

ONJ may also be un-related and cancer patients likely maintain a lower level of physical 

activity than that expected to lead to any type of long-bone fracture.

3. Possible mechanisms for AFF: Biological, biochemical and 

biomechanical damage to bone

There is a clear lack of understanding with regards to the mechanism(s) behind atypical 

fracture (Shane et al., 2014). However, the functions of bone are well recognized: to provide 

mechanical stability and mineral homeostasis, allowing for locomotion and ion exchange. 
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Bone's properties thus rely on tight regulation of biological and biochemical processes. If 

man-made, bone would be considered one of the most technologically-advanced, tough 

composite materials, designed to withstand cyclic loading and dissipate energy. The main 

advantage of bone tissue over artificial materials is that damage accumulated is repaired via 

intrinsic mechanisms during remodeling (Figure 2) (Currey, 1999; Martin et al., 1998; 

Recker, 1983; Schaffler and Burr, 1988).

In the case of the adult taking a BP, the primary effect is on bone tissue turnover. As 

recently demonstrated, the tissue renewal process is dependent on damage cues from the 

local cells (osteocytes), and there are several direct influences of the BPs (Aguirre et al., 

2006; Manolagas and Parfitt, 2013; Nakashima et al., 2011; Schaffler et al., 2014). While 

this review focuses on these cell- and tissue-level bone quality effects, cells and tissue will 

be subject to differing stress distributions based on whole-bone structure, including femoral-

shaft curvature and offsets from lines of force application (i.e., femoral-neck length and 

angle). The cortices of many long bones, including the femoral shaft, have a natural 

curvature. Thus, some have argued that patients of Asian ancestry with a larger natural 

curving bow to their femoral shaft are at greater risk of atypical fracture (Sasaki et al., 2012; 

Shane et al., 2014).

3.1 Osteocyte damage

Osteocytes and their cellular processes in the lacunar-canalicular pores establish a dense 

communication network that is vital for nutrient and gas exchange. This network also 

establishes a highly sensitive mechanosensory system (Cowin et al., 1991; Wang et al., 

2000). Upon incorporation into the matrix, osteocytes form cellular protrusions that function 

as connections between the cytoplasm of neighboring osteocytes. Each osteocyte has at least 

50 processes with the potential to directly contact a neighbor (for reviews, see (Bonewald, 

2011; Manolagas and Parfitt, 2013; Schaffler et al., 2014)) (Beno et al., 2006; Kerschnitzki 

et al., 2013). Osteoctye processes connect directly by multi-pass transmembrane proteins, 

primarily connexin 43 (Cx43), located at the ends of the processes, that tightly regulate 

active transport of nutrients, metabolites, signaling ions (including Ca2+), small molecules 

and possibly RNA from one cell to another (Doty, 1981; Harris, 2007). Gap junction 

intercellular communication in response to anabolic agents (PTH) appears to be decreased as 

the age of the animal from which cells are isolated increases, independent of the ability of 

cells to produce Cx43 (Genetos et al., 2012). Paracrine and endocrine communication also 

occurs outside the osteocyte through the fluid-filled lacunar-canalicular network; exported 

from the cell are signaling molecules such as receptor activator of nuclear factor – κB ligand 

(RANKL) and Ca2+, released through un-paired Cx43 hemi-channels and other Ca2+-

specific channels (Ke et al., 2013). Thus, mechanisms of cell signaling, both direct and 

indirect, occur in continuous passageways and are vital to the maintenance of osteocytes and 

good bone tissue quality.

Damage to cells constantly occurs within bone and also may result from disruption of the 

processes, affecting cell-to-cell signaling. As in most cells, osteocytes accumulate damage to 

their intra-cellular machinery due to the normal aging processes of oxidation and telomere 

shortening that eventually leads to death (Almeida et al., 2007; Nojiri et al., 2011). Rarely, 
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osteocyte death is by overwhelming rupture of the cell body. Normally, osteocyte death 

occurs in a regulated fashion, by apoptosis (Bonewald, 2011; Manolagas and Parfitt, 2013; 

Schaffler et al., 2014). Estrogen withdrawal, loss of normal mechanical loading, 

accumulation of advanced glycation end (AGE) products or direct, mechanically-induced 

tissue damage accelerate this apoptosis (Aguirre et al., 2006; Burr et al., 1985; Follet et al., 

2007; Schaffler and Kennedy, 2012; Tomkinson et al., 1998).

