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ABSTRACT

The development of short interfering RNA (siRNA),
has provided great hope for therapeutic targeting
of specific genes responsible for patholological
disorders. However, the poor cellular uptake and
bioavailability of siRNA remain a major obstacle to
their clinical development and most strategies that
propose to improve siRNA delivery remain limited
for in vivo applications. In this study, we report a
novel peptide-based approach, MPG-8 an improved
variant of the amphipathic peptide carrier MPG, that
forms nanoparticles with siRNA and promotes their
efficient delivery into primary cell lines and in vivo
upon intra-tumoral injection. Moreover, we show
that functionalization of this carrier with cholesterol
significantly improves tissue distribution and stabil-
ity of siRNA in vivo, thereby enhancing the efficiency
of this technology for systemic administration fol-
lowing intravenous injection without triggering
any non-specific inflammatory response. We have
validated the therapeutic potential of this strategy
for cancer treatment by targeting cyclin B1 in
mouse tumour models, and demonstrate that
tumour growth is compromised. The robustness of
the biological response achieved through this
approach, infers that MPG 8-based technology
holds a strong promise for therapeutic administra-
tion of siRNA.

INTRODUCTION

Although the in vivo delivery of siRNA has been success-
fully achieved thanks to several non-viral delivery systems,
systemic administration of siRNA remains a major chal-
lenge for their therapeutic application (1–5). Over the last

decade, cell-penetrating peptides (CPPs) have been shown
to improve intracellular delivery of various biologically
active molecules into living cells quite efficiently (6,7)
and have more recently been applied to siRNA delivery
(8,9). Although conjugation strategies with either
Transportan, Penetratin or Tat certainly improve the
delivery of siRNA into cultured cells, non-covalent stra-
tegies are more appropriate for both in cellulo and in vivo
delivery of siRNA (8,10–17). Short amphipathic cell-
penetrating peptides forming non-covalent, yet stable
complexes with their cargo have been successfully applied
to the delivery of different macromolecules into mamma-
lian cells (18,19). In particular, the peptide carrier MPG
efficiently delivers siRNA in a fully biologically active
form into a wide variety of cell lines, including embryonic
stem cells (10,11,20). In the present study we describe a
novel strategy which promotes efficient delivery of siRNA
in vivo, using functionalized peptide-based nanoparticular
formulations. We have developed a shorter version of
MPG, MPG-8, that forms stable particles with siRNA,
and that can be functionalized. MPG-8 improves siRNA
delivery ex vivo and in vivo without activating the innate
immune response. We have validated the potential of this
technology by targeting cyclin B1, a non-redundant mito-
tic partner of cyclin-dependent kinase 1 (cdk1) (21) and
report that MPG-mediated administration of siRNA tar-
geting cyclin B1 prevents tumour growth in xenografted
tumour mouse models. Cyclin B1 constitutes a key target
for anti-proliferative strategies and both anti-sense and
siRNA-based-approaches targeting cyclin B1 have been
proposed as an anti-proliferative strategy (22–24). Cyclin
B1 together with Cdk1 kinase, forms the ‘mitosis promot-
ing factor’, whose activity is required for entry into and
progression through mitosis (21). Cdk1 is essential for
mammalian cell division, its knockout is lethal and several
small molecule inhibitors targeting Cdk1 have been
reported to induce arrest in G2 and to reduce tumour
growth (22,24). Likewise, altered expression of cyclin B1
has been reported in numerous cancers
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MATERIALS AND METHODS

Peptides and siRNAs

All peptides were synthesized and purified as previously
described (10,25). Cholesterol conjugation to MPG-8 was
performed at the primary amino group of the N-terminal
residues, then cholesterol-MPG-8 was further purified by
Reverse Phase-HPLC and analysed by electro-spray ion-
ization mass spectroscopy (25). siRNAs and 50

Alexa700fluorescently labelled siRNA were synthesized
by Eurogentec according to the following sequences.

Cyc-B1 sense 50-GGCGAAGAUCAACAUGGCATT-30

Cyc-B1 anti-sense 50-UGCCAUGUUGAUCUUCGCCTT-30

Cyc-B3 sense 50-GGUGAAGAUCAGCAUGGCATT-30

Cyc-B3 anti-sense 50-UGCCAUGUCGAUCUUCACCTT-30

GAPDH sense 50-CAUCAUCCCUGCCUCUACUTT-30

GAPDH anti-sense 50-AGUAGAGGCAGGGAUGAUG-30.

Cyc-B1 siRNA targeting cyclin B1, and a derived
siRNA harbouring two mismatches, Cyc-B3, was used
as control. An siRNA targeting GAPDH was used as con-
trol to validate target specificity and to monitor associated
non-specific interferon response.

