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Abstract

Systemic lupus erythematosus (SLE) is an inflammatory autoimmune disease with a strong genetic component. African-
Americans (AA) are at increased risk of SLE, but the genetic basis of this risk is largely unknown. To identify causal variants in
SLE loci in AA, we performed admixture mapping followed by fine mapping in AA and European-Americans (EA). Through
genome-wide admixture mapping in AA, we identified a strong SLE susceptibility locus at 2q22–24 (LOD = 6.28), and the
admixture signal is associated with the European ancestry (ancestry risk ratio ,1.5). Large-scale genotypic analysis on
19,726 individuals of African and European ancestry revealed three independently associated variants in the IFIH1 gene: an
intronic variant, rs13023380 [Pmeta = 5.20610214; odds ratio, 95% confidence interval = 0.82 (0.78–0.87)], and two missense
variants, rs1990760 (Ala946Thr) [Pmeta = 3.0861027; 0.88 (0.84–0.93)] and rs10930046 (Arg460His) [Pdom = 1.1661028; 0.70
(0.62–0.79)]. Both missense variants produced dramatic phenotypic changes in apoptosis and inflammation-related gene
expression. We experimentally validated function of the intronic SNP by DNA electrophoresis, protein identification, and in
vitro protein binding assays. DNA carrying the intronic risk allele rs13023380 showed reduced binding efficiency to a cellular
protein complex including nucleolin and lupus autoantigen Ku70/80, and showed reduced transcriptional activity in vivo.
Thus, in SLE patients, genetic susceptibility could create a biochemical imbalance that dysregulates nucleolin, Ku70/80, or
other nucleic acid regulatory proteins. This could promote antibody hypermutation and auto-antibody generation, further
destabilizing the cellular network. Together with molecular modeling, our results establish a distinct role for IFIH1 in
apoptosis, inflammation, and autoantibody production, and explain the molecular basis of these three risk alleles for SLE
pathogenesis.
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Introduction

Systemic lupus erythematosus (SLE, [MIM 152700]) is a

clinically heterogeneous autoimmune disease with a strong genetic

component, characterized by inflammation, dysregulation of type-1

interferon responses and autoantibodies directed towards nuclear

components. SLE overwhelmingly targets women, and its incidence

and clinical course differ dramatically between ethnic populations.

In particular, SLE occurs with at least 3–5 times higher prevalence

and more severe complications in African-Americans (AA)

compared to Americans with European ancestry (EA) [1]. However,

the genetic basis of this increased risk is largely unknown. The

recently ‘‘admixed’’ AA population is likely to provide critical

information necessary to identify chromosomal regions that harbor

variants associated with SLE and provide insights about allele

frequency differences among distinct ancestral populations (i.e.,

European and African). Admixture mapping (AM) has proven to be

a powerful method to leverage ancestry information to identify

chromosomal segments linked to disease [2–9]. For instance, AM

has helped identify the risk gene MYH9 in idiopathic focal

segmental glomerulosclerosis in AA [10], and risk alleles in several

genes associated with breast [11] and prostate cancer [12]. In

addition to the greater lupus incidence, studying AA populations

offers a second advantage. Africans have the smallest haplotype

blocks of all human populations: African average population

recombination distance is 6 kb, while it is 22 kb in Europeans

and Asians [13,14]. This 3-fold smaller haplotype size gives rise to

correspondingly tighter genomic associations in admixed popula-

tions such as AA, making causal mutations easier to decipher.

Although several genes for SLE susceptibility have been found

through candidate gene analysis and genome wide association

scans (GWAS), none or very few causal mutations have been

identified in each gene. In this study we employed AM in AA to

identify admixture signals, and performed a follow-up association

study on AA and EA to further identify and localize variants

associated with SLE. We experimentally validated predicted

variants with biochemistry, cell culture experiments and sequenc-

ing of patient-isolated samples. We showed distinct functions of

two coding SNPs including changes in gene expression. Through

electrophoretic mobility shift assays (EMSAs), protein identifica-

tion and in vitro protein binding assays, we determined that the

intronic SNP disrupts function of a transcriptional enhancer of the

IFIH1 locus. Taken together, these results explain the effects of

three independent causal mutations on SLE, and begin to

elucidate the disparity in disease prevalence between different

human populations.

Results

Admixture mapping
Since case-only analysis has greater statistical power than case-

control, we first performed a case-only admixture scan [3,6,8] on

1032 AA SLE cases (Figure 1, Table S1). Individual admixture

estimates and genome scans for admixture mapping were analyzed

using STRUCTURE [15] and ANCESTRYMAP [7] and later

verified with ADMIXMAP [6]. As expected, a two-ancestral

population model (African and European) best explained the

population structure of these samples. By applying the ANCES-

TRYMAP software, we identified seven potential admixture

signals that exceeded our predefined LOD threshold of 2

(Figure 2A, Table S2). Specifically, we identified a genomewide

significant association [7] of SLE risk with European ancestry at

2q22–q24 (highest LOD = 6.28 was achieved between rs6733811

and rs4129786) using a weighted prior risk model; the strongest

association at the same locus was observed at a fixed prior risk of

1.5, which represents a 1.5-fold increased risk of SLE due to one

European ancestral allele at this locus. To evaluate how the prior

risk model could influence the ANCESTRYMAP results, we also

applied a uniform prior risk model and found consistent genome-

wide evidence for association at 2q22–q24 (LOD = 5.86). We also

reassessed the strength of the admixture signal at 2q22–24 using

alternate markers (LODodd = 3.65, LODeven = 4.32), and comput-

er simulation (P = 0.02). We also validated case-only admixture

signals with a case-control admixture scan with 800 ancestry

informative markers (AIMs), using 1726 controls from the Dallas

Heart Study (DHS) (Table S2). We next repeated the admixture

scan using ADMIXMAP, which uses a classical (non-Bayesian)

hypothesis test (i.e., score tests for allelic associations with the trait,

conditional on individual admixture and other covariates). All the

admixture signals identified by the case-only design using

ANCESTRYMAP were strongly validated by ADMIXMAP

(Table S2). The strongest peak was identified at 2q22–24 through

ADMIXMAP (P = 2.9961028, Table S2). Both AM programs

found that the strongest effect was on the AIM rs6733811

(P = 2.9961028, LOD = 5.65). Two weaker signals were also

found on chromosome 2 (LOD = 3.61, P = 4.8261023; and

LOD = 3.52, P = 1.6461024), as well as on chromosomes 7

(LOD = 3.26, P = 6.4961026), 9 (LOD = 3.43, P = 1.4161025),

14 (LOD = 2.44, P = 3.8461025) and 19 (LOD = 3.20,

P = 1.1561025) (Table S2).

Fine mapping and association analysis
To identify SLE-susceptibility gene(s) within 2q22–24, we

performed a follow-up case-control (CC) association study in two

ethnically diverse groups: CCAA (1525 cases, 1810 controls) and

CCEA (3968 cases, 3542 controls) (Figure 1, Table S1). Individual

ancestry was estimated using 216 highly informative AIMs. Case-

control association tests were performed using 284 SNPs from 20

plausible candidate genes spanning ,21 megabases of 2q22–q24

(95% CI (142.4–163.6), Table S3). Forty-two SNPs from 10 genes

(IFIH1, CACNB4, ACVR1C, KCNH7, NEB, STAM2, ZEB2, NMI,

ARHGAP15, and ACVR2A) showed significant association for the

allelic test (Puncorrected,0.05) in CCAA, whereas 23 SNPs (in IFIH1,
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CACNB4, NEB, ARHGAP15, and TNFA1P6) showed significant

association in CCEA (Table S4). The strongest associations

occurred at IFIH1 (interferon-induced helicase 1;

PAA = 3.5261025, PEA = 8.8261025) and CACNB4 (voltage-gated

calcium channel, beta subunit; PAA = 9.0761025,

PEA = 2.6161022), which are separated by 10.2 Mb. Among the

22 SNPs tested within IFIH1, 13 were significantly (P,0.05)

associated in AA and 4 in EA. Among 23 CACNB4 SNPs, 12 were

significant in AA and 2 in EA. Considering the number of

associated SNPs, level of replication and involvement in autoim-

mune phenotypes [16–20], we considered IFIH1 as the strongest

candidate to explain the admixture-mapping signal.

Of the 13 SNPs significantly associated in AA, a preliminary

imputation-based association analysis and comparing linkage

disequilibrium (LD) determined that 11 were sufficient to tag the

13 associated SNPs (Table S6). To increase the statistical power to

detect variants associated with SLE, we genotyped these 11 IFIH1

SNPs in 949 healthy AA controls from the DHS, along with

Author Summary

African-Americans (AA) are at increased risk of systemic
lupus erythematosus (SLE), but the genetic basis of this risk
increase is largely unknown. We used admixture mapping
to localize disease-causing genetic variants that differ in
frequency across populations. This approach is advanta-
geous for localizing susceptibility genes in recently
admixed populations like AA. Our genome-wide admixture
scan identified seven admixture signals, and we followed
the best signal at 2q22–24 with fine-mapping, imputation-
based association analysis and experimental validation. We
identified two independent coding variants and a non-
coding variant within the IFIH1 gene associated with SLE.
Together with molecular modeling, our results establish a
distinct role for IFIH1 in apoptosis, inflammation, and
autoantibody production, and explain the molecular basis
of these three risk alleles for SLE pathogenesis.

Figure 1. Study design. Our study design had four stages (sample sizes for cases/controls are in parentheses). In Stage 1, we performed admixture
mapping of African Americans (AA) in a case-only analysis with 1032 cases and in a case-control analysis with 1726 controls. In Stage 2, the major
admixture mapping signal at 2q22–24 was followed by a candidate gene analysis using case-control association in CCAA (1525/1810) and European
Americans (CCEA) (3968/3542), with 737 cases used for stages 1 and 2. In order to focus on our best candidate locus (IFIH1), we used out-of-study
controls to increase control sample sizes to 4485 for AA and 9750 for EA. In Stage 3, we performed imputation based analysis on AA (1525/4485) and
EA (3968/9750) to confirm our candidate gene analysis. In Stage 4, we performed functional analyses for the three confirmed SNPs. For the coding
SNPs rs10930046 and rs1990760, we used an apoptosis assay to assess possible changes in protein function, and a gene expression assay to evaluate
the effects of these SNPs on expression of genes related to apoptosis, inflammation and viral response. For the intronic variant rs13023380, we used
EMSA to investigate whether the variant affected binding of the local DNA sequence to nuclear proteins.
doi:10.1371/journal.pgen.1003222.g001
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Figure 2. Admixture mapping and conditional analysis. (A) A whole-genome admixture scan on AA SLE cases identified 7 admixture signals
that achieved the predefined LOD score .2 (red dashed line). (B) We performed an imputation-based association analysis of IFIH1, which was
identified as the most promising candidate gene by a case-control study on 20 candidate genes in the largest peak (2q22–24), followed by 4-SNP
haplotype conditional analysis (C). Filled dots indicate the 2log10 P values for the association to SLE, and color coding represents inter-marker
correlation (r2) between the strongest associated SNP, rs10930046 (‘‘purple diamond’’), and the individual SNPs, as shown in the color bar. (C) After
conditioning the 4-marker haplotypes for the three markers rs1990760–rs10930046–rs13023380, all individual SNP associations are explained as
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additional out-of-study controls (Figure 1, Table S1). Using single

SNP analysis (allelic and genotypic models), followed by condi-

tional analysis and LD analysis across two populations, we

detected three SNPs with potentially independent SLE association

(Table 1, Figure 2B and 2E). Based on an allelic model, intronic

variant rs13023380 [PAA = 4.3361025, PEA = 9.52610211;

Pmeta = 5.20610214; OR = 0.82 (0.78–0.87)], and a missense

(Ala946Thr) variant rs1990760 [PAA = 2.0261024,

PEA = 1.2261024; Pmeta = 3.0861027; OR = 0.88 (0.84–0.93)],

were associated with SLE in both AA and EA. Another non-

synonymous missense variant (Arg460His), rs10930046, was

initially associated only with SLE in AA (PAA = 1.8161027;

OR = 0.80 (0.73–0.87)), where the best fit genetic model was

identified as dominant (Pdom = 1.1661028, OR = 0.70 (0.62–0.79))

(Table 1, Table S5). This SNP is rare in EA, having a minor allele

frequency (MAF) of only 1.3% in controls and 1.6% in cases

(PEA = 0.086) (Table 1). However, after conditioning on the other

two associated SNPs (rs13023380 and rs1990760), the rs10930046

became marginally significant in EA (PEA = 0.017; OR = 1.2).