3.1.1 Anti-apoptotic effects of bisphosphonates: Is a long life best?—BPs may 

have both short-term and long-term effects on osteocytes. Certainly, in the short-term BPs 

are anti-apoptotic for osteocytes (Loiselle et al., 2013; Plotkin et al., 2008; Plotkin et al., 

1999). Possibly, this action involves the Cx43 hemi-channels that are independent of gap 

junctions (Bellido and Plotkin, 2011; Plotkin et al., 2005; Plotkin et al., 2002).

For any anti-resorptive therapy a long-term consequence of reducing osteocyte apoptosis 

and OC resorption may be that the average age of the osteocyte population increases as there 

is a lower demand for new cells. After the initial closure of the remodeling space with the 

OB more completely filling existing resorption pits, a smaller amount of matrix is laid down 

for mineralization upon each remodeling activation cycle (Allen et al., 2010; Bajaj et al., 

2014). Thus, one possible consequence to the sparing of osteocytes by reduced resorption is 

increased cell aging. Yet, even this long-lived (decades) cell has a limited lifespan so that 

eventually death ensues (Dallas et al., 2013). If this death occurs without replacement, the 

logical eventual outcome is decreased osteocyte density. This less cellular tissue would have 

decreased sensitivity to mechanical loading and damage, raising the possibility that 

osteocyte density helps determine bone tissue properties (Vashishth et al., 2002; Vashishth 

et al., 2000). Indeed, a decline in osteocyte and lacunar density has been associated with 

aging, increased risk of osteoporotic fracture, and estrogen withdrawal (Frost, 1960a; 

Mullender et al., 1996; Qiu et al., 2002; Qiu et al., 2003; Tomkinson et al., 1997; Wong et 

al., 1985).

We recently reported osteocyte lacunae density, tissue mechanical properties under fatigue 

loading, and tissue micro-structure (section 3.2) of cortical rib bone from female beagles 

treated for 3 years with two different doses of alendronate or saline control (Bajaj et al., 

2014). The alendronate doses tested were 0.2 and 1.0 mg/kg/day, chosen to correspond to 

those used clinically for the treatment of postmenopausal osteoporosis (low-dose) and 

Paget's disease (high-dose), respectively. Tissue was bulk stained in 1% basic fuchsin, 

embedded in polymethyl-methacrylate, cut transverse to the bone long axis and imaged 

under bright-field microscopy. We found the density of osteocyte lacunae was reduced 

(~20%) by the same degree for both doses of alendronate (Bajaj et al., 2014). Our findings 

were similar in both the osteonal and interstitial space of the rib. However, our histological 

technique did not discriminate between possibly empty versus "missing" lacunae, due to 

either poor tissue construction or infilling after osteocyte death. Utilizing high-resolution (1 

µm) 3D synchrotron µCT to separate porosity fractions, (Tommasini et al., 2012) recently 

found a similar (~16%) reduction in the density of osteocyte lacunae with 6-month 

alendronate treatment, equivalent to our low-dose group, 1 month after the ovariectomy 

(OVX) of rat. Their comparisons were to the non-treated, young, OVX, while ours were to 

non-treated, age-matched adult controls. So, in addition to species and cortical bone-type 
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differences, these similar results may be due to many factors other than the drug treatment. 

There are no other osteocyte evaluations of models on long-term BP treatment for 

comparison, and while we attempted to relate our findings to tissue mechanical properties 

(section 3.2), others have not done that to date.

3.2 Cortical bone tissue damage

Functioning as one mechanism for energy dissipation, micro-cracks initiate, accumulate and 

effectively distribute the applied daily cyclic loads such that one single loading event does 

not cause fracture (Frost, 1960b; Mori et al., 1997; Schaffler et al., 1995; Wenzel et al., 

1996). Fatigue-induced micro-cracks compromise mechanical integrity, tend to be restricted 

to more densely-mineralized older-bone tissue and are capable of signaling the remodeling 

process (Burr et al., 1998; Carter et al., 1976; Hoshaw et al., 1997; Parfitt, 2002; Pattin et al., 

1996; Qiu et al., 2005; Schaffler et al., 1990). To prevent fracture, cracks are removed 

through the process of bone remodeling (Figure 2). In the same beagle model (section 3.1.1) 

in which osteocyte lacunae were reduced, increases in the average length (25%) of micro-

cracks with BP treatment were evident within cortical bone of the rib after one and three 

years (Allen et al., 2008b; Mashiba et al., 2000). This aspect of micro-damage, and no other, 

including the density of cracks (#/mm2), has been found consistently altered in cortical bone 

with BP treatment in this model.