Cell culture and MPG-mediated transfection

Adherent HS68 fibroblasts, HeLa, PC3, MCF-7 and
SCK3-Her2 cell lines [from American Type Culture
Collection (ATCC)] were cultured in Dulbecco’s
Modified Eagle’s Medium supplemented with 2-mM glu-
tamine, 1% antibiotics (streptomycin 10 000 mg/ml, peni-
cillin, 10 000 IU/ml) and 10% (w/v) fetal calf serum (FCS),
at 378C in a humidified atmosphere containing 5% CO2.
Stock solutions of MPG-8/siRNA and MPG�NLS/siRNA
particles were prepared by complexing 100 nM siRNA
with MPG peptides at a molar ratio of 1/20 for 30min
at 378C. Lower concentrations of MPG-carrier/siRNA
(from 20 nM to 0.125 nM) were obtained by serial dilution
of the stock complexes in PBS, in order to preserve the
same MPG-carrier/siRNA ratio. A total of 150 000 cells
seeded in a 35-mm dish the day prior transfection, were
grown to 60% confluence and overlaid with 200 ml of pre-
formed complexes, incubated for 3–5min, then 400 ml of
DMEM were added. After a 30-min incubation at 378C,
1ml of fresh DMEM containing 16% FCS was added in
order to reach a final FCS concentration of 10%, without
removing the overlay of MPG-8/siRNA complexes. Cells
were returned to the incubator for 24 h. Cyclin B1 mRNA
and protein levels were determined 12 and 24 h following
transduction, using Quantigen (Panomics Inc.) and west-
ern blotting, respectively. Mouse monoclonal anti-Cyclin
B1 antibodies (SC-245) and rabbit polyclonal anti-Cdk2
antibodies (SC-163) were obtained from Santa Cruz
Biotechnology Inc. Data reported are an average of
three or four distinct experiments.

Mouse tumour models

Athymic female nude mice (6–8 weeks of age) were sub-
cutaneously inoculated into the flank with 1� 106 PC3 or
SCK-3-HEK2 cells in 100 ml PBS. Two to three weeks
after tumour implant, when tumour size reached about

100mm3, animals were treated by intra-tumoral or intra-
venous injection, every 3 days, with a solution of 0.1ml of
either free Cyc-B1 siRNA (50 or 100mg), control siRNA
Cyc-B3 or Cyc-B1 siRNA (1, 5, 10 mg) complexed with
MPG-8 or MPG-8/Chol-MPG-8 at a 1/20 molar ratio.
Formulations containing 15% Chol-MPG-8 were pre-
pared in a stepwise fashion by first forming a precomplex
of MPG-8/siRNA at molar ratio of 1/20, followed by
addition of Chol-MPG-8 so as to increase the ratio of
siRNA/carrier to 1/25. Tumour diameter was measured
in two directions at regular intervals using a digital calliper
and tumour volume was calculated as length � width �
height � 0.52. Curves show the mean value of tumour
size in a cohort of six animals and neither animal death
nor any sign of toxicity was observed. Experiments were
performed according to national regulations and
approved by the local animal experimentation ethical
committee. The statistical significance of the results was
calculated by Student’s t-test and P< 0.05 considered to
be statistically significant.

Characterization of peptide-based nanoparticles

Mean particle size distribution was determined with a
Coulter N4 Plus (Coulter-Beckman) at 258C for 3min
per measurement and zeta potential was measured with
Zetasizer 4 apparatus (Malvern Ltd,) as previously
described (24).

Cytotoxicity

Toxicity of MPG-8/siRNA complexes was investigated on
HeLa and HS-68 cell lines. A total of 30 000 cells seeded in
24-well plate the day prior transfection, were incubated
with increasing concentrations of siRNA complexed with
MPG-8 at a 20/1 molar ratio ranging from 0.1 to 5 mM
(100 mM MPG-8), for 30min prior to addition of medium
to reach a final 10% concentration of FCS. Cytotoxic
response was measured 12 h or 24 h later by monitoring
the housekeeping gene cyclophilin mRNA level
(Quantigen, Panomic Inc.) and by colorimetric MTT
assay (Sigma, Germany), respectively. For MTT assay,
cell culture medium was removed and replaced with PBS
containing 2.5mg/ml of MTT for 4 h. Results correspond
to the average of three separate experiments.

Interferon assay

Interferon response was evaluated on cultured cells
by quantitative RT-PCR monitoring induction of INF-b
and of Interleukin 8 (IL8). HeLa, SCK3-Her2 and MCF7
cells were mock transfected or transfected with MPG-8
MPG-8/Chol-MPG-8/siRNA complexes (100 nM) or
poly(I:C) (5 mg/ml). After 24 h, RNA was isolated using
Trizol (Sigma), and analysed by quantitative RT-PCR,
standardized to GAPDH mRNA. Quantitative PCR was
performed on a Biorad iCycler using primer sequences
for IL8 (forward) 50-GTGCAGTTTTGCCAAGGACT30

and INF-b (forward) 50-CTGGAGCAGCTGAATGGA
AAG-30. In vivo inflammatory response was monitored
in the plasma, 6 h after injection of either MPG-8/Chol-
MPG-8/siRNA complex, MPG-8, Chol-MPG-8 (0.5mg/
kg) or poly(I:C) (200 mg). The level of mouse cytokine
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tissue tumor necrosis factor (TNF-a). Interferon a
(INF-a) and interleukin 6 (IL6) were quantified using
sandwich ELISA assay kit (BD Biosciences) according
to the manufacturer’s instructions. The reported results
correspond to the average of two separate experiments
with four animals per group.

