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to confer susceptibility to common traits
Olivia Corradin,1 Alina Saiakhova,1 Batool Akhtar-Zaidi,1 Lois Myeroff,2 Joseph Willis,2,3

Richard Cowper-Sal�lari,4 Mathieu Lupien,4 Sanford Markowitz,1,2,5

and Peter C. Scacheri1,2,6

1Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio 44122, USA; 2Case Comprehensive

Cancer Center, Case Western Reserve University, Cleveland, Ohio 44106, USA; 3Department of Pathology, Case Western Reserve

University, Cleveland, Ohio 44122, USA; 4The Princess Margaret Cancer Center, University Health Network, Toronto,

Ontario M5G 1L7, Canada; 5Department of Medicine, Case Western Reserve University, Cleveland, Ohio 44122, USA

DNA variants (SNPs) that predispose to common traits often localize within noncoding regulatory elements such as
enhancers. Moreover, loci identified by genome-wide association studies (GWAS) often contain multiple SNPs in
linkage disequilibrium (LD), any of which may be causal. Thus, determining the effect of these multiple variant SNPs on
target transcript levels has been a major challenge. Here, we provide evidence that for six common autoimmune dis-
orders (rheumatoid arthritis, Crohn’s disease, celiac disease, multiple sclerosis, lupus, and ulcerative colitis), the GWAS
association arises from multiple polymorphisms in LD that map to clusters of enhancer elements active in the same cell
type. This finding suggests a ‘‘multiple enhancer variant’’ hypothesis for common traits, where several variants in LD
impact multiple enhancers and cooperatively affect gene expression. Using a novel method to delineate enhancer–gene
interactions, we show that multiple enhancer variants within a given locus typically target the same gene. Using
available data from HapMap and B lymphoblasts as a model system, we provide evidence at numerous loci that multiple
enhancer variants cooperatively contribute to altered expression of their gene targets. The effects on target transcript
levels tend to be modest and can be either gain- or loss-of-function. Additionally, the genes associated with multiple
enhancer variants encode proteins that are often functionally related and enriched in common pathways. Overall, the
multiple enhancer variant hypothesis offers a new paradigm by which noncoding variants can confer susceptibility to
common traits.

[Supplemental material is available for this article.]

Since 2005 more than 1350 genome-wide association studies

(GWAS) have been published, identifying thousands of single

nucleotide polymorphisms (SNPs) associated with more than 600

common traits and diseases. The vast majority of these GWAS

variants (93%–96%) are located outside protein-coding genes, and

only 10%–15% are in linkage disequilibrium (LD) with a protein-

coding variant (Maurano et al. 2012; Schaub et al. 2012). Thus, it is

hypothesized that causal GWAS variants influence the function of

noncoding gene regulatory elements such as enhancers. Consis-

tent with this hypothesis, The ENCODE Project Consortium and

other groups have localized thousands of GWAS variants to en-

hancer elements identified through epigenomic profiling studies.

Specifically, DNase I hypersensitivity site (DHS) profiling in 349

different human cell types revealed that 77% of GWAS SNPs are

located in open chromatin presumed to contain enhancer ele-

ments (Maurano et al. 2012). Other studies have shown that GWAS

SNPs correlate with enhancer elements marked with H3K4me1,

H3K27ac, and H3K4me3, usually in cell types that are considered

relevant to a given disorder (Ernst et al. 2011; Akhtar-Zaidi et al.

2012; Trynka et al. 2013).

Although a considerable number of GWAS variants have been

identified and mapped to enhancer elements, our understanding

of how these GWAS SNPs confer risk to a given trait is incomplete.

The prevailing hypothesis posits that enhancer variants impact

expression of the gene normally regulated by the enhancer.

However, because the gene targets of most enhancers have not yet

been identified, the impact of most enhancer variants on target

transcript levels remains unknown. Even in instances where the

target gene is known, assessing the transcriptional impact of the

risk variant is complicated. Reporter assays can be employed, but

these fail to recapitulate native chromatin context. As an alterna-

tive, one can compare levels of the predicted target gene between

individuals carrying the risk allele and those carrying the nonrisk

allele. However, because the enhancer landscape differs consider-

ably between cell types, identifying the appropriate target tissue to

examine is challenging. Large sample sizes are required to account

for interindividual variability in gene expression. There are often

multiple SNPs in LD with the ‘‘lead’’ SNP at any given GWAS locus,

any of which could be causal. The prevailing assumption is that
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the causal variants are those that perturb a given regulatory ele-

ment located within the locus defined by the GWAS-association

signal, but this has not been thoroughly investigated for all but

a few GWAS loci (Pomerantz et al. 2009; Zhang et al. 2012). It is

likely that the expression of many if not most genes is often under

exquisite control by multiple regulatory elements, but few studies

have considered the possibility that, at a given GWAS locus, mul-

tiple LD SNPs may impact the function of more than one regula-

tory element and coordinately affect gene expression.

Here we provide evidence that for six human autoimmune

traits, the GWAS association often arises from several poly-

morphisms in LD that map to multiple enhancer elements in cis

and active in the same cell type. This finding suggests that, for

many common traits, there is not a single causal variant that un-

derlies the association signal, but rather several distributed among

multiple enhancers that cooperatively influence gene expression.