Obviously, not all aspects of the human condition are recapitulated in the beagle model and 

any extrapolations should be made in a cautionary light. However, iliac biopsies of 

osteoporotic women on BP treatment have demonstrated differences in cortical matrix 

composition (greater mineral crystal homogeneity) (Donnelly et al., 2012a) and lower 

toughness, or the amount of energy absorption to fracture (Tjhia et al., 2012). Greater 

homogeneity at many levels of the hierarchical structure of bone tissue are associated with 

bone tissue aging, greater damage and lower toughness (Akkus et al., 2003; Zimmermann et 

al., 2011).

Estimates from simple, mono-tonic, quasi-static bending of whole beagle rib suggest that the 

increased crack length in alendronate-treated cortical bone is associated with a reduction in 

tissue-level toughness (Allen et al., 2008b). These and other studies with BP-treated beagles 

have demonstrated increased stiffness, or initial resistance to a mechanical load, as expected 

due to the beneficial effects of BPs. However, the BP treatment also decreased toughness, as 

estimated from whole-bone mechanical testing, more significantly so for the higher doses 

and longer durations tested (Allen and Burr, 2007; Allen et al., 2006; Komatsubara et al., 

2003; Mashiba et al., 2001). More direct, tissue-level tests on machined specimens from 

bone tissues of BP-treated animals and patients have also suggested lower toughness (Tang 

et al., 2009; Tjhia et al., 2012). Furthermore, the modulus determined at the calcaneus with 

ultrasound was significantly lower among women on long-term (>3 years) versus shorter BP 

therapy and both treatment groups had lower modulus (normalized to density) versus non-

treated osteoporotics (Richer et al., 2005).

Since loading conditions in vivo are cyclic, we sought to determine the mechanical 

properties of long-term, BP-treated adult female beagle bone subjected to fatigue (Bajaj et 

al., 2014). After treatment for 3 years (section 3.1.1), we machined prismatic beams of 

Geissler et al. Page 8

J Biomech. Author manuscript; available in PMC 2016 April 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



rectangular cross-sectional geometry (1.5 mm × 0.5 mm) and 10–12 mm length from rib 

cortices. The long-axis of osteons was oriented parallel to the beam length. Our cyclically 

loaded beams demonstrated an increasing dose-response decline in number of loading cycles 

to failure under 4-point bending. Furthermore, a positive relationship was established 

between osteocyte lacunar density and the initial elastic modulus (Ei) measured within the 

first few loading cycles of the fatigue test.

The possible mechanisms accounting for lower osteocyte density affecting material 

properties includes an impaired detection of damage by osteocytes at the cement line 

(section 3.2.1) or within the rest of the tissue, and a loss of structural (lacunae and 

canaliculae) discontinuities in the matrix (Skedros et al., 2011). We hypothesize that 

degradation in damage detection at the cement line could occur through loss of the 

canalicular supply chain since the osteocytes near the cement line are the furthest away from 

a nutrient blood vessel of the Haversian system. The damage regulation role of the osteocyte 

lacunar-canalicular system has been hypothesized to be due to the structural discontinuities 

in mineralized tissue that serve a toughening role. Toughness is also attributed to the altered 

mineralization around the cement line and alternating lamellae of the osteon that provide 

ductile interfaces to slow crack growth (Burr et al., 1988; Lakes and Saha, 1979; Schaffler et 

al., 1987; Skedros et al., 2005).

3.2.1 Bone tissue as a viscoelastic, damaging material—Osteons, representing the 

youngest and least mineralized of the heterogenous bone tissue, provide an attractive sink 

for cracks that initiate in the interstitial regions oriented toward the cement line (Carter and 