In vivo imaging of siRNA biodistribution

In vivo fluorescence imaging was performed as previously
described (26,27). Mice were injected intravenously with
10 mg (200 ml) of Alexa700 fluorescently labelled siRNA
either naked or complexed with MPG-8 or MPG-8Chol/
MPG-8 (n=3 animals per group). Anaesthetized mice,
using 2% Isoflurane, were illuminated by 663-nm light
emitting diodes equipped with interference filters and
movies were acquired over the first 15 minutes and fluo-
rescence images were taken every hour for 5 h and then
after 24 h, with a back-thinned CCD cooled camera as
previously described (26,27). At 24 h, mice were eutha-
nized and different organs were removed for quantifica-
tion of Alexa fluorescence.

RESULTS AND DISCUSSION

Design and evaluation of MPG-8-based nanoparticles
for siRNA delivery

MPG (ac-GALFLGFLGAAGSTMGAWSQPKKKRKV-
Cya) is a primary amphipathic peptide consisting of an
N-terminal hydrophobic motif derived from the fusion
sequence of the HIV protein gp41, a hydrophilic domain
derived from the nuclear localization sequence of SV40
large T antigen, and a short linker which separates these
domains (25). MPG was previously reported to deliver
siRNA into cultured mammalian cells efficiently and
to promote potent downregulation of the target at the
protein level, thanks to rapid release of siRNA into the
cytoplasm (10,28). The sequence of MPG was optimized
to improve its interactions with siRNA as well as the sta-
bility of MPG/siRNA complexes. For this purpose, MPG
parent peptide was shortened by six residues: Gly1, Leu3,
Ser13, Ala17, Glu20 and Val27, and the two hydrophobic
Phe7 and Ala11 residues were mutated into Trp so as to
favour interactions with both siRNA and lipid phase of
the membrane. We previously demonstrated that the
cysteamide group at the C-terminus of MPG is a prereq-
uisite for its cellular uptake (10), therefore a b-alanine was
added to the N-terminus to allow further functionalization
of the peptide, thereby yielding MPG-8 a 21-residue
amphipathic peptide: bAFLGWLGAWGTMGWSPKK
KRK-Cya.

We first characterized the efficiency of MPG-8 to deliver
siRNA targeting cyclin B1 (Cyc-B1), compared to the
MPG�NLS parent peptide, and found that target silencing
was directly correlated to the ratio, and to the size of
MPG-8/siRNA particles (Figure 1A). An optimal reduc-
tion of cyclin B1 protein level (was achieved for an MPG-
8/siRNA molar ratio of 20/1, corresponding to stable
MPG-8/siRNA particles with a diameter of 120� 50 nm,
as determined by dynamic light scattering, with a zeta
potential of +16� 3 v. At lower ratios, MPG-8/siRNA

particles are unstable and poorly taken up by cells; at
higher ratios, a net increase in the size of particles is asso-
ciated with a reduction of silencing efficiency. The parental
peptide MPG�NLS also forms stable particles with siRNA
with an optimal cyclin B1 silencing response (50%) for a
molar ratio of 20/1 and particle size of 260� 50 nm diam-
eter (Figure 1B). However, the efficiency of MPG�NLS

is 2-fold lower than that of MPG-8 at a 20/1 ratio.
Therefore, to ensure optimal biological conditions for
siRNA delivery, throughout the rest of our study, MPG-
8/siRNA particles were systematically prepared at 20/1
ratio. In addition, the toxicity of MPG-8-based
formulations was investigated using either MTT assay or
by monitoring cyclophilin mRNA levels. As reported in
Figure 1C, no toxicity was detected up to a concentration
of 20 mM of MPG-8/siRNA particles and only 10–15% of
cell death was observed with 100 mM of MPG-8/siRNA
particles.