We call this the ‘‘multiple enhancer variant’’ hypothesis. Using

a novel method to delineate enhancer–gene interactions across the

epigenome, we show that for a given GWAS locus involving mul-

tiple enhancer variants, the associated enhancers always target the

same gene. Using available data from HapMap and B lymphoblasts

as a model system, we provide evidence at numerous loci that

multiple enhancer variants cooperatively contribute to altered

expression of their gene targets. Our study provides a novel ex-

planation for how noncoding regulatory variants confer suscepti-

bility to common traits. Our study also serves as a general frame-

work for annotating noncoding GWAS SNPs, pinpointing the

causal variants and their gene targets, and assessing their impact

on target gene expression. Finally, these findings may help explain

the missing heritability of many common traits and complex

disorders.

Results

Common disease loci often involve multiple enhancer variants
in LD

To study the impact of GWAS–enhancer variants on gene expres-

sion, we first set out to identify a specific cell type for which the

enhancer landscape showed a significant correlation with SNPs

associated with a given trait. To do this, SNPs (both lead SNPs and

those in LD) associated with 627 traits were mapped to H3K4me1

sites (putative enhancer elements) identified through ChIP-seq in

13 different cell types (The ENCODE Project Consortium 2007;

Bernstein et al. 2010; Joseph et al. 2010; Ernst et al. 2011; Hindorff

et al. 2012). Among the SNPs that overlapped H3K4me1 sites,

those associated with six traits including rheumatoid arthritis,

Crohn’s disease, systemic lupus, multiple sclerosis, ulcerative co-

litis, and celiac disease—generally considered autoimmune dis-

orders—often mapped within H3K4me1 sites in B lymphoblasts

(GM12878). We performed Variant Set Enrichment Analysis

(Akhtar-Zaidi et al. 2012; Cowper-Sal lari et al. 2012) to test the

significance of the correlations between H3K4me1 sites in B lym-

phoblasts and all SNPs associated with each of the six autoim-

mune-related traits. For comparison, 12 additional cell types were

also analyzed. Highly significant correlations were found between

the risk SNPs associated with all six traits and H3K4me1 sites in

GM12878 cells (Fig. 1A,B; Supplemental Fig. S1). Other cell types

showed correlations that were either insignificant or less signifi-

cant than those observed in the B lymphoblasts. Two-thirds of the

H3K4me1 sites containing SNPs were enriched for H3K27ac and

were hypersensitive to DNase I digestion, and thus contain the

signature features of active enhancer elements (Fig. 1C–E). Addi-

tionally, 94% were located distal (>1 kb) to transcription start sites.

These results establish B lymphoblasts as a relevant model to in-

vestigate the function of enhancer variants associated with six

different traits.

We next inspected individual loci where autoimmune SNPs

overlapped putative enhancer elements in B lymphoblasts. At

most loci, multiple common SNPs in LD were found to overlap

multiple putative enhancers arranged in cis. We call these regions

‘‘multiple enhancer variant loci’’, which we define as loci where at

least two GWAS SNPs in LD overlap at least two distinct H3K4me1

sites. An example is shown in Figure 1F, where several Crohn’s

disease SNPs in tight LD (LOD > 2 and D9 > 0.99) with one another

are located within multiple putative enhancers distributed across

the ICOSLG locus. These sites are distinguished from ‘‘single en-

hancer variant loci’’, in which one or more common SNPs overlap

only one enhancer at a given locus (Fig. 1G). All six autoimmune

traits showed evidence of multiple enhancer involvement. More-

over, for all six traits, the number of multiple enhancer variant loci

was far greater than the number of single enhancer variant loci

(Fig. 1H). The number of enhancers associated with each GWAS

locus is shown in Figure 1I. Additionally, compared with 67% of

autoimmune-associated enhancer SNP loci, 51% of randomly se-

lected enhancer SNPs not associated with disease were in LD with

another SNP that mapped to a separate putative enhancer (Fig. 1J).

Thus, autoimmune disease-associated loci are inherently biased

toward multiple enhancer involvement over the background rate

at which common SNPs in LD at a given locus map to multiple

enhancers. These findings led us to consider the possibility that

multiple variants mapping to multiple enhancers within a given

GWAS locus collectively contribute to the GWAS signal and confer

genetic predisposition to common disease. We call this the ‘‘mul-

tiple enhancer variant’’ hypothesis.

Delineation of enhancer–gene interactions with PreSTIGE

We next set out to connect enhancer variants with their gene

targets. The epigenome of a given cell type contains ;75,000

H3K4me1 sites, and these putative enhancers can be located

considerably far upstream of or downstream from the gene whose

expression they influence, and can even influence the expression

of multiple target genes (Spilianakis and Flavell 2004; Vernimmen

et al. 2009). The most common method of assigning an enhancer

to its nearest gene is imprecise. We considered previously described

computational approaches designed to delineate enhancer–gene

interactions (Ernst et al. 2011; Shen et al. 2012; Thurman et al.

2012), but these methods are not publicly available and their false

discovery rates (FDR) are unknown (Supplemental Table S1).

Moreover, when applied to GWAS, these methods link <10% of

noncoding variants with a predicted gene target. Due to these

limitations, we developed our own bioinformatics approach for

delineating enhancer–gene interactions, which we call PreSTIGE

(Predicting Specific Tissue Interactions of Genes and Enhancers).