Hayes, 1976; Schaffler et al., 1989). Differences in tissue modulus are responsible for this 

property; as the osteons age, and become more mineralized with greater modulus, the 

preference for crack directionality to cement lines is lost and cracks are repelled into the 

interstitial space (Lakes and Saha, 1979; Thompson, 1980). This suggests that as the overall 

age of osteons increases, the toughness of cortical bone tissue is both decreased and the 

location where cracks might be detected is changed. In addition to lower osteocyte lacunae 

density, Ei and fatigue cycles to failure found in 3-year, BP-treated beagle rib, we found 

osteonal cross-sectional area, determined by the vigor of the bone resorption phase of 

remodeling, to be reduced by approximately 14%. However, this was the case for the high-

dose treated group only (Bajaj et al., 2014). A similar finding of reduced depth of BMU 

resorption cavities within trabecular bone in this beagle model, also only found with high-

dose treatment, supports this cortical data (Allen et al., 2010). Therefore, both the numbers 

of new rib cortical osteons formed over the 3-year treatment period, estimated from the 

activation frequency of calcein-labeled osteons formed over the last 2 weeks of life to be 

approximately 60% of the total number of osteons, and the size of those newly formed 

osteons were reduced significantly with the high-dose alendronate treatment (Allen et al., 

2006; Allen et al., 2008b; Bajaj et al., 2014; Mashiba et al., 2000).

Decreases in the resorption width dug by the osteoclasts of BMUs decrease the average 

osteon area and total cement line perimeter (Figure 4) and fail to decrease or replace the 

interstitial, oldest bone area, where most micro-cracks initiate and lengthen (Allen et al., 

2010; Bajaj et al., 2014; Skedros et al., 2005). If osteon density remains unaffected, a 

reduced cement line perimeter around each osteon further reduces the tough, energy-
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absorbing interfaces available for slowing crack growth and accumulation (Burr et al., 1988; 

Lakes and Saha, 1979; Schaffler et al., 1987; Skedros et al., 2005). These losses in energy-

absorbing capacity may lead to a reduction in material quality. Without increased activation 

of BMUs, average tissue age increases. Thus, without this cell-facilitated renewal process, 

old and damaged tissue may persist and the mechanical quality of bone eventually degrades.

Bone matix is a composite of the collagen and non-collagen proteins, minerals, lipids and 

water. Of these individual components, only water content, which contributes heavily to 

viscoelasticity of the tissue and the fluid flow that is thought to allow osteocytes to monitor 

the mechanical health of the bone tissue environment (for review see Fritton and Weinbaum, 

2009), has been directly examined in an animal model exposed to a BP. Collagen is 

primarily responsible for bone’s flexibility under both compressive and tensile loading and 

provides a measure of toughness to resist fracture. As newly deposited organic matrix 

matures, calcium and phosphate ions infiltrate the collagen framework and develop calcium 

hydroxyapatite (HAP), plate-like crystals to provide bone with compressive strength and 

rigidity. Toughness is built in with the discontinuities just discussed, plus those between the 

matrix components, including AGEs (section 3.2.2). Many of the matrix components can be 

broken and rebuilt (Zimmermann et al., 2011). Water serves a structural role as 

demonstrated by examining the differences in mechanical properties between stiff, brittle, 

dry bone and tough, wet bone (Sasaki and Enyo, 1995). In pre-mineralized osteoid matrix 

water is bound by a network of acidic proteoglycans with long glycosaminoglycan chains. 

Water becomes depleted as ossification proceeds.

Utilizing ultra-short echo-time MRI, supported by NMR, µCT, and ashing, Wehrli and 

colleagues recently found such a decreased water (1H content) and increased phosphorus 

(31P content as indicator of mineralization) concentration after 6-week alendronate 

treatment, with doses equivalent to our dosing groups, 1 week after the OVX of rat. The 

effects were dose-dependent with effect sizes at the greatest dose of −14% (1H) and +6% 

(31P) compared to non-treated OVX (Anumula et al., 2010). Again, species and cortical 

bone-type differences make extrapolation to the human condition difficult, and no reports of 

this drying effect of a BP have yet appeared in the literature for any other species.