These SNPs remained significant in both AA and EA after

adjusting for ancestry (Table 1). Strikingly, the ancestral alleles at

these three SNPs (all ‘G’) are the minor alleles in at least one

population: all three ancestral alleles are the minor alleles in EA;

the ancestral rs10930046 allele is minor in AA as well.

We analytically estimated the joint population attributable risk

(PAR) [21] using these three SNPs (rs13023380, rs10930046 and

rs1990760) for AA (18.1%) and EA (14.7%). Most of the increased

PAR (%) in AA was attributable to rs1090046 (12.5% PAR),

whereas for EA very little was attributable to this SNP (0.3%

PAR), likely due to the extremely low MAF. For AA, we also

sought to determine how much of the European ancestry risk ratio

(l= 1.5, estimated by ANCESTRYMAP) was attributable to the

three SNPs at 2q22–24. Using the estimated ORs in AAs and the

SNP allele frequencies of the two ancestral populations (YRI, the

Yoruba people of West Africa, was used as an African ancestral

population; CEPH, Utah residents with Northern and Western

European heritage, was used as an European ancestral population

(Table S8), we estimated the locus-specific ancestry risk ratio (l;

see Methods) for each SNP (lrs1990760 = 1.12, lrs10930046 = 1.15,

lrs13023380 = 1.12). Assuming that each SNP contributes to the

ancestry risk ratio independently, about 80% of the increased risk

due to one copy of the European ancestry alleles estimated from

ANCESTRYMAP (,1.5) can be explained by the three SNPs at

2q22–24, reinforcing our conclusion from admixture mapping that

local European ancestry increases the disease risk at 2q22–24.

We also repeated our admixture mapping by stratifying the

cases by three genotype (‘AA’, ‘AG’ and ‘GG’) at the most

differentiated (FstCEPH-YRI = 0.38) SNP, rs10930046 (NAA = 279,

NAG = 323, NGG = 114). Even with the small samples, we found a

dramatically increased risk of European ancestry at rs10930046

(LOD = 10.78) in the homozygous ‘AA’ compared to the other

genotypes, where ancestry association is insignificant (LOD for

‘GG’ = 26.46 and ‘AG’ = 23.38).

Imputation-based association analysis
To identify additional SLE-associated variants, we performed

an imputation-based association analysis in and around IFIH1

using MACH [22] with reference data from AA (207 controls) and

EA (594 controls) using genotyping data from the ImmunoChip

(Figure 2B, 2E and Tables S6, S7). Using stringent predefined

shown. (D) We analyzed the LD between SNPs on the ImmunoChip, and these LD values were used as a reference panel for imputation in AA. Darker
color denotes higher correlation between markers (r2). The LD pattern showed high correlation between markers, making it possible to increase SNP
density by imputation. The three independently associated SNPs identified in (B) are denoted by arrows. (E) We performed an imputation based case-
control association analysis in EA. Filled dots indicate the 2log10 P values for each SNP, and color coding represents the inter-marker correlation (r2)
between each individual SNP and the strongest associated SNP, rs13023380 (‘‘purple diamond’’), as shown in the color bar. (F) We then performed a
two SNP haplotype analysis followed by a three marker haplotype analysis conditioned on the two independent variants rs10930046 and rs13023380.
(G) LD analysis of SNPs on the ImmunoChip reference panel showed low inter-marker correlation, which largely precluded imputation based
association. Darker color indicates greater r2. Arrows indicate the position of the independent SNPs.
doi:10.1371/journal.pgen.1003222.g002

Table 1. Case-control association for genotyped variants in AA and EA.

SNP Position Alleles AA EA

Affected Control P-value OR Affected Control P-value OR

(N = 1525) (N = 4485) [95%CI] (N = 3968) (N = 9750) [95%CI]

rs13023380 162,862,609 G/A 0.885 0.911 4.3361025+ 0.75 0.433 0.478 9.52610211+ 0.84

3.9261024* (0.66–0.86) 6.66610211* (0.79–0.88)

1.7561022** 8.71610211**

rs10930046 162,846,229 G/A 0.374 0.428 1.8161027+ 0.80 0.016 0.013 8.6161022+ 1.21

3.2261026* (0.73–0.87) 8.461022* (0.97–1.50)

8.5161026** 0.12**

rs1990760 162,832,297 G/A 0.799 0.829 2.0261024+ 0.82 0.375 0.400 1.2261024+ 0.90

2.6161023* (0.74–0.91) 1.4461024* (0.85–0.95)

1.4361022** 1.7461024**

The numbers of affected and control samples are provided in parentheses. Allele frequencies, odds ratios (OR), and 95% confidence intervals [95% CI] are given for the
‘G’ alleles. Allelic association legends are:
+uncorrected;
*corrected by local ancestry; and
**corrected by global ancestry.
doi:10.1371/journal.pgen.1003222.t001
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criteria for imputation, there were 61 additional SNPs for AA, but

only 1 for EA later used for conditional analysis. Inefficiency of EA

imputation was mainly due to presence of many low frequency

(,1%) alleles and strikingly different LD structure (Figure 2D and

2G, Table S7).

Conditional analysis
A pair-wise logistic regression analysis conditioned on each SNP

revealed that the three previously identified SNPs were each

independently associated with SLE. While in AA, rs13023380,

rs10930046 and rs1990760 accounted for the entire association

spanning the whole gene (Figure 2B, 2C), in EA, rs13023380 and

rs10930046 were independently associated with SLE and

accounted for the association (Figure 2E, 2F). Finally, comparing

LD (r2) between these three SNPs across nine datasets from seven

ethnic populations, we concluded that these three SNPs are also

physically independent (Figure S2). Interestingly, using D9 we

found that these SNPs are on the same haplotype in EA and AA,

but most likely they are not in the ancestral populations (Figure

S2).

Ancestry and conservation of the associated alleles
In order to discover the ancestral origin of the risk (‘A’ in each of

the 3 SNPs) and protective (‘G’ in each case) alleles for these three

SNPs, we estimated local ancestry around the SNPs, then

compared (by allele frequency and fixation index) AA individuals

whose both haplotypes were European (AAEUR, N = 129) or

African (AAAFR, N = 2124), and to individuals from HapMap

populations CEPH and YRI (Table S8). Risk allele frequencies

derived from the haplotypes were similar between AAEUR and

CEPH, and between AAAFR and YRI. Alignment of the human

genome with other genomes strongly suggests that the protective

alleles (‘G’) are ancestral, and that the risk (‘A’) alleles are derived.

For the two coding SNPs, the ‘G’ allele of rs1990760 (and the

resulting alanine amino acid) is ,100% conserved across 34

mammalian genomes (Table S9); the ‘G’ allele of rs10930046 (and

the resulting arginine amino acid) is ,100% conserved across 50

vertebrate genomes (Table S10). Introns are typically less

conserved than protein-coding sequence, and accordingly the

intronic sequence surrounding the rs13023380 SNP is only

strongly conserved in primates; the base corresponding to

rs13023380 is ‘G’ in each case (Figure S6). In AA, only the

rs10930046 risk allele is major; interestingly, all three ‘A’ risk,

derived alleles are the major alleles in EA and the rs10930046 risk

allele is almost fixed (Table 1). This suggests a strong selective

pressure against the SLE-protective alleles in humans [23], which

is not manifest in other animal species.

Experimental validation
Given the strong association of these three SNPs in IFIH1 with

SLE, we evaluated their effect on the function of the IFIH1 gene.

IFIH1 has been implicated in binding with dsRNA complexes

generated as replication intermediates during RNA viral infec-

tions, leading to inflammation and apoptosis [24,25]. The full

length IFIH1 protein contains 1025aa in the following domains:

caspase recruitment (CARD) (aa115–200), helicase ATP-binding

(aa305–493), helicase C-terminal (aa743–826) and RIG-I regula-

tory (aa901–1022) (Figure 5A). Deletion of the ATP-binding

domain, which includes rs10930046, induces apoptosis in mela-

noma cells [26]. The RIG-I regulatory domain, which includes

rs1990760, recognizes dsRNA, upon which the helicase domains

are activated [27]. Apoptosis has been associated with SLE

pathogenesis in humans and mice [28]. Furthermore, Ingenuity

Pathway Analysis (IPA) indicates that IFIH1 interacts with several

genes involved in apoptosis and inflammation (Figure S3).

Apoptosis
To assess the effects of coding variants in apoptosis and

inflammation, we mutagenized IFIH1 cDNA cloned in a

mammalian expression vector with a poly-cistronic (IRES) GFP

marker at the C-terminus. We over-expressed IFIH1 in a K562

leukemia cell line and measured cell death for each risk SNP,

comparing with the ancestral protective allele. The rs10930046

risk allele ‘A’ significantly increased apoptosis over the protective

allele ‘G’ (14.6% average increase at each time point between 44

and 92 hours, P = 0.014) (Figure 3A). In contrast, the risk allele ‘A’

of rs1990760 had little impact on apoptosis (P = 1.0), as expected

since it is located in the RIG-1 regulatory domain, which is not

involved in apoptosis.

Gene expression
To assess the effect of these polymorphisms on expression of

downstream genes, additional transfected K562 cells were sorted

for GFP+ cells by FACS and total RNAs were isolated from these

cells. These were subjected to RT-qPCR of 11 genes related to

apoptosis, inflammation or viral response: NFk-B1, NFk-B2,

RELA, CASP8, CASP9, TNFa, MAPK8, MAVS, IFNA, IFIT1 and

MX1.