MPG-8-mediated delivery of siRNA targeting cyclin
B1 induces G2 arrest

Dose–response experiments performed on cultured cells
revealed that MPG-8-mediated delivery of siRNA (Cyc-
B1) induced a robust biological response associated with
downregulation of both cyclin B1 protein and mRNA
levels (Figure 2A and B). An siRNA concentration of
5 nM was sufficient to reduce cyclin B1 levels by more
than 85% in HeLa cells (Figure 2A) and IC50 of
1.1� 0.3 nM and 0.9� 0.2 nM were estimated for down-
regulation of protein levels, and of 0.6� 0.1 nM and
0.4� 0.1 nM for mRNA levels, for non-transformed
HS68 fibroblasts (Figure 2B) and HeLa cells (data not
shown), respectively. In comparison, when siRNA were
delivered with MPG�NLS, IC50 values of 24� 5 nM and
35� 7 nM were obtained for downregulation of protein
and mRNA levels, respectively (Figure 2C). That MPG
is 30- to 60-fold less efficient than MPG-8 can be directly
correlated to differences in stability, solubility and size of
the siRNA/MPG complexes. Reduction of cyclin B1 pro-
tein levels was directly associated with accumulation of
cells with a 4N content, consistent with downregulation
of Cdk1-Cyclin B1 activity, and was optimally obtained
with 2 nM siRNA and IC50 values estimated to
0.8� 0.2 nM and 1.2� 0.4 nM for HeLa and HS68 cells,
respectively (Figure 2D). In contrast, no effect on cyclin
B1 levels and cell cycle progression was observed with
200 nM of an unrelated siRNA (si-GAPDH), or of a
mismatch siRNA harbouring two mutations (Cyc-B3)
complexed with MPG-8 at a 20/1 ratio, or with MPG-8
carrier alone (100mM).

MPG-8-mediated delivery of siRNA targeting cyclin
B1 blocks cancer cell proliferation

The potency of MPG-8/siRNA particles to block cancer
cell proliferation was evaluated using MCF-7, PC3,
SKBr3-HER2 cell lines and compared to the response
observed for HS68 fibroblasts. Cells were treated
on Day 1 with different concentrations (0.125–20 nM) of
siRNA, MPG-8/siRNA and MPG-8/m-siRNA com-
plexes, and inhibition of cell proliferation was determined
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after 7 days. As reported in Figure 3, subnanomolar con-
centrations of Cyc-B1 siRNA complexed to MPG-8 sig-
nificantly blocked proliferation of the three cancer cell
lines, with IC50 values of 0.6� 0.2 nM, 0.9� 0.3 nM and
1.1� 0.3 nM, for PC3, MCF7 and SKBr3-HER2 cells,
respectively, whereas no effect was observed with control
siRNA or carrier alone. In comparison, the effect of this
treatment on cell proliferation of HS68 fibroblasts was
quite limited, despite efficient downregulation of cyclin
B1 levels (Figure 3D). Although MPG-8/cyclin B1
siRNA compromised proliferation of cancer cells, it only
had a moderate effect on non-cancer cells. These results
are in agreement with previous reports showing that
downregulation of proteins required for the G2/M transi-
tion including Plk1 kinase or cyclin B1 have a limited
effect on non-cancer cells with an active G2/M checkpoint
machinery and do not induce mitotic catastrophes (22,29).

In vivo MPG8-mediated Cyclin B1 siRNA delivery
blocks tumour growth upon topical injection

The potential of MPG-8 to deliver cyclin B1 siRNA in vivo
was first evaluated on human prostate carcinoma cell
PC3-xenografted mice (Figure 4A). The effect of local
intra-tumoral administration of MPG-8/siRNA particles
(molar ratio 20/1) on the growth of established

subcutaneous tumours was evaluated. At Day 50,
tumour sizes in the control cohort, injected with PBS
increased by about 3.5-fold. Reduction of tumour
growth by 75% was observed using 1 mg (0.05mg/kg) of
siRNA/MPG-8 and tumour growth was completely pre-
vented with 5 mg (0.25mg/kg) siRNA/MPG-8 (Figure 4A).
In contrast, intra-tumoral administration of 5 mg (0.25mg/
kg) MPG�NLS/siRNA particles did not significantly
reduce tumour growth, as only 7–10% of growth curve
deviation was observed in comparison to the saline con-
trol. The poor efficiency of MPG�NLS/siRNA is asso-
ciated with low stability of the particles after injection
and the tendency of MPG�NLS/siRNA complexes to pre-
cipitate at the concentration required for in vivo adminis-
tration. At Day 48, we validated that the Cyc-B1 siRNA-
mediated inhibition of tumour growth was directly asso-
ciated with a decrease in the level of cyclin B1 mRNA. As
reported in Figure 4B, the level of cyclin B1 mRNA was
reduced by 58% and 82% with 1 and 5 mM of siRNA
formulated with MPG-8, respectively. In contrast, 5 mM
MPG�NLS/Cyc-B1siRNA reduced cyclin B1 mRNA by
only 7%, in perfect agreement with the observed variation
in tumour growth (Figure 4B). As a control, we showed
that administration of 50 mg (intra-tumoral) or 100 mg
(intravenous) naked siRNA or MPG-8 carrier alone had

