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Quantitative structure activity relationship (QSAR) for the anticancer activity of Fe(III)-salen and salen-like complexes was studied.
The methods of density function theory (B3LYP/LANL2DZ) were used to optimize the structures. A pool of descriptors was
calculated: 1497 theoretical descriptors and quantum-chemical parameters, shielding NMR, and electronic descriptors. The study
of structure and activity relationship was performed with multiple linear regression (MLR) and artificial neural network (ANN). In
nonlinearmethod, the adaptive neuro-fuzzy inference system (ANFIS)was applied in order to choose themost effective descriptors.
The ANN-ANFIS model with high statistical significance (𝑅2train = 0.99, RMSE = 0.138, and 𝑄

2

LOO = 0.82) has better capability to
predict the anticancer activity of the new compounds series of this family. Based on this study, anticancer activity of this compound
is mainly dependent on the geometrical parameters, position, and the nature of the substituent of salen ligand.

1. Introduction

Despite several efforts in the treatment of cancer, because of
several limitations that using medications has, this disease
became a big problem for the health of societies.The purpose
is to develop medications with more anticancer activity
and less toxicity than the present medications. Metallic
compounds have been widely studied due to their major role
in biological activities. Since the introduction of cisplatin as
anticancer medication, a comprehensive study has been per-
formed on the metal complexes and the medicinal features of
these compounds [1–3]. Currently, metal complexes of differ-
ent transitionmetal are preferred candidates for the treatment
of different sort of cancer. Medicinal inorganic chemistry
can employ different strategies in the development of unique
properties of metal ions for design of new anticancer drugs.
However design, synthesis, and structural characterization

of metallodrugs have attracted a lot of interest due to
their applications in anticancer fields. The performance of
these compounds is explained on the basis of many mecha-
nisms including intercalation, inhibition of DNA and RNA
[4–8]. Lipinski, Murcke, and coworkers had an important
role in concentrating on the importance of features of such
medication on the basis of its shape. The anticancer activity
of the metallic complexes has also an adjacent relationship
with the type of central metal and binding ligand to it [1,
9]. Meanwhile, bis(salicylidene)ethylenediamine ligands are
subject of the study for a long time and several of them
including various metals have been synthesized [9–26]. Iron-
salen complexes have been studied since 1931 because of
the physical and biological features and it has been cleared
that salen complexes of F(III) have anticancer features on
the MCF7 cells [27]. Metallosalens damage DNA/RNA in
vitro. Iron-salen derivatives produce hydroxyl radicals in the
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presence of reducing agent of dithiothreitol (DTT) and dam-
age DNA [28, 29]. The probability of discovering a natural
medication which did not need correction or probability
of providing a defined compound as a medication is too
rare. Today, the molecular and chemical computing models
are used in designing new medications which resulted in
saving time and cost and designing medications with more
potential. Among various computationalmethods, QSARhas
a remarkable role in designing a medication. In fact, under-
lying basis of SAR (structure-activity relationships) focuses
on the elucidation of structure and biological effects but
QSAR attempts to form a quantitative relationship between
them [30–33]. QSAR models are mathematical equations
which relate the chemical structure of compounds to their
biological activity [34–37]. There are theoretical pathways
which are used to encode the information of the molecular
structure into numbers to acquire these equations [38, 39].
The relation of construction activity of anticancer Fe(III)-
salen-like complexes had been studied a lot in the past.
One important viewpoint of the researchers in the past
works showed that the nature of substitutes and bridge
between D-amino groups play the main role in defining the
anticancer feature of these compounds. This happens in a
way that increases in the aromaticity of D-amino bridges
and replacing of hydroxyl groups withmethoxy (except some
items) will lead to increase in anticancer feature [2, 28].
But, considering available information resources, there is no
report, in quantities viewpoint, QSAR, to show this relation
more exactly and with more details.