Gene expression analysis showed that over-expression of the ‘A’

allele of rs10930046 significantly increased expression of NFk-B1

(.2.8-fold, P = 2.161022), CASP8 (.1.8-fold, P = 4.561024),

CASP9 (.3.5-fold, P = 7.261026) and MAVS (.2-fold,

P = 9.661023) compared to the ‘G’ allele (Figure 3B, 3D, 3E,

3H) but did not affect expression of NFk-B2 (P = 0.14), TNFa
(P = 0.7) or MAPK8 (P = 0.9) (Figure 3C, 3F, 3G). While the ‘A’

allele of rs1990760 had no significant effect on expression of NFk-

B1 (P = 0.14) or CASP9 (P = 0.08), it showed a significant decrease

of TNFa (.5-fold, P = 1.861027), NFk-B2 (.3-fold,

P = 1.361023) and CASP8 (.1.5-fold, P = 1.661026) expression

(Figure 3B, 3C, 3D, 3E, 3F). The rs1990760 risk allele also

significantly increased expression of MAPK8 (.2-fold,

P = 6.261023) and MAVS (.1.6-fold, P = 8.561023) (Figure 3G,

3H).

Strikingly, interferon alpha (IFNA) expression was reduced for

both risk alleles (rs10930046, .2-fold, P = 4.261023; rs1990760,

2-fold, P = 9.161023) (Figure 3I). Reduced IFNA expression in

SLE patients had been predicted for the risk allele of rs1990760

[29]. Our results not only confirmed this but also showed that

expression of the risk allele of rs10930046 similarly reduced IFNA

expression (Figure 3I). Similarly, expression of IFIT1 was also

reduced (rs10930046, .0.75-fold, P = 8.761023; rs1990760,

.3.5-fold, P = 9.161027); and MX1 expression was decreased

for rs10930046 (.2.5-fold, P = 2.161023) but was increased for

rs1990760 (.1.5-fold, P = 3.361024) (Figure 3J, 3K). Following

induction of transfected cells with Type-1 interferon IFN beta

(IFNB), IFIT1 and MX1 showed strong up-regulation (Figure 3L,

3M) by both SNPs (IFIT1: rs10930046, .2-fold, P = 2.061022;

rs1990760, .2-fold, P = 2.761022; MX1: rs10930046, .1.3-fold,

P = 3.161022; rs1990760, .2.2-fold, P = 4.761025). RELA ex-

pression did not change significantly (for rs10930046, P = 0.61 and

for rs1990760, P = 0.77) for either risk allele (not shown).

In our expression analysis, significant up-regulation of CASP8,

CASP9 and NFk-B1 (and unchanged NFk-B2 and TNFa levels) by

the rs10930046 risk allele would be expected to dramatically

increase apoptosis, as observed. For rs1990760, levels of these five

pro-apoptotic factors are dramatically lowered, consistent with

absence of an apoptosis phenotype. MAVS (mitochondrial

Admixture Mapping, IFIH1, and SLE Susceptibility
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Figure 3. Apoptosis and expression assays for exonic SNPs. (A) K652 cells were transfected with IFIH1 full length cDNA containing the
protective ‘G’ or risk ‘A’ allele for rs10930046 and rs1990760 in the following combinations: ‘A-G’, ‘G-A’ and ‘G-G’. After transfection, the percentage of
apoptotic cells was quantified by FACS for annexin V and AAD positivity among GFP+ cells (transfection positive) at seven different time points (in
hours). At all time points, the risk allele ‘A’ for rs10930046 produced a significant increase in the proportion of apoptotic cells compared to the ‘G’
allele (mean increase 14.6%, P#1.461023, ‘A-G’ vs ‘G-G’). In contrast, the ‘A’ allele for rs1990760 had no significant effect on apoptosis compared to
the ‘G’ allele at any time point (P = 1, ‘G-A’ vs ‘G-G’). IFIH1 cDNA encoding the risk or protective allele of rs10930046 or rs1990760 was transiently
transfected, GFP+ cells were sorted by FACS and total RNA was isolated. cDNAs were subjected to RT-qPCR for quantification of expression of NFk-B1,
NFk-B2, CASP8, CASP9, TNFA, MAPK8, MAVS, IFNA, IFIT1 and MXI (B–K). All of these genes showed significantly altered expression with at least one of
the risk alleles. Further, we observed that IFIT1 and MX1 (L, M) expression both increased with risk alleles when transfected cells were treated with IFN
beta. Also, IFN beta stimulation increased IFIH1 expression (N), and IFIH1 over-expression induced IFNA expression (O), suggesting a positive feedback
loop between IFNA and IFIH1 (P). Although it was known that IFNA induces IFIH1 expression, it was not previously shown that IFIH1 induces IFNA
expression, which here is designated by ‘‘X’’. Colors used in the expression figures are blue for ancestral ‘G-G’, red for rs10930046-‘A’+rs1990760-‘G’;
and green shows rs10930046-‘G’+rs1990760-‘A’.
doi:10.1371/journal.pgen.1003222.g003
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antiviral-signaling protein) expression was increased for both risk

alleles. MAVS is an antiviral protein in the host defense system

whose virus-triggered cleavage is necessary to attenuate apoptosis

[30,31]. However, without viral attack MAVS induces apoptosis

through caspase and NFKB activation [30]. In our case, it could

promote apoptosis, particularly for the risk allele of rs10930046. In

terms of inflammation, the expression data shows some interesting

effects. For rs10930046, neither TNFa nor MAPK8 changed, but

for rs1990760, TNFa decreased while MAPK8 increased leading to

inflammation signaling through non-apoptotic pathways.

We next examined known transcriptional networks in the

context of our expression data. At the root, IFIH1 and type-1

interferons constitute a positive-feedback loop (Figure 3P). We

verified this in our cellular model: indeed, in control cells, IFIH1

expression increased several hundred-fold upon IFNB treatment

(Figure 3N), and in IFIH1 over-expressing cells, IFNA expression

increased (Figure 3O). Taken together, our results support the

predicted IFIH1-Type1 interferon feedback loop through IRF7

[32] and MAVS [33].

IFNA and TNFa are known to drive IFIT1 expression [34], and

the IFIH1 SNP-driven decrease in IFIT1 may be mediated

through decreased IFNA and/or TNFa. MX1 (interferon-induced

GTP-binding protein) is also driven by IFNA and TNFa [35].

Surprisingly, although both IFNA and TNFa decreased in the

Figure 4. Binding assay for rs13023380 and molecular model of IFIH1. (A) EMSA was performed using nuclear protein extracts from K562
cells (A) with 141-bp PCR products including either the protective (‘G’) or risk (‘A’) sequence at rs13023380. Both ‘G’ and ‘A’ allele-containing PCR
products bound to a protein complex in the nuclear extracts. However, the ‘A’ allele bound with at least 2-fold reduced efficiency compared to the ‘G’
allele-carrying PCR product, as measured by the intensity of the shifted band relative to the free DNA band in the same lane. As a nonspecific (NS)
DNA control, a 140-bp DNA sequence not present in the genome was created by PCR amplification of bisulfite-modified genomic DNA. (B, C) EMSA
for purified recombinant Nucleolin and Ku70/80 protein with PCR products carrying the ‘G’ or ‘A’ allele of rs13023380. In both the cases, the ‘G’ allele
binds both of these proteins with increased efficiency. +signs are used to denote the increasing amount of protein added in the reaction. Numbers
below EMSA pictures denote the ratio between the intensities of protein bound DNA to the free DNA. (D) Luciferase activities of intronic DNA
sequences carrying ancestral ‘G’ or risk allele ‘A’. The protective allele has approximately 2-fold higher promoter activity (luciferase units) than risk
allele ‘A’ carrying sequences. Tkmin-only vector, MCS-vector with multiple cloning sites, 380G-protective allele, 380A-risk allele. (E) Crystal structure of
RIG-I in complex with dsRNA (from PDB 3TMI) [27]. Side-chains are shown in red for the positions corresponding to the two coding SNPs in IFIH1. Both
mutations are in close proximity to the dsRNA-binding pocket. (F) Close-up of the side-chain of Ala946, modeled from 3TMI. The side-chain makes
close contact with the opposing helicase ‘‘cap’’ domain; together these two domains regulate dsRNA entry and processing. Threonine is shown in
transparent colors. (G) Superimposition of the RIG-I ATP-binding domain (PDB 4A2W) in blue, and the human IFIH1 ATP-binding domain (PDB 3B6E) in
green. The IFIH1 structure contains the histidine side-chain resulting from the rs10930046 risk allele. Large portions of the IFIH1 structure are absent in
the 3B6E model, and the two helices are shifted by 1.5 Å. In the ancestral protein, Arg460 likely interacts with the Leu421 main-chain oxygen, as well
as the negative helix dipole and the side-chains of Gln433, and Glu425 and 428 (not present in 3B6E).
doi:10.1371/journal.pgen.1003222.g004
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presence of rs1990760 ‘A’, MX1 was significantly up-regulated.

This result is similar to a recent paper [29], which showed that

when SLE patients’ cells were induced with IFNA, the rs1990760

‘A’ risk allele displayed higher levels of MX1 than ‘G’ allele

patients, even though these patients had lower circulating IFNA

levels. Our data suggest that IFIH1 risk alleles at these two coding

SNPs down-regulate IFNA expression (either through reduced

expression or activity of IFIH1) and, in turn, IFNA down-regulates

interferon regulatory antiviral genes, potentially conferring viral

susceptibility. It is also possible that the rs1990760 risk variant in

IFIH1 may increase sensitivity of cells to IFNA pathway activation

and subsequent IFN-induced gene transcription [36].

Protein binding, identification, and in vitro binding
The intronic variant rs13023380 could influence IFIH1 function

either by producing a functional miRNA or by altering the binding

efficiency to one or more nuclear regulatory proteins. Through

bioinformatic analyses (miRBase: http://www.mirbase.org/) we

confirmed that no reported or predicted miRNA-producing or

binding sites were present in these sequences. To address whether

rs13023380 alters nuclear protein-DNA interaction, we performed

EMSAs on nuclear protein extracts from K562 and JURKAT cell

lines, using 150-bp PCR products amplified from genomic DNA of

‘AA’ and ‘GG’ homozygous patients. Both PCR products

containing the ‘A’ risk sequences or ancestral ‘G’ sequences

bound to nuclear protein extract, but DNA containing ‘A’

sequences consistently showed ,2-fold reduced binding efficiency

to a protein complex compared to ‘G’ sequences (Figure 4A,

Figure S4F).

To identify any DNA-bound proteins, we performed mass

spectrometric sequencing (MALDI-TOF) on the protein/DNA

complexes isolated using two separate methods: 2D electrophoresis

and protein pull-down. In 2D electrophoresis, the visible DNA-

bound protein complex in EMSA was excised from a native PAGE

gel (Figure S4A–S4C) and sequenced directly, which identified

lupus autoantigen Ku70/80 (XRCC5/6), nucleolin (NCL) and

HSP90AA1/AB1 as the major constituents of the DNA–protein

band (Table S11). Using the second method, we performed EMSA

with biotinylated PCR products and pulled down the DNA-bound

proteins using immobilized streptavidin-coated agarose beads.