Figure 1. MPG-8 nanoparticle-mediated delivery of siRNA targeting cyclin B1. Impact of MPG-8 particle size on silencing efficiency (A and B):
A fixed concentration of 20 nM of siRNA (Cyc-B1) was associated with different molar ratios of MPG-8 (A) or MPG (B) ranging from 1/1 to 50/1.
The size of the MPG-8/siRNA or MPG/siRNA particles were measured by light scattering (white bars) and the biological response associated with
siRNA internalization was evaluated in cultured cells by measuring reduction of cyclin B1 protein levels 24 h after transfection (grey bars). Toxicity
of MPG-8 particles (C): The toxicity of MPG-8 particles was investigated by MTT assay (grey bars) and by monitoring the level of cyclophilin
mRNA (white bars). HeLa cells were treated with increasing concentrations of MPG-8/siRNA particles ranging from 1 to 100mM and toxicity was
then evaluated 12 h (Cyclophilin mRNA) or 24 h (MTT) after treatment. Reported data are the average of three separate experiments.
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no significant effect on tumour growth. Moreover, inhibi-
tion of tumour growth was siRNA sequence-specific
as a cyclin B1 siRNA harbouring two mutations
(Cyc-B3) complexed with MPG-8 and injected into mice
at 0.5mg/kg was unable to inhibit tumour growth
(Figure 4A).

Functionalization of MPG-8 improves in vivo stability
and distribution of MPG-8/siRNA complexes

The stability of drug-carrier formulations in vivo and
in the blood circulation is a major issue for systemic
administration of therapeutics. Despite its demonstrated
potency in cellulo, intravenous injection of MPG-8/siRNA
formulations (0.5mg/kg) only produces an anti-tumoural
response of about 12% (Figures 4A and 7A). Cholesterol
modification of siRNA has been reported to enhance their
potency and stability in vivo by maintaining the siRNA
in the circulation for longer periods of time (30,31).

Hence, in order to improve the bioavailability and stabil-
ity of the MPG-8/siRNA particles, thereby rendering
them more suitable for systemic administration, the sur-
face layer of MPG-8/siRNA particles was functionalized
with a cholesterol-moiety at the N- terminus of MPG-8
(Chol-MPG-8), through activation of the N-terminal beta
alanine amino group. Cholesterol-functionalized MPG-8/
siRNA particles were obtained stepwise by complexing
siRNA molecules with MPG-8 at a molar ratio of 20/1,
followed by coating of particles with a second layer of
Chol-MPG-8. The optimal ratio of Chol-MPG-8 required
was determined experimentally, by assessing the ability of
the different particles containing between 5 and 50%
Chol-MPG-8 to deliver Cyc-B1 siRNA. Below a ratio of
15% Chol-MPG-8/MPG-8, no significant difference in the
efficiency of cyclin B1 silencing, with 85–92% knockdown
of protein or mRNA levels (Figure 5A), nor of the asso-
ciated G2 cell arrest (Figure 5B) were observed. In these

Figure 2. MPG-8-mediated delivery of siRNA targeting cyclin B1 induces G2-arrest. MPG-8 (A and B) and MPG (C) dose–response of Cyclin B1
silencing at the protein and mRNA levels. Stock solutions of MPG-8/siRNA (100 nM) or MPG/siRNA (500 nM) particles were prepared at a molar
ratio of 1/20, and lower concentrations (from 200 nM to 0.125 nM) were obtained by serial dilution of the stock solution in PBS. HeLa (A) and HS-
68 (B and C) cells (60% confluency) were overlaid with preformed complexes for 30min, then fresh DMEM supplemented with 10% FCS was added
directly to the cells, which were then returned to the incubator for 24 h. Cyclin B1 protein levels were determined by western blotting using Cdk2 as a
control for quantification (grey bars). Cyclin B1 mRNA levels were measured 12 h after transfection using Quantigen technology (white bars).
Mismatched Cyc-B3 siRNA associated with MPG-8 (200 nM) and empty MPG-8 particles (20 mM) were used as a control. Dose–response of G2-
arrest associated with Cyclin B1 silencing (D). HeLa (grey bars) and HS68 (white bars) cells were treated with increasing concentrations of MPG-8/
siRNA-Cyc-B1 from 0.25 to 20 nM. The cell cycle status was evaluated by FACS analysis. Mismatched Cyc-B3 siRNA (100 nM) and GAPDH
siRNA (100 nM) associated to MPG-8 as well as to MPG-8 carrier alone (20 mM) were used as controls. Results are the means � of four separate
experiments.
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conditions, an IC50 of 1.1� 0.2 nM was obtained for HS68
cells, similar to the value obtained for non-functionalized
MPG-8 particles. Functionalized-MPG-8/siRNA particles
with 15% of Chol-MPG-8 measure 180� 45 nm in diam-
eter and are characterized by a zeta potential of 14� 2 v.
These results indicate that functionalization of the MPG-
8/siRNA particles with 15% of cholesterol alters neither
their physicochemical parameters nor their efficiency
to deliver siRNA. We next investigated to what extent
cholesterol functionalization of MPG-8 influenced the
in vivo bio-distribution of MPG-8/siRNA particles. Mice
were injected intravenously with 10 mg of Alexa700