In this paper, what we considered has been searching
for QSAR relation for Fe(III)-salen and salen-like complexes
with linear and nonlinear methods and designing a model
with high statistical significance to predict anticancer activity
of new compounds series of this family. QSAR analysis in this
study is based on the mathematical relationship between bio-
logical activity and structural geometric, quantum-chemical,
electronic, and spectral features. For this purpose, substitutes
on salen ligand and chloride ligand replacement with N-
heterocyclic ligands were studied. With this replacement,
anticancer activity will be changed in a wide range and
modeling is a tool used to understand and predict diverse
activities. Two main goals were pursued in this work: (1) the
study of the influence of the increase in aromatic rings on the
bridge between D-amino groups on the anticancer activity
and (2) the study of the influence of the change in the position
and nature of the salen ligand on the anticancer activity.
The resulting equations adequately describe the biological
activity of these complexes and assign important descriptors
of compounds for efficient anticancer activity.

2. Materials and Methods

2.1. Data Set. Biological data which were used in this work
were the anticancer activity of 26, Fe(III)-salen and salen-
like complexes against human breast cancer cell line (MCF7)
in terms of IC

50
. The quantities of IC

50
, under the same

conditions, were collected from previous studies [2, 27, 28].
The structures of studied compounds and quantities of their

anticancer activity have been reported in Figure 1 and Table 1,
respectively. The activity data have been converted into
logarithm units (PIC

50
) then were used for modeling.

2.2. Geometry Optimization and Molecular Descriptors Cal-
culation. The optimized 3D geometry of the molecules was
achieved using Gaussian 03 software as well as B3LYP
technique and LANL2DZ basis set. This method presents
satisfactory results for the optimization of the 3D geometry of
the metal complexes [40, 41]. Dragon packages, Gaussian 03,
and AIM were used for calculation of molecular descriptors
[41, 42]. A pool of descriptors was calculated by Dragon
software for each molecule including parameters of all types
such as constitutional, topological, geometrical, GETAWAY,
WHIM, 3D-MoRSE,MolecularWalkCounts, BCUTdescrip-
tors, 2D autocorrelations, aromaticity indices, randic molec-
ular profiles, radial distribution functions, functional groups,
atom-centered fragments, empirical and properties [42]. In
addition, highest occupied molecular orbital (HOMO), low-
est unoccupied molecular orbital (LUMO), dipole moment,
natural charge, shielding NMR, and total energy were cal-
culated by DFT method. Chemical hardness (𝜂), chemical
softness (𝜎), chemical potential (𝜇), and electrophilicity (𝜔)

were calculated according to the equations [38, 43]. Charge
density (𝜌(𝑟)) and Laplacian of the electronic charge density
∇
2
𝜌(𝑟)which were calculated using AIM software were based

on the quantum theory of atoms in molecules [44].

2.3. Descriptor Selection. Computed descriptors and empiri-
cal data were analyzed using SPSS software [45]. These data
were put in a quadratic matrix in which its order is equal to
the number of molecules and descriptors. Among descrip-
tors, those which hadmore correlation with anticancer activ-
ity were saved and the others were omitted. In recent years
finding the most efficient descriptors from a pool of variables
plays a fundamental role in QSAR studies [46, 47]. In this
work, finding the most efficient descriptors was performed
with linear and nonlinear methods; finally, created models
were compared. Selection of the most efficient attributes
and obtaining of the final equation are very convenient by
linear techniques. In this work, QSAR equations between
independent descriptors and PIC

50
empirical parameters

were obtained as a response in a way that each category of
descriptorswas considered individually and themost efficient
descriptors by multiple linear regression- (MLR-) stepwise
were selected. Since in the nonlinear method ANN cannot
select the most significant descriptors, ANFIS algorithm, a
developed algorithm based on neural network and fuzzy
logic, was used. This algorithm can characterize extremely
nonlinear functions. ANFIS was used here for investigation;
the most effective parameters in a target function and the
most effective descriptors were selected [48].

2.4. Model Development. In this work MLR was employed as
linear technique and ANN as nonlinear ones for the QSAR
models.

2.4.1. MLR-Stepwise. In this stage study of structure and
activity relationship was performed with multiple linear
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Figure 1: Structure of the complexes studied.
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Table 1: Experimental and predicted values of PIC50 for various salen complexes by MLR and ANNmodels.