Subsequent fractionation by SDS-PAGE (Figure S4D), and

sequencing of two distinct visible protein bands (not present in

the control pull-down product), confirmed NCL and HSP90AB1

(Table S11). We did not identify Ku70/80 in the streptavidin

method, possibly because these two proteins were washed off or

were present in insufficient quantities to detect and sequence.

However, when we performed ‘‘super-shift’’ assays with antibodies

to these proteins, surprisingly, anti-NCL and anti-Ku70/80

antibodies released EMSA-bound DNA instead of super-shifting

the complex (Figure S4E). It is possible that the antibodies either

induce conformational changes in their targets to release DNA or

compete with target proteins for DNA binding. Autoantibodies

Figure 5. Three risk variants of IFIH1 and the proposed functional model. (A) IFIH1 protein (1025 amino acids (aa)) structure shows four
conserved domains (start-stop aa) in boxes: a caspase recruitment (CARD) domain 115–200 aa); a helicase ATP-binding domain (305–493 aa), a
helicase C-terminal domain (743–826 aa), and a RIG-I regulatory domain (901–1022 aa). (B) Domain prediction by Pfam: Gene intron/exon structure is
presented below, with exons represented by thick vertical lines. (C) The three associated SNPs are represented by arrowed boxes. SNP rs10930046 is
located in the helicase ATP-binding domain encoded by exons 4–7; rs1990760 is located in the RIG-1 regulatory domain encoded by exons 14–16;
rs13023380 is on intron 3. We present a model of the functions implicated by the risk alleles in each variant, where each identified variant has an
effect on the expression of NFk-B1, CASP9, MAVS, MX1, IFIT1, NFk-B2, TNFA and MAPK8, and their impact on inflammation, viral response and
transcription.
doi:10.1371/journal.pgen.1003222.g005
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against NCL and Ku70/Ku80 are characteristic features of SLE

[37,38] and release of free DNA from EMSA-bound DNA in vitro

implies that autoantibodies in vivo could impair the function of

these proteins by disrupting the binding of bound proteins from

target DNA, including the rs13023380 locus.

In light of the observed competition of added antibodies to

protein-DNA binding, we determined whether purified recombi-

nant proteins of NCL and Ku70/80 bound to these DNAs. Both

recombinant proteins, purified from insect cells, produced

identical gel shifts as the nuclear extract (Figure 4B, 4C), but

again the risk ‘A’ allele bound to the recombinant proteins with

,2-fold decreased efficiency relative to the protective ‘G’ allele.

These results prompted us to enquire whether DNA sequence

containing rs13023380 and its surroundings could act as a

transcriptional regulatory element (TRE, e.g. enhancer/silencer)

in vivo, and if the risk allele has any effect on transcription. The

same sequences used for EMSA were cloned before a minimal

TKmin promoter and a luciferase reporter gene, and luminescence

assays were performed. Both sequences increased reporter gene

activity over the core vector, suggesting that the rs13023380 locus

contains a transcriptional enhancer. The risk allele-carrying

sequences showed almost a 2-fold reduction (Figure 4D) in

luciferase activity compared to those with the ancestral allele.

Taken together, these results suggest that the rs13023380 locus

recruits transcriptional activity of IFIH1 through binding of

Ku70/80, NCL and HSP90AA1/AB1 (and potentially more

proteins), and that the risk allele at this base position interferes

with this enhancer activity, potentially decreasing IFIH1 transcript

levels.

Molecular modeling
The absolute conservation of Ala946 (rs1990760, Ala946Thr) in

all sequenced mammalian genomes, with diverse codons, strongly

suggests selection at the amino acid level (Table S9). We

performed molecular modeling of IFIH1-Thr946, based on the

protein structure of the IFIH1 C-terminal domain (PDB 2RQB),

and the full-length structure of the homologous enzyme RIG-I,

bound to dsRNA (PDB 3TMI). Ala946 is placed directly at the

mouth of the helicase active site; in RIG-I this region makes

contact with the helicase ‘‘cap’’, which mediates dsRNA entry and

processing [27]. Mutation of alanine to the bulker threonine side-

chain (Figure 4E, 4F) may alter the sterics and/or dynamics of this

protein region, leading to loss-of-function.

Similarly, Arg460 (rs10930046, Arg460His) is conserved in all

vertebrate genomes sequenced, with diverse codons, again

implying amino acid-level selection (Table S10). Comparison with

RIG-I (PDB 3TMI) suggests that in the ancestral protein, Arg460

may form hydrogen bonds with the 419–433 loop, most likely with

the strictly conserved acidic side-chains of Glu425 and Glu428,

and the conserved Gln433 (Figure 4E, 4G). Intriguingly, the

crystal structure of the human IFIH1 ATP-binding (DECH)

domain (PDB 3B6E) incorporates the pervasive rs10930046 risk

mutation. In this structure the His460 side-chain does not make

favorable contacts with the 419–433 loop and much of this loop is

poorly structured. Loss of stabilizing interactions of Arg460 might

lead to weakened structural integrity of the helicase ATP-binding

domain (the 3B6E domain is internally shifted ,1.5 Å relative to

the RIG-I structure; Figure 4G), and subsequently with the

helicase C-terminal and RIG-I regulatory domains. DsRNA

binding, which occurs at a site proximal to the rs10930046

mutation (Figure 5A), leads to RIG-I dimerization [39]. The

disruptive nature of the rs10930046 risk allele on overall protein

structural integrity apparently decreases dimerization, as the 3B6E

structure was determined as a monomer (all related structures are

dimers). Indeed it is likely that the rs10930046 risk allele structure

‘‘poisons’’ an ancestral binding partner, leading to a dominant

negative phenotype, consistent with the genetically dominant

model, especially in AA.

The intronic rs13023380 risk allele has no effect on the protein-

coding sequence of IFIH1. The region directly surrounding

rs13023380 is rich in strongly conserved C/G bases (Figure

S6A). Given the binding of the locus to NCL and other nuclear

regulatory proteins, we hypothesized that the site might play a role

in mRNA processing. Modeling of the region around rs13023380

predicts a highly structured pre-mRNA, with strongly favorable

folding free energies (CentroidFold, ncRNA.org) (Figure S6B). In

the ancestral pre-mRNA, the rs13023380 base is part of a highly

structured 7-mer RNA stem with a 7-base loop (Figure S6B). In

the risk allele pre-mRNA, mutation of the conserved rs13023380

base disrupts RNA stem formation, and likely perturbs structure

and stability of the loop (Figure S6C, S6D), which might disrupt

the binding of RNA-binding proteins (such as NCL [40]),

impairing pre-mRNA trafficking and processing.

Discussion

Our whole genome admixture scan identified 7 admixture peaks

associated with SLE in AA, with the strongest at 2q22–24,

containing the IFIH1 gene. Three SNPs (two coding: rs1990760

and rs10930046, and one intronic: rs13023380) accounted for the

increased risk. IFIH1 has been associated with Type 1 diabetes

(T1D) [41], IgA deficiency [18], Graves’ disease [17], and

suggestively linked to SLE [20,42]. The role of IFIH1 in apoptosis

and inflammation makes it potentially critical for SLE progression.

Moreover, allele frequency differences in associated and non-

associated SNPs (high FST values), together with the differences in

the number of rare variants between EA and AA, imply a strong

positive selection in EA (intriguingly, for the SLE-risk alleles at all

three positions), as previously suggested [23]. In AA, local

European ancestry at these loci correlates with increased risk.

Variant rs1990760 has been recently reported to affect

expression of viral resistance genes IFIT1 and MX1 in SLE

patients [29]. The risk allele of rs1990760 positively correlated

with interferon-induced gene expression in SLE patients who were

positive for anti-dsDNA antibodies [29]. Another report on

rs1990760 suggested that the risk allele correlated with increased

expression of IFIH1 in T1D patients [32]. The rs10930046 risk

allele has been implicated in psoriasis susceptibility [43]. Here we

have systematically examined the effects of the two coding SNPs

on immune cell biology, and demonstrated that the rs10930046

risk allele dramatically increases apoptosis, and that both

significantly perturb inflammatory gene profiles. The intronic risk

allele disrupts a transcriptional enhancer that recruits nucleolin,

lupus autoantigen Ku70/80 and HSP90, potentially decreasing

IFIH1 transcript levels. Combined with molecular modeling, our

results strongly suggest that these effects are due to several specific

amino acid and nucleotide substitutions, rather than to indirect

effects due to LD with other SNPs.

SLE is commonly identified with an up-regulation of the

interferon pathway [44]. Intriguingly, our results suggest that the

two non-synonymous IFIH1 mutations down-regulate interferon

signaling. However, recent findings demonstrated that SLE patients

with anti-DNA antibodies have lower serum IFNA levels [29], and

this dose-dependent decrease suggests that there exists a sub-

population of SLE patients with lower serum IFNA levels with

increased IFN sensitivity [36]. Heterogeneity is also observed in

clinical TNFa levels; rs1990760 would seem a likely candidate to be

associated with low TNFa levels in this patient sub-population [45].

Admixture Mapping, IFIH1, and SLE Susceptibility

PLOS Genetics | www.plosgenetics.org 10 February 2013 | Volume 9 | Issue 2 | e1003222



The intronic SNP (rs13023380) discovered in this study has not

been previously implicated in SLE or any other medical condition.

The transcriptional enhancer uncovered in this genomic region,

and the risk allele’s disruption of its activity, opens up new avenues

for investigation. Nucleolin, in addition to contributing to RNA

polymerase 1 function [46], is known to be a principal component

of the B-cell transcription factor complex LR1 [47], which binds

the Ig heavy chain switch region and functions in Ig recombina-

tion. Disruption of nucleolin binding to the rs13023380 risk allele

may dysregulate polymerase binding, IFIH1 transcription, auto-

antibody production and interaction. The region surrounding

rs13023380 is rich in highly conserved C/G bases, which are

preferentially recognized by NCL and Ku70/80 [48,49]. In

addition to perturbing transcription at the locus, molecular

modeling implicates the base substitution in destabilizing non-

spliced mRNA, further altering proper regulation of expression

levels. Nucleolin, as a matrix-binding protein [50], could also

provide a scaffold for matrix and DNA during immunoglobulin

hyper-recombination. Thus in SLE patients, a positive feedback

loop potentially exists where genetic susceptibility creates a

biochemical imbalance, dysregulating NCL, which may then

promote antibody hypermutation and autoantibody production,

further destabilizing the cellular network. Similarly, Ku70/80

facilitates DNA repair and promotes transcription initiation by

complexing with RNA polymerase 1. Disruption of Ku70/80

binding to the rs13023380 locus would be expected to have similar

consequences for autoantibody production and interaction.

Additionally, Ku70/80 mediates the predominant pathway of

non-homologous end joining (NHEJ) during immunoglobulin class

switch recombination (CSR) [51,52]. Our discovery that antibod-

ies directed against NCL and Ku70/80 promote release of dsDNA

by nuclear proteins suggests that in SLE, hallmark autoantibodies

against these two proteins may alter their activity. Thus in SLE

patients, genetic susceptibility could create a biochemical imbal-

ance that dysregulates NCL, Ku70/80, or other nucleic acid

regulatory proteins binding to the rs13023380 locus (and other

DNA sequences). Follow-up studies could systematically explore

the effect of both antibodies and SNP-induced protein mutations

on the DNA-binding and transcriptional properties of a number of

gene products implicated in SLE and other diseases.