labelled-siRNA either naked or complexed with MPG-8
or MPG-8Chol/MPG-8. Kinetics of siRNA biodistribu-
tion were measured during the first 15min (Figure 6A),
then every hour for 5 h (Figure 6B) and fluorescence was
quantified in the different organs 24 h after injection
(Figure 6C). Naked siRNA was reported to be rapidly
degraded, with a half-life of a few hours in vivo.
Therefore, as expected, the control experiment performed
with naked siRNA revealed that it rapidly accumulated
in the bladder and in the liver over the first hours and
was barely distributed throughout the rest of the body
(Figure 6A, panel 1). In contrast, MPG-8/siRNA
(Figure 6A, panel 2) and MPG-8/MPG-8-Chol/siRNA

(Figure 6A, panel 3) formulations favoured the rapid dis-
tribution of siRNA throughout the body within the first
15min following injection, more prominently for the cho-
lesterol functionalized-particles (Figure 6A, panel 2). In
both cases, MPG-8/siRNA (Figure 6B, top panel) and
MPG-8/MPG-8-Chol/siRNA (Figure 6B, bottom panel)
were found to access all tissues and siRNA distribution
was optimal at 5 h, accumulating mainly in the lung, liver,
plasma, skin and kidney, adrenal gland and spleen.
Although we cannot exclude that fluorescence is due
to degradation of the siRNA, the fact that siRNA
remains in the plasma and in most of the tissues 24 h
after injection (Figure 6C), and also to a certain
extent in the brain, ovary and uterus, confirms the high
stability of MPG-8/siRNA and MPG-8/MPG-8chol/
siRNA particles. No major differences were obtained
between MPG-8/siRNA and MPG-8/MPG-8chol/
siRNA particles in terms of tissue targeting. However,
cholesterol-functionalization of the particles significantly
increased the distribution kinetics of siRNA within
the first 15min and maintained a higher level of siRNA
in the plasma even after 24 h, in comparison to MPG-8/
siRNA particles, suggesting that it may limit siRNA
clearance, thereby further favouring delivery of siRNA
into the tumour.

Figure 3. Cyclin B1 siRNA-MPG-mediated delivery reduces cancer cell proliferation. PC3 (A), MCF7 (B) SKBR3-HER2 (C) tumour cell lines and
HS-68 (D) were treated on Day 1, with increasing concentrations of MPG-8/siRNA-Cyc-B1 (from 0.125 to 20 nM). The concentrations of formulated
siRNA (from 20 to 0.125 nM) were obtained by serial dilution as described in Figure 2. The proliferation of cells treated with MPG-8/siRNA (grey
bars) was evaluated on Day 7 and compared to controls including a MPG-8/Cyc-B3 mismatch siRNA (black bars) and MPG-8 carrier alone (white
bars). Results are the average of four independent experiments.
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Figure 4. MPG-8-mediated Cyclin B1 siRNA delivery inhibits tumour growth upon intra-tumoural injection. (A) Swiss nude mice (a cohort of N=6
animals) were injected subcutaneously with 106 PC3 cells. Thirty days after tumour implant, when tumour size reached 100mm3, animals were
treated by intratumoral injection, every 3 days, with a solution of 0.1ml of either free Cyc-B1 siRNA (100 mg) (in blue), control siRNA Cyc-B3
(50 mg, in green), Cyc-B1 siRNA (1mg in orange and 5 mg in red) complexed with MPG-8 at a 1/20 molar ratio, or Cyc-B1 siRNA (5 mg, in purple)
associated with MPG at a 1/20 molar ratio. Curves show the mean value of tumour size. (B) After 48 days, PC3 tumours were removed, and
Cyclin B1 mRNA levels were evaluated by Quantigen and normalized to GAPDH levels. �P< 0.05 versus saline control and ��P< 0.01 versus saline
control.

Figure 5. Cholesterol functionalization of MPG-8 does not affect ex-vivo efficiency. (A) Cholesterol functionalization of MPG-8-based particles.
Formulations containing variable concentrations of Chol-MPG-8 were obtained by forming a precomplex of MPG-8/siRNA at a molar ratio of 1/20
and then increasing the ratio of siRNA/carrier up to 1/25 with Chol-MPG-8. The impact of the Chol-MPG-8 concentration on particle efficiency was
evaluated using 5 nM Cyc-B1 siRNA and increasing concentrations of cholesterol-functionalized MPG-8, by measuring Cyclin B1 protein levels by
western blot analysis 24 h after transfection (A, top) and mRNA levels by Quantigen assay (A, bottom). mRNA levels were corrected using
cyclophilin level as control (closed circles). (B) Dose–response of G2-arrest associated with Cyclin B1 silencing. HeLa cells were treated with
increasing concentrations of MPG-8/siRNA-Cyc-B1 (grey bars) and of MPG-8/siRNA-Cyc-B1/chol-MPG-8 (white bars) as in Figure 2. The con-
centrations of formulated siRNA (from 20 to 0.25 nM) were obtained by serial dilution of the stock solution in PBS. The cell cycle status was
evaluated by FACS analysis. Results are the means � of four separate experiments.
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Functionalized MPG8-mediated Cyclin B1 siRNA delivery
blocks tumour growth upon systemic injection