3.2.2 Effects of aging on collagen and mineral—There is also evidence that BP 

therapy increases AGE presence in bone (Allen et al., 2008a; Saito et al., 2008; Tang et al., 

2009). What is not known is whether the effect is primarily due to increased tissue age 

resulting from suppressed bone turnover or some other factor. Evidence is lacking for an 

effect on OB collagen fiber production, orientation or initial cross-linking (enzymatic), 

factors that normally affect mechanical properties (Martin and Boardman, 1993). Fiber 

orientation is doubly important because HAP crystal alignment appears dependent on the 

collagen fibril axis and determined during the initial mineral seeding, i.e., orientation does 

not change during collagen and crystal maturation (Chatterji et al., 1981; Skedros et al., 

2006). Proper enzymatic cross-linking provides the framework for new HAP crystal 

incorporation and growth. While mineral maturation occurs through crystal growth, collagen 

maturation is the result of enzymatic (short-term) and non-enzymatic cross-links (AGE, 

Figure 5) (Byers, 1990).
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Tissue aging is a likely candidate for increased AGE in BP-treated bone. While enzymatic 

cross-linking is a tightly controlled process, non-enzymatic cross-linking is a spontaneous 

event between mature collagen fibers and free sugars, like glucose, known as glycation and 

resulting in AGE accumulation in tissue. AGE may be enhanced by oxidation, and both 

oxidative and AGE byproducts typically increase with tissue age (Saito and Marumo, 2010). 

The presence of these cross-links may be exacerbated by diabetes, likely due to reduced 

glucose control and glycemia (Dominguez et al., 2005).

Clearly, AGE accumulation in animal models is associated with altered bone strength 

(increased demineralized tensile stiffness without effect on mineralized compressive 

stiffness), reduced bone mechanical quality (cortical tissue-level toughness), and increased 

fracture risk (Gourion-Arsiquaud,et al., 2010; Karim and Vashishth, 2012; Tang et al., 2007; 

Vashishth, 2009; Vashishth et al., 2001). Again, the limited human data are in support of the 

research primarily completed in dogs. Across a wide range of alendronate and risedronate 

doses, Allen and colleagues demonstrated elevated AGE content in trabecular bone (Allen et 

al., 2008a; Tang et al., 2009). Also reported have been accumulation of AGE following 

treatment with high-dose incadronate, a non-clinical BP (Saito et al., 2008). Cortical sites 

remain to be fully evaluated.

Collagen and HAP maturity (crystallinity) demonstrate variability with aging (Akkus et al., 

2003; Boskey and Pleshko Camacho, 2007; Pleshko et al., 1991) and certain drug 

treatments, including BPs (Gourion-Arsiquaud et al., 2010). These are characterized by 

Fourier transform infra-red (FTIR) and x-ray diffraction microscopy (Figure 6). Tissue 

composition varies with skeletal site, and an area associated with atypical fracture, the 

subtrochanteric cortex of the femur, exhibits a 30% narrower crystallinity distribution than 

other commonly examined locations (Donnelly et al., 2012b). Interestingly, the AFF subset 

of fractures demonstrated an 8% greater cortical mineral content compared to typical 

fracture sites. Similarly, mineral content, collagen maturity and crystallinity have been 

shown to increase with age of the tissue (Akkus et al., 2003; Boskey and Pleshko Camacho, 

2007; Pleshko et al., 1991).

4. Atypical fracture risk assessment

As pointed out by the ASBMR task force, there is a need for better imaging techniques to 

identify atypical fracture risk as early as possible. Over the past decade, advancements in 

radiologic imaging technologies have led to high-resolution systems promising non-invasive 

imaging and the ability for "in silico" analysis based on computational mechanics techniques 

(Seeman and Delmas, 2006). Resolution currently limits use to evaluating bone at a 

structural level higher than the width (<1 µm) of micro-cracks (Sornay-Rendu et al., 2009). 

Conventional radiographic x-ray imaging allows characterization of larger cracks; a skilled 

reading provides for identifying atypical fractures (Shane et al., 2014). However, by 

definition, this is too late, as fracture avoidance is the objective. Once an AFF is diagnosed, 

a surgical intervention is often required.

Imaging for biological activity seems more promising than structural imaging techniques for 

identifying potential underlying problems (Figure 7). Tagging BPs with contrast agents such 
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as fluorescent probes or radiolabels might be a move toward accomplishing this by 

providing an estimate for the amount of BP taken up in bone (Coxon et al., 2008; Kozloff et 

al., 2010; Roelofs et al., 2010; Turek et al., 2012). These agents may also be useful for 

identifying AFF by bone scintigraphy (Figure 7) that identifies newly exposed mineral 

surfaces (Einhorn et al., 1986). Other techniques, including MRI, may be useful for 

determining mineral and water tissue content (section 3.2.1) (Ahovuo et al., 2004; Anumula 

et al., 2010; Gaeta et al., 2005). Dual-energy x-ray absorptiometry (DEXA) in combination 