From an evolutionary point of view, evidence suggests that IFIH1

is under strong positive selection, especially in EA. The derived

allele of rs10930046 (risk in AA) is highly differentiated in ethnically

diverse populations and allele frequency increases from AA (60%) to

EA (.98%), and may be acting as a protective allele (for some

condition other than SLE). This indicates that at some time point,

the risk allele may have offered competitive advantage to individuals

by increasing apoptosis in defense to new threats of infection

encountered during migrations to the New World from Africa [53].

This selection is evident in an observed gradient of geographical

distribution (Figure S5) of the allele frequency [53]. Therefore, the

different haplotype block structure between the two groups derived

from African and European homozygotes is expected.

To evaluate the epidemiological significance of IFIH1 polymor-

phism in the genetic and ethnic background of SLE in AA and EA

populations, we estimated the joint PAR. The joint PAR from the

three SNPs for AA and EA are 18.1% and 14.7%, respectively.

Most of the increased PAR in AA was attributable to rs1090046

(12.5%). Interestingly, the admixture peak at 2q22–24 is associated

with increased local European ancestry, suggesting that European

ancestry at this locus confers a higher risk of SLE compared to

African ancestry. Indeed, we observed the strongest locus-specific

LOD score at 2q22–24 using a fixed prior risk of 1.5, meaning that

carrying one European ancestry allele confers 1.5 fold increased

risk of SLE relative to having no European ancestry alleles.

Furthermore, we addressed the question whether the locus-specific

ancestry risk ratio calculated from the estimated OR of the three

SNPs in AA and their allele frequencies in ancestral populations

accounts for the European ancestry risk ratio of ,1.5 estimated

from the admixture scan. The total increased ancestry risk (45%)

due to these three SNPs (lrs1990760 = 1.12, lrs10930046 = 1.12,

lrs13023380 = 1.16) were close to the increased risk 50% estimated

from our admixture mapping (l= 1.5). Therefore, the locus-

specific ancestry risk ratio corroborates the ancestry risk ratio

estimated from the admixture scan.

In summary, to our knowledge this is the first study to use a

whole-genome admixture mapping design to identify SLE

susceptibility loci, confirm case-control association analysis in

AA and EA, and identify novel variants within IFIH1 associated

with SLE susceptibility. We report three independently associated

IFIH1 variants with significant ethnic variation, providing a

possible basis for differences in SLE risk between ethnically diverse

populations. In addition, we show allele-specific differential

cellular signaling and predict an in vivo role of Ku70/80 and

NCL autoantibodies that could impair function of IFIH1 by

disrupting DNA binding. Therefore, these results clearly establish

IFIH1 as an SLE susceptibility gene and provide mechanisms for

the IFIH1 variants in SLE etiopathogenesis.

Materials and Methods

Study design
We designed our study in four stages: In Stage 1, we performed a

case-only admixture scan on 1032 AA SLE cases (Figure 1, Table S1)

followed by exploring the largest admixture peak at 2q22–24 with a

more focused candidate gene analysis in both AA and EA populations

(Stage 2), including out-of-study controls from dbGaP for AA (2675)

and EA (6208) to boost statistical power. In Stage 3, an imputation-

based analysis was performed to fine-map our selected gene using

SNPs from ImmunoChip arrays [54]. In Stage 4, we experimentally

tested the biochemical function of associated SNPs in cellular models,

in vitro protein experiments and molecular modeling.

Demographics
For our admixture mapping (AM), we used 1032 African-

American (AA) SLE cases and 1726 AA controls (Table S1).

Individuals were recruited by the coordinating institutions: Lupus

Family Repository and Registry (LFRR) at the Oklahoma Medical

Research Foundation (OMRF, 540 AA), and the University of

Alabama at Birmingham (UAB) (492 AA) through the PROFILE

study group. Cases fulfilled at least 4 of 11 criteria from the

American College of Rheumatology (ACR) [55,56] based on

medical record review.

In the follow-up case control study (CC), we used both AA

(CCAA: 1525 cases and 1810 controls,) and European-Americans

(EA) (CCEA: 3968 cases and 3542 controls). There was an overlap

of 737 cases between AM and CC. We increased the sample size

using out of study controls from publicly available datasets in

dbGaP [57] (dbGaP see Web Resources), including 942 AA and

2267 EA controls from the Study of Addiction (SAGE); 784 AA

and 1449 EA controls from Health ABC (HABC); 2492 EA

controls from the Wellcome Trust Consortium (WTCCC see Web

Resources); 949 AA controls from the Dallas Heart Study (DHS

see Web Resources) provided by Dr. Helen H. Hobbs. AA and EA

samples were collected by the coordinating institutions: LFRR,

BIOLUPUS, Medical University of South Carolina, the PRO-

FILE study group, the Oklahoma Lupus cohort, the Feinstein

Institute of Medical Research and ODRCC.
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All individuals were de-identified prior to being genotyped.

Within each stage of this experiment, all cases and controls were

independent. This study was approved by the Institutional Review

Boards of the OMRF or the ethical committees at the institutions

where subjects were recruited.

Genotyping and quality control
Rigorous quality control (QC) was applied to all data used in

this study. Subjects were excluded from analysis if they had ,95%

genotyping success or were population-stratification outliers. Using

ancestral informative markers (AIMs), we performed principal

components analysis (PCA) using EIGENSOFT [58] (EIGEN-

SOFT see Web Resources) and STRUCTURE [59] (STRUC-

TURE see Web Resources) to identify outliers, hidden population

structure and estimate individual ancestry proportions (European).

Relatedness between individuals was calculated using PLINK [60]

(PLINK see Web Resources) and GCTA [61]. All related and

duplicate individuals (r.0.25) were removed. SNPs were removed

for .10% missing genotyping, being out of Hardy-Weinberg

equilibrium (HWE, P,0.001 in controls) or for poor clustering.

SNPs were also removed for minor allele frequency (MAF) ,1%.

We used AIMs which passed QC, had a minimum intermarker

distance .1 Megabase and were not in linkage disequilibrium

(LD) in the ancestral populations. In addition to these QC

measures, imputed SNPs were included in the analysis only if Rsq

.0.90. This ensures the all high quality imputed SNPs were

included in the analysis.

Genomic DNA samples in AM from SLE patients were

genotyped at OMRF using Affymetrix MALD 3K panel,

including 2154 SNPs that passed QC. Fourteen duplicate

individuals were removed. DHS samples were genotyped by

Perlegen Sciences including 800 AIMs and 10 SNPs within 2q22–

24. Samples in the follow-up CC study were genotyped on a

custom Illumina iSelect platform. SAGE, HABC and WTCCC

genotypes were merged with our data for further QC. PCA was

performed for all samples using 401 SNPs to detect PCA outliers

from SAGE, HABC and WTCCC. We used 163 AIMs to

compare our samples with SAGE, and 755 AIMs to compare our

samples with DHS (Figure S1). After QC, individuals were

removed from analysis if they were related or duplicate (57 AA

and 138 EA), had a missing genotype call rate .5% (19 AA and

361 EA), or were within 2 standard deviations of the mean first

eigenvector (30 AA and 51 EA) (Figure S1). Since we used several

thousand out of study controls from different publicly available

sources [dbGaP (SAGE, HABC) and WTCCC], we had to take

very strict QC. Some from the out of study control samples were

identified as outliers by PCA; these individuals were mainly the

AA samples with .75% European ancestry, and EA samples

with ,90% European ancestry. All SNPs that passed QC were

used in the analysis.

Stage 1: Admixture mapping
SNP panel used for admixture mapping. Our initial

marker set was taken from the Smith panel [62], which has been

validated as having little LD in the parental African and European

populations. To optimize these SNPs for our AM study, 1533

AIMs were selected for case-only analysis. We used ANCESTRY-

MAP [7] (ANCESTRYMAP see Web Resources) to check the

plausibility of parental frequencies provided in the prior files. Prior

frequencies with likelihood ratio statistic (S) .10 were replaced

with frequencies of Utah residents from the CEPH collection

representative of north and west European ancestry (CEPH) and

of Nigerian Yorubans (YRI) from the HapMap [63] Project

(HAPMAP see Web Resources). SNPs with S .10 score that were

not represented in HapMap were excluded. All AIMs had at least

a 30% allele difference between African and European popula-

tions. Our final set of AIMs included 1440 SNPs for case-only

analysis, and 800 SNPs for case-control analysis with the average

s (absolute allele frequency differences between 2 ancestry

populations) of 0.56 for both AIM panels.

Admixture mapping. We used ANCESTRYMAP [7] as

the main tool for AM primarily because it gets unique LGS local

scores, which points to a possible association not only at a given

maker but also at any chromosomal position. ANCESTRYMAP

[7] uses a Hidden Markov Model (HMM) for estimating ancestry

along the genome. A Markov Chain Monte Carlo (MCMC) is

used to account for uncertainty in HMM by comparing the

likelihood of each locus as being associated with the disease versus

being a locus unrelated to disease (the log base 10 of this

likelihood ratio is LOD score). To obtain a genome-wide

assessment of a disease locus, a genome-wide score was provided

by averaging the locus specific LOD at each point. We

considered a locus specific LOD score .5 as significant at the

genome-wide level, which is quite conservative considering that a

genome-wide score .2 can be declared significant [3]. ANCES-

TRYMAP requires a disease risk distribution as a prior to be used

in a Bayesian likelihood ratio test. We initially investigated the

genome-wide score under a series of disease risk priors from 0.4

to 3 times increased risk of disease due to one copy of European

ancestry under the multiplicative genetic model. Prior distribu-

tion of risks was given by a gamma distribution with a mean

increase in risk of 1.6-fold, with a standard deviation of 0.3. A

LOD score greater than 2 was considered as suggestive and

greater than 5 was considered to have genome-wide significance

[3,7]. We implemented this prior distribution by testing a grid of

27 risk models from 0.4 to 3.0, weighting the LOD scores

obtained in each model according to the distribution. We ran

ANCESTRYMAP for a burn-in period of 100 iterations with 200

follow-on iterations. In order to narrow down the estimate of

disease risk we used a weighted risk range between 1.3 and 1.6 at

0.01 steps. We repeated the analysis using only females and then

only males. We also repeated the analyses using alternate AIMs

(odd and even) to verify that our results were not influenced by

any individual AIM. To confirm that the chosen risk model

distribution had no effect on our results we ran an unweighted

risk distribution (from 0.4 to 3), as well as a fixed risk model at

1.5.

In order to confirm the existence of the detected peaks, we used

1726 controls with similar parameters as our case-only analysis.

Our case-control analysis used ANCESTRYMAP, which calcu-

lates a Z distributed case-control statistic (Table S2).