Structure PIC50 experimental PIC50 predicted
ANN MLR

1 −1.34227 −1.30399 −1.34220
2 −1.77815 −1.81275 −1.77810
3 −1.77815 −2.15957 −1.77810
4 −1.77815 −2.11785 −1.77810
5 −1.77815 −1.47180 −1.77820
6 −1.07918 −0.82961 −1.07920
7 −0.65321 −0.54961 −0.65320
8 −0.11394 −0.54747 −0.11390
9 0.52288 0.24813 0.60580
10 −1.77815 −1.80770 −1.78810
11 −1.77815 −1.35897 −1.78810
12 −0.61278 −0.67836 −0.61280
13 0.1549 −0.01870 0.15500
14 −0.49136 −0.46266 −0.12430
15 0.30103 −0.24032 0.30110
16 0.69897 0.73866 0.69890
17 −2.00000 −1.12536 −1.60450
18 −2.00000 −1.14808 −2.00000
19 −0.17609 −0.22396 −0.17610
20 0.30103 0.41782 0.30100
21 −0.11394 −0.21354 −0.11390
22 −1.37475 −1.42517 −1.37470
23 −1.11727 −1.45753 −1.11730
24 −1.31387 −1.10417 −1.31390
25 −1.26245 −1.61461 −1.71060
26 −1.22789 −1.04990 −1.22790
Cisplatin −1.25527
PIC50 = − log(IC50).

Table 2: Descriptors used in MLR.

Number Symbol Chemical meaning Type

1 MATS8e Moreau autocorrelation—lag8/weighted by atomic sanderson
electronegativities 2D autocorrelation

2 Mor28u Signal 28/unweighted 3D-MoRSE
3 H8m H autocorrelation of lag8/weighted by atomic masses GETAWAY

4 CIC1 Complementary information content
(neighborhood symmetry of 1-order) Topological

5 G3s 3st component symmetry directional WHIM index/
weighted by atomic electrotopological states WHIM

regression (MLR) in SPSS software [49, 50].Themost efficient
descriptors by multiple linear regression- (MLR-) stepwise
were selected. Then five descriptors were selected by this
procedure [51, 52]. Table 2 represents the selected variables
and their chemical meanings. The correlation matrix among
these descriptors is shown in Table 3. Find correlation
between PIC

50
and five descriptors is given by

PIC
50

= −8.991 + 1.354CIC1 + 11.336H8m

− 2.045MATS8e + 22.943G3s − 2.032Mor28u.

(1)

2.4.2. ANN-ANFIS. Artificial neural networks are generally
used for nonlinear regressions [53, 54]. The most effective
descriptors were selected by using ANFIS algorithm. For
comparing linear and nonlinear selection in Table 4, the
most efficient descriptors from the pool of descriptors which
are selected by ANFIS models and their chemical meanings
have been represented. In this study multilayer feed-forward
(MLFF) network with back-propagation (BP) learning was
employed and its overview is shown in Figure 2. We use the
Matlab 7.0 program in these calculations [48, 55]. For training



The Scientific World Journal 5

of neural network, obtained descriptor and anticancer activ-
ity were used as inputs and outputs, respectively. After the
training of the network, the resulting ANN model was used
to predict the activity of the test set compounds. Normalized
inputs and outputs have better effect on training.Thenetwork
includes some hidden layers with sigmoid neurons and
final linear layer. The function of nonlinear transmit to the
network provides the ability of learning linear and nonlinear
relationship between inputs and outputs and the external
linear layer enables the outputs to be out of the range of −1
and +1. With performing the network, the statistical weights
of each of the descriptors will change alternatively till the
error between anticipated values of PIC

50
and the values of

empirical PIC
50
(target vector) is minimized. Several models

with various numbers of hidden layers and neurons were
designed and they are optimized by a systematic search
method. The best network model with 3 layers and 9, 8
and 1 neuron was selected. The network was trained with
Levenberg-Marquardt (LM) algorithm [56, 57].