In order to analyse if increase in the distribution of siRNA
associated to functionalized-MPG-8 particles directly
affects its potency to inhibit tumour growth, the particles
were used for systemic intravenous administration into
two xenografted tumour mouse models; human prostate
carcinoma (PC3) and human lung cancer (SCK3-HER-2)
injected subcutaneously into the flanks of NCR nude
mice. Five micrograms (0.25mg/kg) and 10 mg (0.5mg/
kg) of Cyc-B1 siRNA complexed with MPG/Chol-
MPG-8 at a 20/1 ratio were injected intravenously every
3 days into mice bearing PC3 xenografted tumour and a
significant reduction in PC3 tumour size was observed at
Day 50, with 60% and 92% inhibition with 5 mg and 10 mg
of siRNA, respectively (Figure 7A). The reduction in
tumour size was directly correlated to reduction of cyclin
B1 protein levels, as evaluated by western blotting, by
60% and 80% in animals treated with 5 mg and 10 mg of
siRNA complexed to MPG-8/Chol-MPG-8, respectively
(Figure 7A, insert). These results together with the lack
of anti-tumoural activity of the mismatch siRNA/MPG/

Chol-MPG-8 (10 mg) or of MPG-8/Chol-MPG-8 carrier
alone, underscores the robustness and specificity of the
biological response associated with systemic delivery
of cyclin B1 siRNA. MPG/Cyc-B1-siRNA/Chol-MPG8
particles were next evaluated on human lung cancer
cells (SCK3-HER-2) xenografted mice. After 20 days,
reduction of tumour growth of 70% was achieved with
10 mg (0.5mg/kg) of Cyc-B1-siRNA/MPG-8/Chol-MPG-
8 (data not shown). Further analysis of the mice that
received (10mg) of Cyc-B1-siRNA/MPG-8/Chol-MPG-8
in comparison to control (PBS) or mice injected
with Cyc-B1-siRNA/MPG-8 or Cyc-B3 siRNA/MPG-8/
Chol-MPG-8, demonstrated a significant increase in
survival at Day 40, with 70% of survival, instead of
20% with cholesterol free MPG-8 formulation
(Figure 7C). Moreover, 50% of survival was observed
after 100 days through injection of cholesterol-functiona-
lized particles every 3 days for 20 days, then every 10 days
(10 mg) (Figure 7B), demonstrating the long-term efficiency
of this approach. In contrast, no significant effect was
observed with non-functionalized MPG-8-particles,
suggesting that cholesterol increases the biodistribution

Figure 6. In vivo biodistribution of MPG-8 and cholesterol functionalization of MPG-8. Mice were injected intravenously with 10 mg (200 ml) of
Alexa700 fluorescently labelled siRNA either naked (A, 1) or complexed with MPG-8 (A, 2) or MPG-8Chol/MPG-8 (A, 3). Anaesthetized mice were
illuminated by 663 nm light emitting diodes equipped with interference filters and fluorescence images and real-time kinetics of biodistribution were
acquired during the first 15min with time of exposures ranging from 100 to 200ms/image (A), then every hour for 5 h and after 24 h (B). The level of
fluorescently labelled siRNA in the different organs was quantified 24 h after administration (C). Results are the average of three animals per group.
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of siRNA in the tumour by maintaining siRNA in the
plasma.

The potential induction of inflammatory cytokine and
interferon responses by siRNA has been reported as a
major limitation to their therapeutic application (32–34).
As interferon response has been recently reported for
covalent CPP-siRNA formulations (34), we investigated
the ability of MPG-8 and MPG-8/Chol formulations to
induce innate immune response in cultured HeLa, MCF7
and SCK3-HER-2 cells, by monitoring expression of INF-

b and of IL8 by quantitative RT-PCR (Figure 7C), and
in vivo by quantifying the level of IFN-a, TNF-a and IL6
in the plasma (Figure 7D). As reported in Figure 7C, none
of the formulations triggered activation of interferon
response, the level of expression of INF-b and IL8 being
similar to those of the negative control, in contrast to
poly(I:C) (positive control) which induced 1.0–1.7-fold
gene expression depending on the gene and the cell line.
Similarly no increase in cytokine level, in comparison to
saline solution, was observed in the plasma, 6 h after