We also used the program ADMIXMAP [6] (ADMIXMAP see

Web Resources) to validate our previous results. ADMIXMAP

uses a similar MCMC algorithm as ANCESTRYMAP to model

probability distributions conditional on genotype, phenotypic

values and a priori ancestral genotype frequencies. Models from

ADMIXMAP calculate results in terms of standard normal Z-

statistics and p-values. We applied 20,000 MCMC iterations with

1000 burn-in iterations in ADMIXMAP. Individual admixture

estimates from ANCESTRYMAP were validated using both

ADMIXMAP and STRUCTURE (10,000 MCMC iterations and

50,000 burn-in iterations). ADMIXMAP Z-statistics (and P-values)

were compared to ANCESTRYMAP LOD scores at each

genotyped marker. Tests for Case-only and Case-control design

were carried with both programs. Bearing in mind that the more

powerful Case-only design also had a higher density of variants

[1440 AIMs for ANCESTRYMAP and 1355 AIMs (no AIMs

from X chromosome) for ADMIXMAP, versus 800 AIMs/743
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AIMs for the Case-control design], the peaks identified were at

similar locations of the genome (Table S2).

Computer simulations to evaluate empirical statistical

significance. To evaluate the empirical significance of the case-

only genome-wide LOD score, we simulated 100 replicate data

sets (1032 cases) without the disease locus using ANCESTRY-

MAP. We generated a normal distribution of the best scores

attained and calculated the probability that our best marker score

(6.28) would have occurred by chance.

Stage 2: Follow up of 2q22–24 admixture signal using
Case-Control analysis

After QC our analysis included 1525 AA SLE cases and 1810

AA healthy controls. We genotyped 347 highly informative AIMs

to detect hidden population structure and correct for spurious

associations. To assess robustness of these results we analyzed 3968

EA cases and 3542 EA.

In order to follow the admixture signal within 2q22–24, we

genotyped 284 SNPs from 20 candidate genes. The peak and 95%

CI of the 2q22–24 region spanned about 21 MB. We used logistic

regression in PLINK, with individual admixture estimates as a

covariate to identify and remove individual outliers, and to correct

for admixture and population stratification in our data analysis.

We increased our sample sets using out-of-study controls for a total

of 1525 cases and 4485 controls in AA, and 3968 cases and 9750

controls in EA.

Population structure estimation. We estimated global

admixture proportions of our AA samples using STRUCTURE.

AIMs were selected for each dataset based on the platform in

which they were genotyped. We used 216 AIMs to estimate

admixture proportions in CC AA samples, 755 AIMs for DHS

samples, and 642 AIMs for SAGE and HABC samples. CEPH

and YRI HapMap populations served as fixed prior populations.

The optimal number of admixture components was determined

using methods described by Evanno [64]. Global ancestry of EA

was estimated using 748 common SNPs overlapping all popula-

tions using EIGENSTRAT.

Local ancestry estimation. We estimated local ancestry

proportions for AA and EA using STRUCTURE and corrected

for European ancestry as a covariate in the logistic regression

procedure in PLINK. We only selected markers within the

admixture peak (2q22–24) for correct estimation of our area of

interest. Estimated average European ancestry was similar for AA

cases and controls (17.569.0% vs. 17.369.1%, Pt-test = 0.48). For

AA, we used STRUCTURE with the linkage model, CEPH and

YRI HapMap populations as fixed prior populations with seven

SNPs to estimate the local European ancestral proportions for

DHS, and nine SNPs for SAGE, HABC and WTCCC. We

estimated local ancestry at the three SNPs of interest for Stage1-

AA samples using ANCESTRYMAP with 195 genome-wide

AIMs and averaged their European ancestry proportion. EA

samples with .95% European ancestry were included in analysis.

We confirmed local ancestry estimates for AA samples using a

PCA based local ancestry deconvolution method [65] implement-

ed in PCAdmix. Phased CEPH and YRI HapMap populations

were used as references. Because the aforementioned method

requires phased known haplotypes, we used ten iterations in

BEAGLE [66] to phase AA genotypes (149 SNPs). Local ancestry

estimation was restricted to the coordinates between 138 MB and

164 MB, and created eight moving windows of 20 SNPs. We used

the estimated ancestral state assignment (European or African) to

group individuals with two European haplotypes, mixed haplo-

types, or two African haplotypes, and extracted their genotypes for

rs1990760, rs10930046 and rs13023380. We calculated FST [67]

between CEPH (N = 87), LWK (N = 110), MKK (N = 156),

Ghanaian individuals (N = 92), YRI (N = 147), AA with two

European haplotypes (N = 129), and AA with two African

haplotypes (N = 2124) for each variant using Arlequin [68]. Allele

frequencies were compared to assign the most likely origin of the

risk allele. Additionally we compared the LD structure of these

groups for our three SNPs of interest.

Population stratification. In order to account for the effect of

global population stratification on allelic association in AA, we used

European admixture proportion as a logistic regression covariate. We

used the first four principal components in a logistic regression model to

correct for EA population stratification. Also, to account for the effect

of local admixture on allelic association, we used local ancestry

proportion as a logistic regression covariate for both AA and EA.

Population attributable risk. Population Attributable Risk

(PAR) was estimated for the set of (rs1990760, rs10930046 and

rs13023380) for AA and EA; and for the set (rs1990760 and

rs13023380) for AA and EA. We followed the formula:

PAR~
p � (OR{1)

p � (OR{1)z1
,

Where p is the frequency of the risk allele for controls, and OR is

the odds ratio for that allele. The joint PAR was calculated as:

Jo int PAR~1{½P
n

i~1
(1{PARi)�,

Where n denotes the number of SNPs included in the calculation

[21,69].

Locus-specific ancestry risk. We estimated the locus-

specific ancestry risk ratio (l), defined as the increased disease

risk due to one copy of European ancestry allele at a specific bi-

allelic locus by:

l~

P(aa,Eur=Afr)f (aa)zP(Aa,Eur=Afr)f (Aa)zP(AA,Eur=Afr)f (AA)

P(aa,Afr=Afr)f (aa)zP(Aa,Afr=Afr)f (Aa)zP(AA,Afr=Afr)f (AA)

ð1Þ

where P(aa, Eur=Afr), P(Aa, Eur=Afr) and P(AA, Eur=Afr) are

genotype frequencies for aa, Aa and AA genotypes at the locus

with one copy of the European ancestry allele, respectively; P(aa,

Afr/Afr), P(Aa, Afr/Afr) and P(AA, Afr/Afr) are genotype

frequencies for aa, Aa, AA genotypes at the locus with zero copy

of the European ancestry allele, respectively. The f(aa), f(Aa), f(AA)

denote the disease penetrance for each genotype that we assume

constant between ancestry populations. For our particular case,

‘‘a’’ is used for the protective ‘‘G’’ allele of the three independent

SNPs identified in this study, and ‘‘A’’ stands for the risk allele

‘‘A’’. Let the ‘‘a’’ allele frequency is p and q in European and

African ancestry population, respectively, and assuming HWE

holds for the estimated locus, formula (1) can be further expressed

as:

l~
pqf (aa)z(p(1{q)zq(1{p))f (Aa)z(1{q)(1{p)f (AA)

q2f (aa)z2q(1{q)f (Aa)z(1{q)2f (AA)
ð2Þ

Dividing the numerator and denominator in equation (1) by f(AA),

we have:

l~
pqRR(aa)z(p(1{q)zq(1{p))RR(Aa)z(1{q)(1{p)

q2RR(aa)z2q(1{q)RR(Aa)z(1{q)2
ð3Þ
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where RR(aa) and RR(Aa) are the disease relative risk ratio for

genotype aa and Aa compared with AA, respectively. For less

common diseases, like SLE, the relative risk ratio can be further

approximated by odds ratio (OR); therefore, we estimated l as

l~
pqOR(aa)z(p(1{q)zq(1{p))OR(Aa)z(1{q)(1{p)

q2OR(aa)z2q(1{q)OR(Aa)z(1{q)2
ð4Þ

where OR(aa) and OR(Aa) are the disease odds ratios for the aa

and Aa genotype relative to AA genotype. The OR was estimated

from our case-control analysis in AAs assuming a multiplicative

genetic model and the allele frequencies of the three investigated

SNPs in European and African ancestry populations are approx-

imated by their frequencies in HapMap CEU and YRI samples.
Stratified ancestry risk. To assess whether European

ancestry at 2q22–24 is associated with increased disease risk, we

used a subset (N = 716) of our CCAA cases) and repeated our

admixture scan. These samples were also included in our initial

AM that contained the genotype for the most diverse SNP

rs10930046 (FstCEU-YRI = 0.38; InCEU-YRI = 0.23), then we ran an

admixture scan using ANCESTRYMAP separately for the three

different genotypes (NAA = 279, NAG = 323, NGG = 114) using

both a fixed risk model of 1.5, and the previously described

weighted risk model distribution. We compared the LOD score

across genotypes at 2q22–24.

Stage 3: Imputation-based fine-map analysis
Imputation-based association analysis. In order to opti-

mize the efficiency of our experiment, we performed an

imputation-based analysis on IFIH1. There are two components

to this approach: (i) predicting (‘‘imputing’’) cohort genotypes, and

(ii) analyzing association between cohort genotypes and pheno-

types. In order to impute genotypes for study samples, existing

models for population genetic variation across multiple markers

were leveraged. Imputation was also used to estimate missing

genotypes. Imputation was performed using MACH [22,70],

which provides a quantitative assessment of estimate uncertainty

(r2) [70]. Allelic association results were consistent when account-

ing for imputation uncertainty using mach2dat [71].

A subset of our study samples, both of AA and EA, were

genotyped on the ImmunoChip array, which provides a finer map

with 233 IFIH1 SNPs. To investigate whether there were new

causative variants in the IFIH1 region (162,817,515 to

162,901,398 bp, build 36), we used fine mapped controls as a

reference panel to impute our study samples.

For AA imputation, the target sample set contained 1525 cases

and 1810 controls for AA genotyped for 22 SNPs, 949 DHS

samples with 11 SNPs, 942 SAGE samples with 27 SNPs, and 784

HABC samples with 27 SNPs from IFIH1 (162,817,515 to

162,901,398 bp). Our reference panel had 207 AA controls with

233 SNPs in and around IFIH1. After QC, 123 SNPs were used

for imputation. Imputation results contained 74 SNPs (61 SNPs of

which were not genotyped in the target set) with r2$90% and

MAF.1%. Of these 74 SNPs there were 64 SNPs with P-

values,0.05 and 41 SNPs with P values,561025 (Table S6). The

rationale for using a high threshold for imputation quality

(r2$90%) was to reduce bias due to different genotyping platforms

and different number of variants genotyped on those platforms.

For EA imputation, the target sample contained 3968 cases and

3542 controls with 22 SNPs, 2267 SAGE samples with 27 SNPs,

1449 HABC samples with 27 SNPs, and 2492 samples with six

SNPs in and around IFIH1. Our reference sample had 594

controls with 233 SNPs and 126 SNPs with MAF$1% were used

for imputation (Most of them have low allele frequencies and only

13 SNPs have MAF.5%). As a result of imputation, only 36 SNPs

passed QC(HWE.0.001, MAF$1% and r2$90%). Besides 4

genotyped SNPs with P,0.05, no additional imputed SNP with

P,0.05 was found. (Table S7).