PreSTIGE integrates available H3K4me1 ChIP-seq and RNA-seq

data sets from a panel of diverse cell types, and then pairs cell type-

specific H3K4me1 signals with genes that are specifically expressed

in each cell type (Fig. 2A; Supplemental Figs. S2–S10; Supplemental

Material). Using PreSTIGE, we delineated enhancer–gene inter-

actions in each of the 13 cell types listed in Figure 1A. Enhancer–

gene predictions were made using two different gene–enhancer

specificity thresholds: low and high. In each cell type, we predicted

interactions for 46% and 28% of all expressed genes at low and
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Figure 1. Multiple enhancer variant loci associated with autoimmune diseases. (A) Variant Set Enrichment (VSE) analysis depicting enrichment of
rheumatoid arthritis SNPs in putative enhancer elements in GM12878 cells. Boxplots represent the normalized null distribution generated using 1000
matched-random SNP sets. Diamonds correspond to the observed value relative to the null distribution. The red line denotes the threshold for significance,
corrected for multiple testing. (B) Noncoding SNPs associated with rheumatoid arthritis. Shaded boxes denote instances where an H3K4me1 ChIP-seq
peak detected in the indicated cell types overlaps either the GWAS lead SNP (listed to the right), or a SNP in LD with the lead SNP. The red boxes denote
SNPs that drive the significant association with H3K4me1 sites in colon crypt and GM12878 cells. (C, left) Average H3K4me1 ChIP-seq signal at loci
containing autoimmune disease-associated SNPs (red) and control H3K4me1 sites not associated with disease (black). (Right) H3K4me1 ChIP-seq signals
at autoimmune disease-associated loci. Each row corresponds to an H3K4me1 site containing a SNP associated with any one of the six autoimmune
diseases. (D) Same as C for H3K27ac. The dashed red line corresponds to the threshold of H3K27ac enrichment. (*) P < 0.004, Wilcoxon test (paired
samples). (E) Same as C for DNase I hypersensitivity. The dashed red line corresponds to the threshold of DNase I HS. (F) Example of multiple enhancer
variant locus associated with Crohn’s disease. SNPs in LD with the lead SNP (rs762421) fall within multiple putative enhancer sites (gray boxes) enriched
for H3K4me1 (black), DHS (purple), and H3K27ac (red). (G) Example of single enhancer variant locus associated with ulcerative colitis and Crohn’s disease.
Lead SNP (rs3024505) and LD SNPs fall in one enhancer (gray box). (H) Number of multiple enhancer variant loci and single enhancer variant loci detected
for each of the six autoimmune traits. For example, for RA, 29 loci show evidence of multiple enhancer involvement, while seven show evidence of single
enhancer involvement. (I) Bars display the number of GWAS loci in which the lead or LD SNP falls within coding regions (red), GM12878 putative enhancer
elements (purple), and other (gray). Piecharts display the number of enhancers containing SNPs for each GWAS locus. (J) Percent of loci associated with all
six autoimmune diseases showing evidence of multiple enhancer involvement in B lymphoblasts (red), compared with loci not known to be associated
with a disease (gray). (**) P < 0.0001, by Fisher’s exact test.



Figure 2. PreSTIGE methodology and FDR. (A) PreSTIGE links cell type-specific enhancers to genes specifically expressed in the same cell type.
GM12878-specific H3K4me1 sites outlined in black are predicted to interact with the SOCS1 promoter, and not the RMI2 promoter. Levels of SOCS1 and
RMI2 transcripts quantified by RNA-seq in each cell type. (FPKM) Fragments per kilobase of transcript per million fragments mapped. (B) UCSC Genome
Browser image of putative enhancers lost in CRC (lost VELs) relative to normal colon crypts. The three H3K4me1 sites highlighted in gray are predicted to
target TCEA3 in the colon crypts. Gene expression in the colon cancer cell lines relative to the colon crypt for the predicted target, TCEA3, and nonpredicted
control gene, ASAP3. Note that TCEA3 levels are reduced in CRC lines containing lost VELs while ASAP3 is unaffected. (C ) UCSC Genome Browser image of
a representative gained enhancer locus (gained VEL). The H3K4me1 sites highlighted in gray are predicted to target SERBP1 in CRC lines V9P and V703.
Gene expression in the colon cancer cell lines relative to the colon crypt for the predicted target SERBP1 and nonpredicted control gene IL12RB2. Note that
SERBP1 expression is elevated in lines containing gained VELs while IL12RB2 is unaffected. (D) Heatmap showing overall correlation between VELs and gene
expression. The left side of the heatmap corresponds to the number of lost (top) or gained (bottom) VELs associated with each gene (rows) in each of the
nine CRC cell lines (columns). Dark blue denotes multiple VELs, whereas white indicates no VEL. The right side of the heatmap is ordered identically to the
left side, and illustrates the change in expression (CRC/crypt) of the genes associated with the VELs by PreSTIGE (left) and the nearest gene to the VEL
(right). (E) Approximation of PreSTIGE FDR (mean 6 SEM) based on colon cancer VEL data compared with five commonly used computational methods.
(*) P < 0.003, by paired t-test.



high threshold, respectively. We verified accuracy by comparing

PreSTIGE-identified interactions to those identified through mul-

tiple experimental approaches including 3C (Vernimmen et al.