with additional advancements in image analysis techniques is helping community physicians 

identify abnormalities like cortical beaking or thickening associated with atypical femoral 

fractures (McKenna et al., 2013). This extension of the DEXA scan, previously used only to 

identify patients for osteoporosis treatment, has demonstrated an increased automated 

identification and detection of AFF features. While possibly a more concrete method to 

identify AFF over conventional x-ray, this method has not yet been proven to alter the 

course of treatment or outcome. If indeed this thickening, considered a minor feature, is a 

localized periosteal reaction of the lateral cortex indicative of a symptom (periosteal 

irritation due to excessive motion at the cortex) rather than a cause for AFF, this finding may 

not occur early enough to substantially alter the course of treatment (Shane et al., 2014). 

Indeed, increased cortical thickness is a feature that should lower, not increase, the risk of 

fracture. Though again, tissue-level mechanical quality must also be considered if normal 

remodeling is being impeded by a drug or any other cause (section 2.2).

5. Summary and conclusions

While anti-resorptive therapy has proven very effective over the past 20 years at preventing 

osteoporotic fractures, the risk of side-effects, including atypical fracture, limits their use 

(Pazianas and Abrahamsen, 2011). The incidence of atypical fracture is quite small, yet rises 

with length of use (Figure 1) (Dell et al., 2012). Therefore, questions remain regarding the 

best use of anti-resorptives. While not specifically covered in this survey, many have 

suggested a drug holiday, use of lower BP doses or switching to an anabolic drug. These 

seem like logical quick solutions. However, the optimization of holidays off of a drug (time-

dose), and actual doses while not on holiday are likely specific to an individual and their 

age. Anabolics, specifically PTH, tend to increase the frequency of remodeling cycles and 

therefore may reverse some of the changes related to tissue age; again these may need to be 

individualized.

Novel assessment tools for specifying drug doses will require a better understanding of the 

mechanism(s) behind AFF and a way to balance risk with treatment reward. These tools 

should be based on biomechanical measures of tissue-level quality that assess changes over 

the duration of treatment to dynamic loads and directly relate to each type of fracture risk, 

including atypical. Biological assessments related to tissue-level mechanical properties will 

also be important.

One of the main biological questions remaining is whether osteocyte and/or osteocyte 

lacunar density are affected by long-term BP use in humans as has been suggested by our 

data from the alendronate-treated beagle (Bajaj et al., 2014). We have hypothesized that the 

sparing of osteocytes in the short-term may have long-term implications. As cellular 
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networks get older due to delayed death of some osteocytes, signaling for replacement is 

impaired. This loss of signaling would thus result in more lacunae empty of the cellular 

machinery required for tissue maintenance than would have been the case if normal, on-time 

apoptosis had occurred. This tissue aging may also increase AGE content, mineralization, 

collagen and HAP crystal homogeneity, risk of damage in the form of increased micro-crack 

length and fracture. Additionally, there may be a decrease in cortical tissue water content 

and toughness.

While the new data for BP-treated cortical bone tissue surveyed here is not definitive for 

tissue-aging over long-term human use, this mechanism is in line with the differences found 

thus far in long-term treated animal models. Bone tissue turnover is known to be important 

to the overall bone health of long-lived animals, supported by a large body of literature, 

some of which was reviewed here. Certainly, tissue age and other possible causative factors 

behind AFF should be further investigated so that even more optimal treatments for 

prevention of fractures may be developed in the future.
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Abbreviations

AFF atypical femoral fractures

AGE advanced glycation end-products

ASBMR American Society for Bone and Mineral Research

BMU basic multi-cellular unit

BP bisphosphonate

Cx43 connexin 43

DEXA dual energy x-ray absorptiometry

E elastic modulus

FDA Food and Drug Administration

FTIR Fourier transform infra-red

HAP hydroxyapatite

MRI magnetic resonance imaging

NMR nuclear magnetic resonance

OB osteoblast
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OC osteoclast

ONJ osteonecrosis of the jaw

OVX ovariectomy

PET positron emission tomography

PTH parathyroid hormone

RANKL receptor activator of nuclear factor –κB ligand

SAXS small-angle x-ray scattering

WAXS wide-angle x-ray scattering

µCT micro-computed tomography
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Figure 1. 
In the only large, long-term prospective clinical report to date, the incidence of non-

traumatic diaphyseal fractures of the femur increased with duration of bisphosphonate (BP) 

exposure. Reproduced with permission from Dell et al. (2012). Data demonstrate unadjusted 