Figure 7. Systemic administration of MPG-8/MPG-8chol/cyclin B1 siRNA blocks tumour growth in vivo. (A) Inhibition of PC3 tumour growth
upon intravenous injection. Swiss nude nice (a cohort of N=6 animals) were injected subcutaneously with 106 PC3 cells and tumour analysis was
performed as described in Figure 4A. Animals were treated by intravenous tail vein injection, every 3 days, with a solution of 0.1ml of either PBS
(black), free Cyc-B1 siRNA (100 mg:blue), Cyc-B1 siRNA (10 mg) complexed with MPG-8 (purple), control siRNA Cyc-B3 (100 mg: green) or Cyc-B1
siRNA (5mg: orange and 10 mg: red) complexed with MPG-8/chol-MPG-8 at a 1/20 molar ratio. Curves show the mean value of tumour size in a
group of six animals. After 48 days, PC3 tumours were removed, and Cyclin B1 protein levels were evaluated by western blotting (insert) in control
(lane a), 5 mg siRNA (lane b) and 10 mg siRNA (lane c) complexed with MPG-8/chol-MPG-8 at a 1/20 molar ratio. �P< 0.05 versus saline control
and ��P< 0.01 versus saline control. (B) Inhibition of SK-BR3 HER2 tumour growth upon intravenous injection. Swiss nude mice (a cohort of
N=10 animals) were injected subcutaneously with 106 SK-BR3 HER2 cells. Ten days after tumour implant, when tumour size reached 100mm3,
animals were treated by intravenous tail vein injection, every 3 days from D10 to D30, then every 10 days, with a solution of 0.1ml of either PBS
(green), Cyc-B1 siRNA (10 mg) complexed with MPG-8 (blue) and Cyc-B3 (100 mg: orange) Cyc-B1 siRNA (10 mg: red) complexed with MPG-8/Chol-
MPG-8. Control mice treated by intravenous tail vein injection of (10 mg) Cyc-B1 siRNA complexed with MPG-8/Chol-MPG-8 (black) �P < 0.05
versus saline control and ��P < 0.01 versus saline control. (C) Expression of IFN response genes: expression of INF-b and IL8 relative to GAPDH
was analysed by quantitative RT–PCR. HeLa, MCF7 and SCK3-Her2 cells were treated with MPG-8 carrier alone (white) (20 mM), 20 nM of Cyc-B1
siRNA associated with MPG-8 (black) or MPG-8/Chol-MPG8 (light grey) particles. Poly(I:C) was used as a positive control to induce interferon
response (grey). (D) MPG-8 formulation does not induce interferon response in vivo. MPG-8/siRNA, MPG-8/MPG-8-Chol/siRNA (0.5mg/kg),
and MPG-8 carrier were intravenously injected into mice and IL-6 (grey), TNF-a (white) and IFN-g (black) induction were measured in the serum
6h after injection by sandwich ELISA and expressed as pg/ml. (P versus saline controls �<0.05, ��<0.01) each value is the mean of three separate
experiments.
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injection of any formulation (Figure 7D). Interferon
response of siRNA and formulations has been associated
to the binding to Toll Like Receptors within the endosome
(33). As such, the lack of activation of interferon response
with MPG-8 is in perfect agreement with an endosomal-
independent uptake pathway (10).

CONCLUSIONS

Despite the potential of siRNA in vitro and ex vivo, their
systemic delivery remains a major obstacle to therapeutic
administration (4). Several reports using polycationic for-
mulations (35), protamine-antibodies (36,37) and peptides
(12,17) have largely proven that non-covalent strategies
are very suitable approaches for siRNA delivery, as they
improve the stability of siRNA in biological fluids,
thereby increasing their overall potency. In the present
work, we have developed a potent strategy to deliver
siRNA in vivo based on an improved variant of the pri-
mary amphipathic peptide carrier MPG, MPG-8, which
forms stable, yet non-covalent nanoparticles with siRNA,
ensuring its efficient delivery in vivo. We provide a proof –
of concept that MPG-8 mediates efficient delivery of
low effective concentrations of siRNA (0.5mg/kg)
in vivo. Moreover, we demonstrate that siRNA-targeting
of cyclin B1 compromises tumour cell proliferation and
tumour growth in a xenografted tumour mouse model.
The high stability of MPG-8-based particles, together

with the slow release of the siRNA within cells, allows the
use of low concentrations of siRNA, thereby limiting
side effects whilst ensuring long-term response associated
with siRNA delivery. MPG-8-based nanoparticles can be
functionalized, and we have shown that an additional
layer of cholesterol-functionalized-MPG-8 at the surface
of MPG-8/siRNA particles is sufficient to stabilize these
formulations in biological fluids, thereby enhancing the
biological response associated with the siRNA delivered
upon systemic injection. Likewise, functionalization of
MPG-8 with other chemical groups or biological moieties
could be applied to generate formulations to target specific
cell types or tissues will be of a major interest for future
development. Taken together, these findings provide new
perspectives for the specific targeting and treatment of
tumours, and the marked anti-tumoural effect achieved
with the MPG-8-based nanoparticle system, with very
low concentrations of siRNA and the lack of induction
of innate immunoresponse, infers that it constitutes a
promising technology for systemic administration of
siRNA in a therapeutic context.
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