2.4.3. Validation of QSAR Models. Validation process is a
necessary step in QSAR. In fact the QSAR models were
validated by the calculation of the statistical terms (corre-
lation coefficient 𝑅

2, cross-validation 𝑄
2, standard error of

prediction 𝑆, root mean square error RMSE, etc.). Cross-
validation is the statistical method of partitioning a sample
of data into training set and test set. The test set was used for
external validation. One of the cross-validation methods is
LOO where one object at a time is removed from the data
set and then predicted by generated model. The 𝑄

2

LOO was
calculated using

𝑄
2

=
1 − Press

SSY
, (2)

where Press = ∑ (𝑌pred − 𝑌actual)
2 and SSY =

∑ (𝑌actual − 𝑌mean)
2 and where 𝑌pred is a predicted value

of activity, 𝑌actual is an actual or experimental value of
activity, and 𝑌mean is the mean activity value [38]. We apply
cross-validation method to determine that QSAR models
have ability to correctly predict the biological activities of
new compounds. Results have been reported in Table 5.

3. Results and Discussion

The underlying basis of this study has focused on elucidation
of the molecular structure and anticancer activity of these
compounds with two methods of MLR-stepwise and ANN-
ANFIS. Here QSAR studies were confident to receptor-
independent (RI) QSAR analyses and the geometry of the
receptor is neglected [35]. The data set was divided into
training and test sets. The test set was used for external
validation. The ANN-ANFIS model with high statistical
significance has better capability to predict anticancer activity
of new compounds series of this family (Figure 3).

The QSAR models should be interpretable and it is
important to explain the selected descriptors [58]. Definition
of each selected descriptor was presented here. Anticancer
activity of this series of compounds could not be attributed

to one or two structural features of the molecules and the
anticancer activity is the product of optimizing a collection of
descriptors. It has been observed that inMLR-stepwisemodel
2D autocorrelation, 3D-MoRSE, GETAWAY, topological, and
WHIM descriptors have more effect on anticancer activity
than quantum chemical ones. The values of the mean effect
(MF) were calculated according to (3) to indicate the relative
importance of these descriptors. Consider

MF
𝑗

=

𝛽
𝑗

∑
𝑖=𝑛

𝑖=1
𝑑
𝑖𝑗

∑
𝑚

𝑗
𝛽
𝑗

∑
𝑛

𝑖
𝑑
𝑖𝑗

, (3)

where MF
𝑗
represents the mean effect of the considered

descriptor 𝑗, 𝑏
𝑗
is the coefficient of the descriptor 𝑗, 𝑑

𝑖𝑗
stands

for the value of the target descriptors for each molecule, and,
eventually, 𝑚 is the descriptors number in themodel [46, 59].

MF values are 0.506, 0.415, 0.048, and 0.030, 0 for
G3s, CIC1, H8m, Mor28u, and MATS8e, respectively. The
high value of mean effect for G3s shows the significance
of this descriptor in the model. G3s is one of the global
WHIM descriptors which display a positive sign on PIC

50
.

Weighted holistic invariant molecular (WHIM) descriptors
are geometrical descriptors which show molecular 3D infor-
mation regarding molecular size, shape, symmetry, and atom
distribution. WHIM descriptors are suitable for complex
properties. In G3s, WHIM weighted covariance matrixes
were provided by the electrotopological state indexes of Kier
and Hall [38]. CIC1 (complementary information content
with neighborhood symmetry of 1-order) is the second order
of importance. It is a topological descriptor. Topological
indexes are single indexes derived from a molecular graph
which can be sensitive to one or more structural features
of the molecule such as size, shape, symmetry, branching,
and cyclicity. This descriptor shows the molecular symmetry
by measuring the neighborhood of the atoms (through the
value of the vertex degrees) located at a first-order distance
(one single bond) of a considered atom, for each vertex in G
[38, 60]. MATS8e (Moreau autocorrelation—lag8/weighted
by atomic Sanderson electronegativities) is one of the 2D-
autocorrelation descriptors by Broto-Moreau calculated from
the molecular graph by summing the products of atom
weights of the terminal atoms of all the paths of length 8, using
the Sanderson electronegativities as weighting scheme (the
lag). Variation in toxicity as a function of position and nature
of the substituent is determined by 2D parameters. It shows
that replacing hydroxyl group with methoxy in different
positions of the salen ligand plays a crucial role regarding
toxicity. It is well known that the stereo chemical moieties of
the investigated compounds could affect biological activity so
2D models of molecules can provide stereo chemical infor-
mation [38, 61]. H8m (H autocorrelation of lag8/weighted
by atomic masses) is of the GETAWAY descriptors which
are geometrical descriptors which encode information on
the effective position of substituents and fragments in the
molecular space. In fact GETAWAY descriptors encode both
the geometrical information given by the influencemolecular
matrix and the topological information given by the molec-
ular graph [38, 62]. Mor28u (Signal 28/unweighted) is one of
the 3D-MoRSE descriptors which represent structures based
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Table 3: Correlation coefficient matrix of the selected descriptors.