2009), 5C (Sanyal et al. 2012), ChIA-PET (Li et al. 2012), and eQTL

(Stranger et al. 2007; Schadt et al. 2008; Montgomery et al. 2010)

analysis. The enhancer–gene interactions identified by PreSTIGE

were highly enriched among interactions detected by all four

methods (Supplemental Figs. S11–S14).

To validate the accuracy of PreSTIGE further and assign a FDR,

we took advantage of recent findings from our lab indicating that

colorectal cancer (CRC) cells display variant enhancer loci (VELs),

which are locus-specific losses and gains of the H3K4me1 mark

relative to normal colonic crypts, from which these cancers are

derived (Akhtar-Zaidi et al. 2012). Similar to a knockdown or

knockout experiment, locus-specific loss of the H3K4me1–en-

hancer mark in CRC relative to normal crypt, i.e., a lost VEL, would

be expected to lead to reduced expression of the crypt-predicted

target in CRC, assuming the gene has been correctly assigned to its

enhancer. Likewise, we would expect the correctly predicted target

of a gained VEL in CRC to show elevated expression in CRC relative

to crypts. Examples are shown in Figure 2B,C. Extending this

validation approach genome-wide, we plotted the levels of all

PreSTIGE-predicted gene targets of lost and gained VELs detected

among nine CRC cell lines. The results show high concordance

between VELs and PreSTIGE-predicted gene targets, with lost VEL

genes showing reduced levels in CRC relative to crypts, and gained

VEL genes showing elevated levels relative to crypts (Fig. 2D, left).

The magnitude of the transcriptional effect was largely quantita-

tive with the number of VELs involved. Genes associated with

a high number of lost VELs were expressed at lower levels than

genes associated with fewer lost VELs, and transcripts linked to

multiple gained VELs were elevated more than genes linked to

fewer gained VELs. Verifying the specificity of the predicted in-

teractions, the correlations between VELs and gene expression

were greatly diminished when the expression of the gene nearest

to the VEL was analyzed (Fig. 2D, right). Additionally, the tran-

scriptional effect was specific to the predicted gene targets of the

VELs and was not observed for nearby genes not predicted to be

regulated by the VEL (Supplemental Fig. S15). Overall, we estimate

the FDR at 23%–38% for low stringency PreSTIGE predictions, and

13%–25% for high stringency predictions. This represents a 1.5- to

4.5-fold improvement over the nearest gene, the nearest expressed

gene, and other commonly used methods for assigning enhancers

to their gene targets (Fig. 2E; Supplemental Fig. S16). To evaluate

our FDR approximation as conservatively as possible we next

compared the PreSTIGE FDR with that of randomly assigning

genes to enhancer elements. Random association of gene targets

results in an FDR of 70%. We then corrected the PreSTIGE FDR

based on the chance that a randomly assigned gene decreases in

expression. This conservative approach approximates the FDR for

PreSTIGE high stringency predictions to be 13%–35% (Supple-

mental Figs. S16, S17). We provide PreSTIGE as an open-source,

freely available tool (for details, see Supplemental Material).

Multiple enhancer variants in LD are often predicted to target
the same gene

We used PreSTIGE to predict the gene targets of the autoimmune-

associated enhancer variants in B lymphoblasts. Of the 207 total

autoimmune-disorder-associated loci examined, PreSTIGE pre-

dicted a gene target for 122 (59%) at low stringency and 88 (43%) at

high stringency. We next divided the 88 loci into those involving

multiple enhancer variants (61%) and those involving single en-

hancer variants (39%). Remarkably, 100% of the multiple en-

hancer variant loci contained at least two enhancers in cis pre-

dicted to target the same gene. As an example, we highlight the set

of Crohn’s disease SNPs distributed among multiple putative en-

hancers at the ICOSLG locus (Fig. 1F). These enhancers were pre-

dicted by PreSTIGE to interact with the ICOSLG gene. As a second

example, we highlight ulcerative colitis-associated LD SNPs dis-

tributed among four enhancers, all predicted to target IRF5 (Fig.

3A). The 88 enhancer-associated loci were dispersed throughout

the genome, with only a small fraction overlapping among the six

different traits (Supplemental Fig. S18).

Multiple enhancer variant loci were significantly enriched for

14 known transcription factor binding site motifs (Supplemental

Table S3; Davydov et al. 2010). Many of these motifs corresponded

to transcription factors with clear roles in regulating immune-

system activity, including the IRF (interferon regulatory factor)

family. Also of interest, 97% of multiple enhancer variant loci in-

volve at least two enhancers that share at least one common motif,

implying cooperative regulation. As an example, we highlight

rs2301436, a Crohn’s disease-associated locus on chromosome 6.

This locus has three enhancer elements that share the motif for

ELF1, a member of the ETS transcription factor family associated

with autoimmune function (Gallant and Gilkeson 2006). Variants

contained within single and multiple enhancer loci showed simi-

lar degrees of evolutionary conservation (Supplemental Fig. S19;

Davydov et al. 2010).

Multiple enhancer variants impact target gene expression

Given that the SNPs associated with the six autoimmune traits

were significantly enriched among enhancers in a B lymphoblast

cell line, we reasoned that B lymphoblast lines derived from a co-

hort of individuals could be exploited to study the impact of

multiple enhancer variants on target transcript levels. To this end,

we obtained B lymphoblast transcriptome data (Pickrell et al. 2010)

(RNA-seq) along with corresponding SNP genotype data from a

cohort of 61 CEU individuals, made available through the In-

ternational HapMap Consortium (The International HapMap Con-

sortium 2007; The International HapMap 3 Consortium 2010).