Conditional analysis. In order to identify if there were other

independent SNPs associated to SLE, we performed a conditional

SNP analysis using WHAP [72]. For AA and EA, first we

performed two-SNP pair-wise conditional analysis to identify

independent effect of each SNP, starting with the most significant

SNP. If the most significant SNP does not explain the entire

association of the pair, then the other SNP is considered as

independent SNP. Once we identified all possible independent

SNPs, we then used the same conditional procedure using the two

most significant independent SNPs and so on until all the

associations were explained (Figure 2B, 2C for AA and

Figure 2E, 2F for EA). We also performed conditional logistic

regressions in SAS to reassess the independence of each SNP

identified earlier. We stratified each one of the three variants

(rs13023380, rs10930046 and rs1990760) while including the

other two SNPs in the model as covariates. Independence of each

SNP was determined if the SNPs in the model remained significant

[73]. To see if any haplotype (based on the independent SNPs)

could explain the whole association, we also used conditional

haplotype analysis. The haplotypes were constructed using the EM

algorithm implemented in WHAP.

Stage 4: Experimental validation
Cloning, site-directed mutagenesis, and transient

transfection. The full length IFIH1 cDNA was fused with a

C-terminal GFP and cloned under a CMV promoter with

neomycin resistance gene in an expression-ready mammalian

expression vector (M46- P receiver; Capital Bioscience, MD see

Web Resources). cDNA sequence was confirmed by sequencing in

both directions.

Site-directed mutagenesis (‘G’.‘A’) was performed indepen-

dently at both rs10930046 and rs1990760 in the parent clone

using the site directed mutagenesis kit (Stratagene see Web

Resources). After mutagenesis, all clones were sequenced in both

directions to confirm the ‘G’.‘A’ conversion at these bases. No

other base modifications were observed. Three clones (ancestral

rs10930046–rs1990760 ‘G-G’, risk for rs10930046 and non-risk

for rs1990760 ‘A-G’ and non-risk for rs1990760 and risk for

rs10930046 ‘G-A’) were obtained and used in the allele-specific

apoptosis and gene expression assays.

Fluorescent activated cell sorting (FACS) analysis for

measurement of apoptosis. Vectors carrying IFIH1 alterna-

tive alleles were transiently transfected in a myeloid leukemia

K562 cell line. Cell survival was measured through an apoptotic

assay (Annexin PE apoptotic kit, Becton Dickinson Bioscience see

Web Resources) in flow cytometry (Fluorescent Activated Cell

Sorting). Cells were stained with Annexin-PE and AAD and were

analyzed as the percentage of cell death among GFP+ cells

(transfected cell count) through Annexin+, and Annexin+ AAD+.

Measurements were taken at 44, 50, 66, 74, 80, 86 and 92 hours.

Only vectors without the IFIH1 gene did not induce apoptosis in

these cells.

Contingency tables were created for the counts of dead cells

versus the count of healthy cells for cells carrying the risk allele ‘A’

versus the protective allele ‘G’. Counts were corrected using the

Yates method when appropriate. We compared the proportion of

dead cells between the ancestral ‘G-G’ for rs10930046–rs1990760,

and the ‘A-G’ and ‘G-A’ cells using a Wilcoxon signed ranked test

with continuity correction [74].
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Expression analysis of apoptosis and inflammation

related genes in IFIH1 overexpressed cells. IFIH1 cDNA

(carrying protective alleles for rs10930046 and rs1990760, or the

risk allele for rs10930046 or rs1990760) were transfected and

GFP+ cells were sorted using FACs. Total RNA was isolated from

these sorted cells, reverse transcribed and subjected to qPCR for:

GAPDH (internal control), IFIH1, NFk-B1, NFk-B2, RELA, TNF,

MAPK8, CASP9, CASP8, IFNA, MAVS, IFIT1 and MX1 genes.

qPCR fold changes were calculated after normalizing with

GAPDH expression. Fold changes in expression of these genes

were again normalized to IFIH1 expression. These experiments

were performed in duplicates, independently repeated three times,

and then differences were analyzed with a paired t-test with

unequal variance. In some of the cases (e.g. IFN beta treatment),

non-transfected controls were also used to prepare cDNA and

qPCR for IFNA and IFIH1 measurement.

Electrophoretic mobility shift assay (EMSA). We ampli-

fied 150-mer DNA sequences surrounding SNP rs130233380 from

homozygous ‘GG’ (protective genotype) and ‘AA’ (risk genotype)

carrying patients using PCR (150-mer, forward primer- 59-

ATAACCATCCAGTTAAGAGATAGG and reverse primer-59

ACTCAAGATGTGATTGCAAAA TAAGG). PCR products

were sequenced to confirm ‘GG’ and ‘AA’ genotype and that

these PCR products did not have any other base modification.

EMSA was performed using non-radioactive EMSA kit (Invitro-

gen,USA see Web Resources) with SYBR which detects DNA at

1 ng sensitivity. Nuclear extracts were prepared from K562 and

Jurkat cell lines with a nuclear extract isolation kit (EpiQuik

Nuclear Extraction Kit, Epigentek, USA). Both PCR amplified

DNA sequences were purified and incubated with the nuclear

extracts for 25 minutes at 25uC with increasing the amount of

nuclear extract. Reaction mixtures were loaded in 2.2% agarose

gel (Figure 4B) and 2.5% agarose gel (Figure 4C), where a 150-mer

DNA was separated out from the 150-mer free DNA. Non-specific

DNA is a 140-mer PCR product from bisulfate treated genomic

DNA that does not occur in the cell. DNA bands were visualized

with the dye SYBR. Intensity (as a measure of DNA quantity) of

the shifted band and free DNA bands were calculated with

TOTALLABQUANT (Totallabquant Limited, UK see Web

Resources) for each lane. The ratio of DNA quantity for the

shifted band to the free DNA band in each lane was calculated as a

measure of binding efficiency.

Identification of proteins from EMSA complex by 2D

electrophoresis. EMSA reactions were performed in large

scale as described above, and a native PAGE gel (precast, 4–15%,

Biorad laboratories) was run in the first dimension. Gels were

stained with SYBR Green to locate the DNA-bound protein band

(Figure S4A). For the second dimension, the gel was rotated 90

degrees and continued to run for 6 hours and again stained with

SYBR green to locate the position of DNA-bound protein band

(Figure S4B). The same gel was stained with Coomassie protein

stain (Figure S4C), and the protein band aligned with the DNA

bound band (arrow). Bands were excised from the gel and

sequenced in a mass spectrometry core facility (LMBCR see Web

Resources). Gel bands were digested with Trypsin and used for

MASS spectrometry sequencing with HPLC and MS/MS analysis

by the Dionex UltiMate 3000 and ABI MDS Sciex Qstar Elite,

respectively. Data obtained from these analyses were submitted to

the MASCOT (Matrix Science) server for protein identification

against the SwissProt protein database (2011). These bands

constituted Nucleolin (NCL), Ku70 (XRCC5), and Ku80 (XRCC6)

as major constituents of nuclear protein (Table S11).

Identification of proteins from EMSA complex by

immobilized streptavidin agarose beads. EMSA reactions

were performed in large scale (106) with PCR products with

biotin-labeled primers for rs13023380 of IFIH1 and rs1143679 of

ITGAM as control. EMSAs were confirmed as described earlier

using aliquots of these reactions. Streptavidin coated agarose beads

(Invitrogen, USA) were added and incubated with gentle rotary

shaking for 1 hour to bind biotinylated DNA bound proteins with

streptavidin beads. Unbound cellular proteins were removed with

repeated washing (106) with 16EMSA buffer by centrifugation.

SDS-PAGE protein dye was added to beads and heated to 95uC
and spun for 5 minutes to take supernatant as eluent. Both beads

and eluents were fractionated in an SDS-PAGE gel to separate the

component proteins in separate bands. Gels were stained with

Coomassie blue for proteins, and a distinct band was visible

(Figure S4D; arrow) that was not present in ITGAM control. This

band yielded NCL as a major constituent of the band (Table S11).

Release of EMSA bound DNA by anti-Nucleolin and anti-

Ku70/80 antibodies. EMSA was performed with Jurkat cell

nuclear extract using the same PCR products but with a reduced

proportion to ensure all DNA was bound with protein and no free

DNA was left. This protein-bound DNA was equally divided into

several aliquots and antibodies against Actin, NCL, Ku70/80, or

HSP90AA1/HSP90AB1 were added to each tube and incubated

for 1 hour at room temperature. The 2.5% agarose gel was run,

stained with SYBR Green, and photographed. The free DNA

band again appeared in the lane where NCL or Ku70/80

antibodies were added.

EMSA with purified recombinant protein of Nucleolin and

Ku70/Ku80. EMSA was performed using the same PCR

products carrying ‘G’ or ‘A’ allele of rs13023380 with purified

recombinant protein, NCL (from insect cells, ABCAM, USA) and

Ku70/80 (from insect cells, Biorbyt, UK). Protein-bound DNA

was shifted, and confirmed specific binding of those proteins with

the specific DNA fragments.

Luciferase assay. The exact sequence for risk and protective

allele that were used for EMSA were cloned before a minimal TKmin

(Thymidylate Kinase) promoter-carrying vector expressing luciferase.

HeLa cells were transiently transfected with only the vector, vector

carrying only MCS (Multiple cloning sites), and risk and protective

allele carrying 150-mer DNA sequences. Luciferase activity was

measured (Xactagen Inc, USA) after 48 hrs of transfection using

Gaussia Luciferase Assay (GLOW) with the Gaussia luciferase assay

kit (catalog # 31001, Xactagen, LLC) per manufacturer’s directions.

Medium was aspirated from transfected cells, plated in white 96-well

assay plates. Cells were washed once by addition and aspiration of

100 uL of GLum.1 assay buffer. 50 uL of GLum.1 assay reagent

(assay buffer plus coelenterazine substrate) was then added to each

well and incubated (dark) for 5 minutes prior to reading luminescence

(SpectraMax L, Molecular Devices: 475 nm).

Each experiment had three replicates at each time interval, and

each experiment was repeated eight times, thus totaling 24 data

points for each construct. These measurements (Relative Luminis-

cence Units) were normalized to a ‘cell-only’ control. After

normalization, the average values were used to draw the bar chart

and statistical significance was calculated using a two-sided

unequal variance t-test.

Conservation of the protective alleles across

genomes. Available genome sequences for IFIH1 were down-

loaded from the UCSC Genome Browser (USCS see Web

Resources). In some cases sequences were missing from the

alignment or obviously incomplete or incorrect (e.g. missing exons

or having long regions of non-homologous sequence). In these

cases genomic sequences were obtained from the NCBI sequenc-

ing Trace Archive (BLAST [75] see Web Resources) and aligned

using ClustalW [76] (ClustalW see Web Resources).
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Molecular modeling. Structure files were retrieved from the

Protein Data Bank (Protein Data Bank see Web Resources):

3TMI: human RIG-I bound to dsRNA. X-ray diffraction to

2.9 Å.