MATS8e Mor28u H8m CIC1 G3s
MATS8e 1 −0.273 0.270 0.026 −0.283
Mor28u 1 −0.109 −0.668 0.347
H8m 1 −0.124 −0.259
CIC1 1 −0.009
G3s 1

Table 4: Five most efficient descriptors selected by ANFIS models.

No. Symbol Chemical meaning Type
1 Mor28p Signal28/weighted by atomic polarizabilities 3D-MoRSE
2 SPI Superpendentic index Topological
3 RDF110m Radial distribution function 11.0/weighted by atomic masses RDF
4 SPCN8 Shielding NMR (ppm) of Nitrogen8 NMR

5 MATS5v Moreau autocorrelation—lag5/weighted by atomic van der Waals
volumes 2D autocorrelation

Table 5: Results and validation of QSAR models.

𝑅
2

train 𝑄
2

LOO RMSE
MLR-stepwise 0.863 0.769 0.342
ANN-ANFIS 0.999 0.820 0.138

on electron diffraction descriptors so they can reveal the
skeleton and substituents information for amolecule. Various
physicochemical properties such as atomic mass, partial
atomic charges, and atomic polarizability were considered to
present high flexibility of amolecule.The formof the intensity
distribution 𝐼(𝑠) is given by

𝐼 (𝑠) =

𝑁

∑

𝑖=2

𝑖−1

∑

𝑗=1

𝐴
𝑖
𝐴
𝑗

sin 𝑠𝑟
𝑖𝑗

𝑠𝑟
𝑖𝑗

, 𝑠 = 0, . . . , 31.0 Å−1, (4)

where 𝑁 is the number of atoms, 𝑟
𝑖𝑗
is the distance between

atoms 𝑖 and 𝑗, 𝐴
𝑖
can be any atomic property of atom 𝑖 such

as atomic number, mass, partial atomic charge, or atomic
polarizability, and 𝑠 is a reciprocal distance.The value of 𝑠was
considered only at discrete positions within a certain range,
between 0 and 31 Å−1. For Mor28u, an atomic mass weighted
scheme was used and 𝑠 was equal to 27 Å−1 [63, 64].

Two QSAR models were built here using various types of
descriptors. In nonlinear model Mor28p, Signal28/weighted
by atomic polarizabilities is one of the 3D-MORSE descrip-
tors whose autocorrelation vectors are weighted by atom
polarizabilities. SPI (superpendentic index) is one of the
topological descriptors which derived from the 𝐻-depleted
molecular graph and is calculated according to the following:

∫
𝑝

= (

𝐴

∑

𝑖=1

𝜋
𝑚

𝑑
𝑖𝑚

)

1/2

, (5)

where 𝑑 is the topological distances, that is, row of the
pendent matrix, and 𝑚 is the number of terminal vertices,

that is, the columnof the pendentmatrix [65, 66]. RDF110m is
one of the 3D-radial distribution function (RDF) descriptors
which were proposed based on a radial distribution function.
The radial distribution function is probability distribution
to find an atom in a spherical volume of radius 𝑅. RDF
descriptors are independent of the size and rotation of
the entire molecule. They describe the steric hindrance or
the structure/activity properties of a molecule. The general
equation of the radial distribution function is in accordance
with the following:

𝑔 (𝑅) = 𝑓 ⋅

𝐴−1

∑

𝑖=1

𝐴

∑

𝑗=𝑖+1

𝑤
𝑖

⋅ 𝑤
𝑗

⋅ 𝑒
−𝛽⋅(𝑅−𝑟𝑖𝑗)

2

, (6)

where 𝑓 is a scaling factor, 𝑤 is the characteristic atomic
properties of the atoms 𝑖 and 𝑗, 𝑟

𝑖𝑗
is the interatomic distance

between the 𝑖th and 𝑗th atom, and 𝐴 is the number of atoms.
The exponential term contains the distance 𝑟

𝑖𝑗
between the

atoms 𝑖 and 𝑗 and the smoothing parameter 𝛽 that defines
the probability distribution of the individual interatomic
distances. 𝛽 can be interpreted as a temperature factor
which defines the movement of atoms. The RDF descriptor
provides valuable information about the bond distances,
ring types, planar and nonplanar systems, and atom types
[38, 59]. SPCN8 is shielding NMR (ppm) of the nitrogen8
which is calculated by Gaussian 03. Final MATS5v (Moran
autocorrelation—lag 5/weighted by atomic Sanderson elec-
tronegativities) is one of the 2D-autocorrelation descriptors.

This study provides deeper insight into the antitumor
activity of the Fe(III)-salen-like complexes. Based on the
above discussion the anticancer activity of this compound
is mainly dependent on the geometrical parameters and
position and nature of the substituent of the salen ligand.
Data analysis shows that the increase in aromatic rings on
the bridge between D-amino groups causes more activity
of the complex. Geometrical parameters are important in
the ligand transportation through the cell membrane. Also
change in the position of the substituent of the salen ligand
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Figure 3: Results and comparison of MLR-stepwise and ANN-ANFIS models.

changes the anticancer activity. The nature of the substituent
has a sharp effect on the biological activity. Our studies
on the influence of Cl ligand replacing the heterocyclic N-
donor ligands show that 1H-tetrazol-5-amin(Hatz) increases
in activity. Results show that change of Cl ligand on the
heterocyclic N-donor ligands has a minor effect compared to
aromatic group replacement on the anticancer activity which
is shown in Figure 4.

4. Conclusion

Some of iron(III)-salen complexes have a very desirable
anticancer activity against MCF7 cells. Their anticancer
activity is the result of optimizing a collection of descriptors,
considering that acquired results could not attribute the anti-
cancer activity to one or two special structural features. Also,
the results of this study show the high ability of nonlinear
methods which resulted from fuzzy logic and neural network
in anticipating the anticancer activity of new series of salen
complexes such as iron(III). The ANN-ANFIS model with
high statistical significance has better capability to predict
anticancer activity of the new compounds series of this
family. The results show the importance of the geometrical
parameters and position and nature of the substituent of the
salen ligand on the anticancer activity.

NN

Fe

OO
ClX

X

Importance of
aromatic rings

Position and nature of the
substituent of the salon
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Figure 4: Importance of the position and nature of the substituent
of the salen ligand.
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netic, 57Fe Mössbauer, and biological activity studies,” Dalton
Transactions, 2009.

[28] K. I. Ansari, J. D. Grant, G. A. Woldemariam, S. Kasiri, and S.
S. Mandal, “Iron(III)-salen complexes with less DNA cleavage
activity exhibit more efficient apoptosis inMCF7 cells,”Organic
and Biomolecular Chemistry, vol. 7, no. 5, pp. 926–932, 2009.



The Scientific World Journal 9

[29] K. I. Ansari, S. Kasiri, J. D. Grant, and S. S. Mandal, “Iron (III)-
salen and salphen complexes induce apoptosis in tumor cells,”
Journal of Biomolecular Screening, vol. 16, pp. 26–35, 2011.

[30] C.D. Selassie,Burger’sMedicinal Chemistry andDrugDiscovery,
IncCalifornia, 2003.

[31] A. Mohajeri and M. H. Dinpajooh, “Structure-toxicity rela-
tionship for aliphatic compounds using quantum topological
descriptors,” Journal of Molecular Structure, vol. 855, no. 1–3, pp.
1–5, 2008.