The 61 individuals were stratified by their genotypes (risk versus

nonrisk) at 42 GWAS loci for which the GWAS-associated SNPs

were in ‘‘perfect LD’’ and for which there was adequate genotypic

diversity among individuals for sufficient statistical power. Of the

42 loci, 14 were single enhancer variant loci, and 28 were multiple

enhancer variant loci. The levels of predicted transcripts at each

locus were then plotted as FPKMs (fragments per kilobase per

million reads) for each individual, stratified by genotype. Tran-

script levels at each locus were somewhat variable among in-

dividuals with the same genotype, reducing power. Nonetheless,

13 out of 28 (46%) multiple enhancer variant loci contained genes

that were differentially expressed between individuals with the risk

genotype and those with the nonrisk genotype. By comparison,

a difference between risk and nonrisk genotypes was observed for

only 1 out of 14 (7%) single enhancer variant loci. The rate at

which single enhancer variants impacted gene expression was

comparable to the background rate calculated from nearest control

(nearest nonpredicted gene target) and a control set of randomly

selected expressed genes (>0.3 FPKM) located within 500 kb of the

lead enhancer SNP at each locus (Fig. 3A). Thus, an effect on gene

expression was rarely observed for genes not predicted to be reg-

ulated by PreSTIGE. Approximately 70% of loci associated with

Combinatorial effects of multiple enhancer variants
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Figure 3. Impact of multiple enhancer variants on gene expression. (A) UCSC Genome Browser image of multiple enhancer variant locus associated
with ulcerative colitis. Red arrow indicates lead SNP (rs4728142). FPKMs (fragments per kilobase per million reads) of the predicted target transcript IRF5
and nonpredicted transcript TNPO3 based on SNP genotype at the ulcerative colitis locus are shown (bottom). Gray Tukey plots display the normal range of
expression for each gene. (B) Percent of GWAS loci with transcripts that show differential gene expression based on SNP genotype at single (left) and
multiple (right) enhancer variant loci. Enhancer SNPs linked to a gene target using PreSTIGE are shown in purple and red. Controls include the expressed
gene nearest the SNP that is not a PreSTIGE-predicted target (gray) and a randomly selected expressed gene (within 500 kb) that is not a PreSTIGE-
predicted target (black) (Fisher’s exact test). (C ) Percent of GWAS loci associated with differential gene expression for single enhancer variant loci (purple)
versus all multiple enhancer variant loci (red) and loci with more than four enhancers with variants (black) (Fisher’s exact test). (D–G) Expression of
transcripts in B-lymphoblasts derived from individuals carrying the risk allele compared with those homozygous for the nonrisk allele for four representative
loci. Gray Tukey plots display the normal range of expression for each gene. ‘‘rs’’ numbers correspond to the lead SNPs at each GWAS locus (Mann-
Whitney-Wilcoxon test). (*) P < 0.02, (**) P < 0.007, (***) P < 0.0001.



SNPs hitting more than four enhancers contained transcripts

that significantly differed between risk and nonrisk genotypes,

compared with 46% of all multiple enhancer variant loci (two or

more enhancers involved) and 7% of single enhancer variant

loci (Fig. 3B). Results for five genes associated with multiple

enhancer variants, including those found at the IRF5 (ulcerative

colitis) and ICOSLG (Crohn’s disease) exemplar loci, are shown

in Figure 3C–G. In general, multiple enhancer variants conferred

modest effects on target gene expression (<2.5-fold) and the ef-

fect was not always in the same direction. Specifically, of the

loci where gene expression was significantly impacted by the

genotype of the risk SNP, 75% of target transcripts were ele-

vated, and 25% were suppressed.

Multiple enhancer variants cooperatively contribute
to the effect on target transcript levels

We next took advantage of the genetic diversity among individuals

within the 61-person HapMap panel to test if more than one en-

hancer SNP within multiple enhancer variant loci is capable of

impacting the levels of the target gene. To do this, we identified

regions of ‘‘imperfect LD.’’ SNPs in these regions of imperfect LD

are reported to be in tight LD (LOD > 2 and D9 > 0.99) among the

CEU population, but upon examination of the actual haplotypes

within the 61-person HapMap panel, there are several individuals

in which not all enhancer variants are inherited together. These

loci provide an opportunity to test if multiple enhancer variants

cooperatively impact gene expression. An overview of the ap-

proach is shown in Figure 4A.

We stratified individuals by their genotype of the risk SNP at

loci containing multiple enhancer variants, and analyzed the

levels of the predicted target transcripts. At sites of imperfect LD,

only 7% (two of 29) of loci contained a predicted gene target that

showed a difference in gene expression between individuals

stratified by the risk genotype (which was similar to the back-

ground rate of nearest and random control genes). By comparison,

significant effects on target transcript levels were observed at 46%

of loci in which multiple enhancer variants were inherited in

perfect LD (Fig. 4B). An example of imperfect LD is shown in Figure

4C. Here, the rheumatoid arthritis risk SNP rs706778 is in imper-

fect LD with three additional SNPs (rs3134883, rs3118470, and

rs7090530). Both SNPs rs706778 and rs3134883 map to one en-

hancer; rs3118470 and rs7090530 map to a separate enhancer.