(blue) and age-adjusted (yellow) (error bars are 95% confidence intervals) incidence of 

atypical femur fracture (AFF) in 188,814 patients on BPs for increasing numbers of years 

(x-axis). The study population was over 45 years old, and approximately half of those 

sustaining AFF were of Asian ancestry.
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Figure 2. 
The primary mechanism of bone tissue replacement in the adult occurs in the basic multi-

cellular unit (BMU). The BMUs are in both trabecular and cortical bone (Frost, 1979; 

Parfitt, 1982). Bone resorption is completed by multi-nucleated osteoclasts (OC) that 

degrade both inorganic and organic phases, leaving a resorption pit (center). Following 

closely behind are osteoblasts (OB) that fill the pit by secreting components of the osteoid 

matrix. Some OBs become entombed within the mineralizing matrix, transition into 

terminally-differentiated osteocytes and take up residency within the lacunar space of bone.
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Figure 3. 
Model for atypical fracture that presents with symptoms similar to that of an insufficiency-

type stress fracture. A full, single cortex, transverse fracture on the tensile (lateral) side of 

the femur leads to irritation or disruption of the outer periosteal soft-tissue layer of bone. 

The reaction includes a small callus (black) of rapid bone formation attempting to stabilize 

the periosteum, and the patient presents with what appears to be an insufficiency-type stress 

fracture.
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Figure 4. 
Osteoclastic tunneling to remodel cortical bone tissue (top), and a model for the 

observations of decreased osteonal size, osteocyte lacunae density and increased micro-

crack length in long-term bisphosphonate (BP) treated cortical bone tissue (bottom). Top: 

Osteoblasts of the BMU are shown filling in the resorption pit, leaving a central canal for the 

blood and nerve supply of the Haversian system (Cooper et al., 1966; Petrtyl et al., 1996; 

Piekarski and Munro, 1977). Bottom: Damage due to "wear and tear" accumulates in young 

normals, and is removed at a regulated rate that prevents coalescence (Burr, 2002; Parfitt, 

2002). Long-term BP treatment may affect bone quality through many BMU-related cortical 

tissue features.
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Figure 5. 
Mechanical integrity of bone tissue is altered by two mechanisms of cross-linking between 

collagen fibers: enzymatic (gray lines) and non-enzymatic (yellow hexagons). Enzymatic 

occurs during collagen deposition and subsequent mineralization (Saito and Marumo, 2010). 

This process is tightly regulated. As tissue age increases with BP treatment, spontaneous 

non-enzymatic cross-linking may lead to the formation of advanced glycation end products.
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Figure 6. 
The hierarchical structure of bone provides many length scales upon which to measure 

structural and biomechanical properties (after (Currey, 2005; Ruppel et al., 2008)). Each is 

integral to the overall function of cortical tissue. Quasi-static or fatigue loads are applied to 

characterize (left-to-right) whole bone, tissue-, cell-, and material-level mechanical 

properties. Beams or coupons are isolated to evaluate osteonal and interstitial tissue (Bajaj et 

al., 2014). Osteons may be further isolated for testing (Ascenzi et al., 1997). 

Microindentation and nanoindentation analyses characterize hardness of the composite 

material of bone (Anumula et al., 2010). Imaging techniques (reviewed in (Cardoso et al., 

2013)), including Fourier transform infra-red (FTIR), Raman, small-angle (SAXS), and 

wide-angle (WAXS) x-ray diffraction microscopy, are used to characterize sub-micrometer 

properties.
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Figure 7. 
(top) An x-ray combined with a Technetium-99m scan may allow a physician early 

identification of an atypical femur fracture (AFF). Reproduced with permission from Jo et 

al. (2013). The x-ray effectively identifies a radiolucent line indicative of the AFF on left 

(left most white arrow). However, only the Technetium-99m scan on right delineates an 

increased and unusual bone formation activity in the contralateral AFF (right most black 

arrow). (bottom) Co-registered in vivo positron emission (PET) and computed-tomography 

(CT) demonstrates increased uptake of radio-labeled fluoride (18F) due to increased mineral 
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exposure after external mechanical loading used to create damage and stress fracture in the 

living rat. Reproduced with permission from Silva et al. (2006); Uthgenannt and Silva 

(2007).
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