[32] K. M. Nikolic, “QSAR study of 𝛼-tocopherol derivatives with
chemotherapeutic activity against human breast cancer cells,”
Journal of Molecular Structure, vol. 809, no. 1–3, pp. 137–143,
2007.

[33] S. Gao and C. Cao, “Extending bond orbital-connection matrix
method to the QSPR study of alkylbenzenes: some thermo-
chemical properties,” Journal of Molecular Structure, vol. 778,
no. 1–3, pp. 5–13, 2006.

[34] H.-J. Huang, H.W. Yu, C.-Y. Chen et al., “Current developments
of computer-aided drug design,” Journal of the Taiwan Institute
of Chemical Engineers, vol. 41, no. 6, pp. 623–635, 2010.

[35] C. H. Andrade, K. F. M. Pasqualoto, E. I. Ferreira, and A. J.
Hopfinger, “4D-QSAR: perspectives in drug design,”Molecules,
vol. 15, no. 5, pp. 3281–3294, 2010.

[36] D. C. Young, Computational Chemistry, A Practical Guide for
Applying-Techniques to Real-Word Problems, Cytoclonal Phar-
maceutics Inc, 2001.

[37] T. Fujita, QSAR and Drug Design: New Developments and
Applications, Elsevier Science, Amsterdam, The Netherlands,
1995.

[38] T. Puzyn, J. Leszczynski, and M. T. D. Cronin, Recent Advances
in QSAR Studies, 2010.

[39] L. M. A. Mullen, P. R. Duchowicz, and E. A. Castro, “QSAR
treatment on a new class of triphenylmethyl-containing com-
pounds as potent anticancer agents,” Chemometrics and Intelli-
gent Laboratory Systems, vol. 107, no. 2, pp. 269–275, 2011.

[40] C. J. Cramer, Essential of Computational Chemistry Theories
and Models, Department of Chemistry and Supercomputing
Institute, University of Minnesota, 2002.

[41] “Gaussian 03, RevisionC.02,” Gaussian Inc.,Wallingford, Conn,
USA, 2004.

[42] R. Todeschini, “Milano Chemometrics and QSAR Group,”
2008, http://michem.disat.unimib.it.

[43] U. Sarkar, J. Padmanabhan, R. Parthasarathi, V. Subramanian,
and P. K. Chattaraj, “Toxicity analysis of polychlorinated diben-
zofurans through global and local electrophilicities,” Journal of
Molecular Structure, vol. 758, no. 2-3, pp. 119–125, 2006.

[44] R. F. W. Bader, Atoms in Molecules—A Quantum Theory,
Clarendon Press, Oxford, UK, 1990.

[45] SPSS Base 10.0 Applications Guide SPSS Inc, Chicago, Ill, USA,
1999.

[46] E. Ibezim, P. R. Duchowicz, E. V. Ortiz, and E. A. Castro,
“QSAR on aryl-piperazine derivatives with activity on malaria,”
Chemometrics and Intelligent Laboratory Systems, vol. 110, no. 1,
pp. 81–88, 2012.

[47] K. Kraim, D. Khatmi, Y. Saihi, F. Ferkous, and M. Brahimi,
“Quantitative structure activity relationship for the computa-
tional prediction of 𝛼-glucosidase inhibitory,” Chemometrics
and Intelligent Laboratory Systems, vol. 97, no. 2, pp. 118–126,
2009.

[48] Matlab 7.0, The MathWorks Inc, http://www.mathworks.com.

[49] J. H. A. Al-Fahemi, D. L. Cooper, and N. L. Allan, “QSAR
using momentum-space and trivial feature count descriptors—
an application to Tetrahymena pyriformis toxicity,” Journal of
Molecular Structure, vol. 901, no. 1–3, pp. 56–59, 2009.

[50] X.-F. Yan, H.-M. Xiao, X.-D. Gong, and X.-H. Ju, “A comparison
of semiempirical and first principle methods for establishing
toxicological QSARs of nitroaromatics,” Journal of Molecular
Structure, vol. 764, no. 1–3, pp. 141–148, 2006.

[51] A. H. Morales, P. R. Duchowicz, M. Á. C. Pérez, E. A. Castro,
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