Both enhancers are predicted to regulate PFKFB3. PFKFB3 levels are

not significantly different between individuals stratified by the

genotype of any one of the four SNPs (Fig. 4C). However, exami-

nation of the haplotypes reveals multiple alleles within the pop-

ulation, including homozygotes for the common nonrisk allele

CGTC (purple), heterozygotes for the common risk allele TACA

(red), and individuals with haplotypes that vary from the two

common alleles (CGTA and TGTA, black and gray). Upon exclu-

sion of the individuals with the uncommon alleles where the LD

structure is disrupted, a robust difference in PFKFB3 levels is clearly

apparent between individuals who are homozygous for the non-

risk alleles and those heterozygous for the risk allele (Fig. 4D).

Thus, the effect on gene expression depends on the genetic

makeup of multiple SNPs within the haplotype, not just one en-

hancer SNP. Moreover, the SNPs associated with both enhancers

need to be considered when assessing the impact on target gene

expression.

We noted a high degree of variability in target transcript levels

when individuals were stratified by the genotype of the risk SNP.

Moreover, this variability was reduced substantially upon stratifi-

cation by haplotype (Fig. 4D, cf. left to right). We extended this

analysis to all 29 imperfect LD loci, plotting the average standard

deviation of each target gene when stratified by the lead SNP versus

the haplotype. When the entire haplotype was considered, a sig-

nificant decrease in variability of transcript levels was observed

(Fig. 4E). This further demonstrates that, for a given locus, SNPs at

more than one enhancer are likely to mediate the transcriptional

effect. Furthermore, odds ratios for risk annotation at loci in-

volving multiple enhancer variants in perfect LD were generally

higher than those in imperfect LD (Fig. 4F).

Gene targets of multiple enhancer variants are highly cell
type-specific and functionally related

We noticed that PreSTIGE identified gene targets of GWAS en-

hancer–SNPs at a much higher rate than expected given PreSTIGE’s

baseline prediction rate. Specifically, although only 33% of all

GM12878-specific H3K4me1 sites were assigned to a gene, 55% of

GM12878-specific H3K4me1 sites containing an immune-related

GWAS SNP were assigned to a gene (Fig. 5A). To investigate the

basis for this bias, we ‘‘scored’’ all enhancers and genes by their

relative levels of specificity in GM12878 cells compared with 11

other cell types. We then plotted the range of specificity scores for

all enhancers and genes in GM12878 cells, enhancers and genes

predicted by PreSTIGE in GM12878 cells, and PreSTIGE-predicted

enhancers and genes contained within multiple enhancer variant

loci. Enhancers contained within disease-associated multiple

enhancer variant loci were slightly more GM12878-specific than

all PreSTIGE-predicted enhancers (Fig. 5B, cf. red to gray). By

comparison, genes associated with multiple enhancer variant

loci were highly GM12878-specific (Fig. 5C, cf. purple to gray).

Thus, PreSTIGE assigns GWAS enhancer variants to genes at

a high rate because the genes associated with GWAS enhancer

variants are highly cell type-specific. Genes associated with

multiple enhancer variants were enriched for specialized im-

mune functions including ‘‘regulation of immune response,’’

‘‘response to interferon-gamma,’’ and ‘‘IL2 receptor activity’’

(Fig. 5D). Furthermore, genes associated with each trait were

frequently enriched within common pathways (Fig. 5D). Thus,

although multiple enhancer variant loci associated with a given

trait are dispersed throughout the genome, the associated genes

encode proteins that share similar functions and may be com-

ponents of common pathways.

Many common traits show evidence of multiple enhancer
involvement

We next tested if traits other than the six autoimmune diseases

showed evidence of multiple enhancer involvement. We down-

loaded the entire NHGRI catalog of GWAS variants (Hindorff et al.

[Sept. 18, 2012]), which as of September 2012 contained 7106 SNPs

associated with 627 traits. We discarded all GWAS entries for which

the SNP or any of its LD SNPs mapped within a coding region to

identify 5824 noncoding trait-associated SNPs. These SNPs (lead

SNPs and all those in LD) were intersected with H3K4me1 sites for

which PreSTIGE identified a gene target in any one of 12 cell types.