4A2W: duck RIG-I without nucleic acid. X-ray diffraction to

3.7 Å.

3B6E: human IFIH1, DECH (helicase ATP-binding) domain,

incorporating translated rs10930046 risk allele. X-ray diffraction

to 1.6 Å.

2RQB: human IFIH1, helicase C-terminal domain, incorpo-

rating translated rs1990760 protective allele. NMR.

All protein structural figures were rendered in PyMOL

(PyMOL see Web Resources).

Single-stranded RNA (pre-mRNA) secondary structure predic-

tion was performed using CentroidFold [77].

Web resources
The URLs for the data presented here are as follows:

PLINK, http://pngu.mgh.harvard.edu/,purcell/plink

STRUCTURE, http://pritch.bsd.uchicago.edu/structure.html

EIGENSOFT, http://genepath.med.harvard.edu/,reich/

Software.htm

ANCESTRYMAP, http://genepath.med.harvard.edu/

,reich/Software.htm

ADMIXMAP, http://homepages.ed.ac.uk/pmckeigu/

admixmap

MACH, http://www.sph.umich.edu/csg/abecasis/MACH/

index.html

HAPMAP, http://www.hapmap.org

dbGaP, http://www.ncbi.nlm.nih.gov/gap

Wellcome Trust Consortium, http://www.wtccc.org.uk

DHS, http://clinicaltrials.gov/ct2/show/NCT00344903

Ingenuity Pathway Analysis, http://www.ingenuity.com

Capital Bioscience, MD: http://www.capitalbiosciences.com/

Becton Dickinson Bioscience: http://www.bd.com/

Stratagene: www.stratagene.com/

Invitrogen,USA: www.invitrogen.com

Totallabquant: http://www.totallab.com

UCSC Genome Browser: http://genome.ucsc.edu

NCBI sequencing Trace Archive: http://blast.ncbi.nlm.nih.gov

ClustalW: http://www.clustal.org/clustal2/

Protein Data Bank: http://www.rcsb.org

PyMOL: http://www.pymol.org/

CentroidFold: http://www.ncrna.org

LMBCR: www.ouhsc.edu/lmbcr

miRBase: http://www.mirbase.org/

Supporting Information

Figure S1 PCA-based population structure for AA and EA. We

maximized the number of ancestral informative markers (AIMs)

given these datasets were genotyped in different platforms: (A) 755

SNPs for CCAA and DHS AA samples, (B) first 2 principal

components using 163 SNPs for AA samples (SAGE and CCAA),

(C) 401 SNPs EA and AA samples (SAGE, HABC and WTCCC).

(PDF)

Figure S2 Linkage disequilibrium blocks for AA African and AA

European haplotypes. Linkage disequilibrium blocks for African-

American (AA) individuals with 2 African haplotypes (AAAFR,

N = 2124), AA with 2 European Haplotypes (AAEUR, N = 129),

AA controls (N = 4485), HAPMAP CEPH (CEPH, N = 87), EA

controls (N = 9750), HAPMAP Yoruba from Nigeria (YRI,

N = 153), HAPMAP Luhya from Kenya (LWK, N = 110), and

HAPMAP Masaai from Kenya (MKK, N = 156), and Ghana

samples (N = 92). Values and color pattern shown on gray-scale

were based on R-square between each pair of SNPs, values and

colors shown in red were based on D9 between each pair of SNPs.

(PDF)

Figure S3 Gene network related to IFIH1. Solid lines show

direct interactions, dashed lines show indirect relationships.

(PDF)

Figure S4 Identification of proteins from EMSA. (A) EMSA

reaction was run in native PAGE gel and stained with SYBR to

locate protein-bound DNA band (arrow). (B) Marker was excised

from the gel and gel is rotated to 90 degree, ran again and stained

with SYBR green to locate 2 d protein-bound DNA band (arrow).

(C) The same gel was stained with Coomassie for visualizing

protein and aligned DNA-bound protein band was excised and

sequenced by MASS-spectometry. (D) EMSA bound biotinylated

DNA-proteins complex were pulled down with streptavidin coated

agarose beads and fractionated in an SDS-PAGE gel. Protein

bands that were present only in IFIH1 (arrows) in comparison to

ITGAM (control) were sequenced. (E) The addition of the

respective antibodies facilitated release of free DNA from the

EMSA bound complex. Here EMSA was saturated such that there

was no free DNA (EMSA lane). EMSA bound DNA was divided

to 4 aliquots and antibodies were added in each tube, incubated

for 1 hr and loaded in a native PAGE gel. Distinct free DNAs

were released in the anti-NCL and anti-KU70/80 lanes, but not in

the anti-actin lane. (F) EMSA was performed using nuclear protein

extracts from Jurkat cells with 141-bp PCR products including

either the protective ‘G’ or risk ‘A’ sequence at rs13023380. Both

‘G’ and ‘A’ allele-containing PCR products bound to a protein

complex in the nuclear extracts. However, the ‘A’ allele bound

with at least 2-fold reduced efficiency compared to the ‘G’ allele-

carrying PCR product, as measured by the intensity of the shifted

band relative to the free DNA band in the same lane. As a

nonspecific (NS) DNA control, a 140-bp DNA sequence not

present in the genome was created by PCR amplification of

bisulfite-modified genomic DNA.

(PDF)

Figure S5 Geographical distribution of allele frequencies for our

3 independently associated SNPs in IFIH1. Allele frequency

differences between populations of the Human Genome Diversity

Project for our three independent SNPs of interest show a south-

to-north gradient of increase in allele frequency of derived (risk)

alleles. Source HGDP Selection browser (http://hgdp.uchicago.

edu/cgi-bin/gbrowse/HGDP/) (accessed January 2012).

(PDF)

Figure S6 Alignment of genomic region surrounding

rs13023380 for available primate genomes. (A) The base

corresponding to rs13023380 is universally conserved as ‘G’.

Sequence is shown reverse complement, in the direction of the

pre-mRNA. (B) Nucleolin, in addition to binding dsDNA, is also a

sequence-specific ssRNA-binding protein, particularly of intronic

pre-mRNA species, controlling their processing and trafficking

[40]. Loss of pre-mRNA structure may impair trafficking and

splicing. The region of single-stranded pre-mRNA surrounding

rs13023380 is predicted to have a great degree of secondary

structure, with a strongly favorable folding free energy. Secondary

structure prediction is shown from CentroidFold (ncrna.org); a

,1 kb fragment surrounding the rs13023380 locus was used for

alignment and RNA folding. Aligned sequences of human,

chimpanzee, gorilla, and orangutan were used for folding. (C)

The rs13023380 risk allele sequence disrupts formation of a

strongly conserved stem-loop structure, and globally disrupts RNA
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folding. (D) Control RNA folding experiment with reverse

complement sequence shows little secondary structure and

essentially zero folding free energy, consistent with pre-mRNA

reading direction in the ‘‘sense’’ orientation of (A)–(C). For all

panels, heat color shows the probability of base pair formation,

from 0 (blue) to 1 (red).

(PDF)

Table S1 Overview of study design, samples sizes, ethnicity and

demographics. Our study comprised admixture mapping on

African Americans (AA), followed by a case-control study on AA

and individuals of European Ancestry (EA). Data sources:

Oklahoma Medical Research Foundation (OMRF); Dallas Heart

Study (DHS); University of Alabama at Birmingham (UAB); Study

of Addiction Gene x Environment (SAGE); Health ABC (HABC);

Wellcome Trust Consortium Case Control Study (WTCC). CCAA

and CCEA are cases and controls from AA and EA samples

genotyped at OMRF.

(DOCX)

Table S2 Admixture mapping signals generated by ANCES-

TRYMAP and ADMIXMAP using a low-density or high-density

map. We report logarithm of odds (LOD) scores for ANCES-

TRYMAP in case-only design, and P-values for significance

derived from the Z-distributed case-control statistic from ANCES-

TRYMAP and ADMIXMAP. The 95% confidence interval (CI)

for each peak was calculated where the ANCESTRYMAP local

ancestry significantly deviated from the mean global European.

The strongest peak was found at 2q22.2–q24.3, spanning 21

megabases (MB).

(DOCX)

Table S3 Rationale for selecting 20 candidate genes at 2q22–24.

In order to follow-up the peak at 2q22–24, we chose 20 genes to

target on the basis of previous information about their function

and reported clinical associations related with SLE. Positions

based on genome build 36.

(DOCX)

Table S4 Follow-up case-control association results. Case-

control association results for the follow-up study at selected

candidate genes from the strongest admixture peak (2q22–q24)

using 1525 cases and 1810 controls from CCAA and 3968 cases

and 3542 controls from CCEA pinpoint IFIH1 as a candidate gene

for SLE. * Allele frequencies given correspond to the A1 allele.

Local ancestry correction is labeled as Pc, whereas P-value refers

to the uncorrected value.

(DOCX)

Table S5 Genetic models of association of IFIH1 with SLE.

Genetic models at each independent SNP for African-Americans

(AA) and European-Americans (EA) show that the best model for

rs1990760 and rs130233890 are allelic, and dominant for

rs10930046. The best model was chosen using the Akaike

information criterion (AIC).

(DOCX)

Table S6 Imputation based association analysis for African

Americans (N = 1525 cases; 4485 controls). Pc denotes the local

ancestry-corrected P-value. ‘Rsq denotes the quality measure of

the squared correlation between imputed and true genotypes. *

denotes the 11 SNPs that were genotyped in DHS controls.

(DOCX)

Table S7 Imputation based association analysis for European

Americans (N = 3968 cases; 9750 controls). ‘Rsq denotes the

quality measure of the squared correlation between imputed and

true genotypes. Pc stands for the P-value corrected for local

ancestry.

(DOCX)

Table S8 Risk allele frequencies and Fst values between

populations for three IFIH1 SNPs. Local ancestry at three SNPs

in IFIH1 was estimated for AA. Individuals whose ancestral state

was European (N = 129) and African (N = 2124) were selected, and

their risk allele (‘‘A’’) frequency compared with allele frequencies

in CEPH and YRI. FST was calculated between these groups.

(DOCX)

Table S9 Alignment of genomic region surrounding rs1990760

for available mammal genomes. The base corresponding to

rs1990760 is nearly universally conserved as ‘‘G’’, with a resulting

alanine codon. Sequence is shown reverse complement, in the

direction of the reading frame, showing five codons in either

direction. Squirrel may have a threonine (Thr) side-chain;

interestingly, tenrec may have a 2-amino acid deletion. Alignment

of Chr2: 163124034–163124066, 33 bps (reverse complement).

(DOCX)

Table S10 Alignment of genomic region surrounding

rs10930046 for available vertebrate genomes. The base corre-

sponding to rs10930046 is universally conserved as ‘‘G’’, with a

resulting arginine codon. Sequence is shown reverse complement,

in the direction of the reading frame, showing five codons in either

direction. Alignment of Chr2: 163137967–163137999, 33 bps

(reverse complement).

(DOCX)

Table S11 Mass Spectrometry sequencing and MASCOT

database searches of 2D-gel and streptavidin agarose beads of

EMSA.

(DOCX)

Text S1 Additional list of investigators.

(DOCX)
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