The traits were hierarchically clustered based on the number of

GWAS loci within predicted enhancers for each cell type, and the

results were plotted as a heatmap (Fig. 6A). Interestingly, related

traits clustered within cell types generally considered relevant to

the pathophysiology of the trait. For example, a cluster of liver-

Combinatorial effects of multiple enhancer variants
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Figure 4. Effect of individual SNPs in multiple enhancer variant loci. (A) Schematic describing ‘‘imperfect LD’’ loci. When SNPs are in perfect LD, the lead
GWAS SNP is indicative of the genotype of the entire allele and the locus includes only two haplotypes (red and purple) and three possible genotypes (red/
red, red/purple, purple/purple). For loci with ‘‘imperfect LD’’ the lead SNP does not predict the genotype of remaining SNPs. This results in more than two
haplotypes and more than three genotypes. (B) Percent of GWAS loci associated with transcripts that show differential gene expression based on SNP
genotype for multiple enhancer variant loci in sites of ‘‘imperfect LD’’ (black) and perfect LD (red), Fisher’s exact test. (C ) Expression of predicted gene
target (PFKFB3) of an ‘‘imperfect LD’’ locus which contains the RA-associated SNP rs706778. Individuals are stratified based on the genotype of each LD
SNP that falls within an enhancer. (D) Each individual is color-coded based on his or her haplotype for the rs706778 ‘‘imperfect LD’’ locus (middle). Note
that the expression of the predicted target gene PFKFB3 segregates by haplotype only when the multiple enhancer variants are in tight LD (right) (Mann-
Whitney-Wilcoxon test). (E ) Standard deviation of expression of predicted gene targets within multiple enhancer variant loci with ‘‘imperfect LD’’ for
individuals stratified by lead SNP genotype (black) and stratified by haplotype (red) (Mann-Whitney-Wilcoxon test). (F ) Odds ratios for multiple enhancer
variant loci showing perfect (red) and imperfect LD (black) (Welch’s t-test). (*) P < 0.04, (**) P < 0.009.
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related traits including phospholipid levels, triglyercides-blood

pressure, and cholesterol was observed in hepatocellular carci-

noma cells (HepG2) (Fig. 6B). Neural-related traits including cog-

nitive performance, bipolar disorder, and Alzheimer’s disease cor-

related with enhancer–gene predictions made in neural precursor

cells (NPC) (Fig. 6C). We quantified the number of liver-related

traits found in the HepG2 trait cluster versus those in different cell

types. Approximately 63% of the HepG2 cluster was comprised of

liver traits, compared with 5%–10% in other cell types. The traits

found in each cluster are listed in Supplemental Table S4. These

findings are consistent with other studies showing a correlation

between GWAS SNPs and enhancers in cell types generally con-

sidered relevant to a given trait (Ernst et al. 2011; Akhtar-Zaidi et al.

2012; Maurano et al. 2012). Next, we determined the percentage of

GWAS loci containing multiple enhancer variants for the traits in

each cluster (Fig. 6D). Remarkably, GWAS loci associated with traits

in all 12 cell types showed evidence of multiple enhancer in-

volvement, ranging from 58% of loci associated with B lympho-

blast (GM12878) traits to 25% of loci associated with H1ES and

MCF-7 trait clusters. In total, for all trait-associated enhancer loci,

48% involved a multiple enhancer variant locus in at least one of

the 12 cell lines (Fig. 6D, black bar). Overall, these findings suggest

that multiple enhancer involvement is not limited to the six traits

associated with B lymphoblast enhancers, and that this trend may

be a general feature of GWAS traits.

Discussion
In this study, we present several lines of evidence in support of

a ‘‘multiple enhancer variant’’ hypothesis for GWAS traits. We

demonstrated that for certain traits, particularly those with an

autoimmune component, multiple SNPs in LD at a given locus

influence multiple enhancers of a given gene. Using available data

from HapMap and B lymphoblasts as a model system, we provide

evidence at numerous loci that multiple enhancer variants con-

tribute to altered expression of the predicted gene targets. The

multiple enhancer variants can confer either gain- or loss-of-

function effects, elevating or reducing transcript levels. The effects

on gene expression tend to be modest, consistent with the action

of enhancers as modulators of gene expression, rather than binary

switches, as previously proposed (Bajpai et al. 2010; Schnetz et al.

2010). The modest effects may become more pronounced in re-

sponse to a given stimulus, as it is now well established that en-

hancer elements can dynamically respond to a variety of cellular

A B C

D

Figure 5. Gene targets of multiple enhancer variants are highly cell type-specific and functionally related. (A) Percent of H3K4me1 sites that are
associated with a PreSTIGE prediction, for all GM12878 cell type-specific H3K4me1 sites (gray) and GM12878-specific sites that contain a GWAS SNP that
is associated with the six immune-related disorders (red) (x2, P-value < 0.0001). (B) Cell type specificity (Shannon entropy Q score) of all enhancers in the
12 cell line comparator set (white), GM12878 cell type-specific enhancers (gray), and enhancers containing disease-associated SNPs (red) (Mann-
Whitney-Wilcoxon test, P-value < 5.3 3 10�6). (C ) Cell type specificity (Shannon entropy Q-score) of all genes (white), genes associated with a PreSTIGE
prediction in GM12878 (gray), and predicted gene targets of disease-correlated SNPs (purple) (Mann-Whitney-Wilcoxon test, P-value < 5.3 3 10�6). (D)
GREAT results for each of the six diseases. Top five significant results are shown for Pathway Commons, GO biological processes/molecular function, and
MSigDB pathways categories for each trait.
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cues or environmental changes (Giorgetti et al. 2010; Heinz et al.

2010; Rada-Iglesias et al. 2011; Zentner et al. 2011; Lin et al.

2013).

Some aspects of GWAS have been difficult to explain. For

example, GWAS signals tend to be relatively broad, and it is often

difficult to fine map these loci and narrow down the location of the

causal SNP. The multiple enhancer variant hypothesis provides an

explanation for these puzzling aspects of GWAS studies, since the

presence of several SNPs distributed among multiple enhancers

throughout the locus, rather than a single SNP, often accounts for

the association signal and the impact on target gene expression.

Additionally, we note that odds ratios at multiple enhancer variant

loci harboring SNPs in perfect LD were generally higher than at loci

of imperfect LD. GWAS typically pool cases and controls with

mixed genotypes, using HapMap data from ethnically related

populations to approximate LD structure. This would likely result

in an underestimate of the actual effect sizes, which in turn could

account for some of the missing heritability commonly seen in

GWAS. Moreover, because the impact on gene expression is typi-

cally conferred by multiple enhancer variants that are in tight LD,

GWA studies utilizing case–control samples with mixed LD struc-

tures may hinder detection of true association signals.

Figure 6. Multiple enhancer variant loci are a common feature of many GWAS traits. (A) Hierarchical clustering of disease traits based on the number
of SNPs that intersect with H3K4me1 sites linked to a gene target with PreSTIGE. Cluster of disease traits that correlate with SNPs present in HepG2 (B)
and NPC (C ) predicted enhancers (zoomed image HepG2 and NPC clusters in A). Genes predicted to be targeted by the disease-correlated SNPs are
shown to the right. Columns are ordered as shown in A. (D) Percent of GWAS enhancer loci that involve multiple enhancer variants for each cluster
highlighted in A.
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Why do GWAS loci often contain multiple enhancer variants?

One possibility is that SNPs affecting a single enhancer are not

sufficient to impact expression of the target gene. Alternatively,

SNPs at a single enhancer could impact expression, but the degree

of change is not sufficient to incur risk. We currently cannot dis-

tinguish between these possibilities. It is noteworthy that there are

numerous examples of Mendelian diseases caused by mutations in a

single enhancer, including preaxial polydactyly and Hirchsprung’s

disease (Visel et al. 2009). SNPs at the SOX9 locus that confer risk to

prostate cancer disrupt transcription factor binding sites at a single

enhancer and alter SOX9 transcript levels in prostate cancer cells

(Zhang et al. 2012). Moreover, in our studies of enhancer function

in colon cancer cells, aberrantly expressed genes in colon cancer

cells were usually associated with epigenetic alterations of multiple

enhancers, but there were numerous examples where epigenetic

loss or gain of a single enhancer altered target transcript levels

(Akhtar-Zaidi et al. 2012). Thus, although we provide evidence that

many GWAS loci involve multiple enhancer variants, there are

likely numerous examples where a given GWAS SNP(s) impacts

a single enhancer and is sufficient to incur a biological effect. How

often single versus multiple variant loci occur remains to be de-

termined, but our data suggest that these examples of single vari-

ant SNPs influencing gene expression are far rarer than instances

in which two or more enhancer variants cooperate to impact ex-

pression and confer risk. DNA-editing approaches using CRISPR/

Cas or TALEN-based technologies could help distinguish between

these possibilities and further refine the identity of the most in-

fluential SNPs within a given locus.

We have also considered the possibility that multiple en-

hancer variants provide some selective advantage during evolu-

tion. Such is the case for traits associated with ‘‘thrifty genes’’ such

as those involved in type 2 diabetes mellitus, where one sees a past

selective advantage for what is now the risk allele. Interestingly,

population genome-wide scans for positive selection have re-

producibly yielded genes with autoimmune-related functions

(Barreiro and Quintana-Murci 2010), which may explain why

multiple enhancer involvement was particularly common among

the loci associated with the six autoimmune traits studied here.

The past decade has observed an explosion of activity in the

identification of SNPs associated with common traits through

GWAS. However, the identification of most of the genes that serve

as the molecular basis of the risk etiology, as well as the identifi-

cation of the causal variants, has not been nearly as successful. This

is due in part to an inability to connect a risk allele to a target gene,

and an inability to functionally test the transcriptional impact of

the risk allele once the target gene has been identified. In fact, some

critics have suggested that, even with knowledge of the target gene,

the target gene will fail to show an expression difference between

individuals with the risk variant versus those with the nonrisk

variant, because of interindividual variability in gene expression or

other confounding factors. The results of our study suggest oth-

erwise. Specifically, when the target gene of the risk allele is known,

the appropriate cell type is utilized, and the SNPs in tight LD at

a given locus are considered together, the impact on target gene

expression is clearly evident. These findings should have impor-

tant implications for studies by the ENCODE and GTEx consortia

or other groups seeking to decipher the impact of genetic variation

on gene expression in all human cell types. The results of our study

also suggest that accurate identification of genes regulated by

multiple enhancer variants could reveal common, and potentially

‘‘druggable,’’ pathways frequently altered among individuals with

a given common disease.

Methods

PreSTIGE prediction methodology
To connect cell type-specific enhancers to genes we considered
multiple linear domain models. We systematically evaluated the
use of domain models that rely on the distance between enhancers
and genes, as well as those that utilized CTCF binding sites to set
domain boundaries. The final domain model, selected to maximize
the number of predictions made while maintaining the lowest
FDR, utilizes 100 kb as a distance boundary in addition to a subset
of CTCF sites to generate predicted interactions. For details on how
the domain model was selected and evaluated, see Supplemental
Material. For an interaction to be predicted in a given cell line, the
normalized H3K4me1–enhancer signal had to be high above
background (>10) and both the enhancer and the gene have to be
specific to the cell line. Specificity was determined by calculating
Shannon entropy Q scores. Details on the development and vali-
dation of the PreSTIGE methodology can be found in the Supple-
mental Material and Supplemental Figs. S2–S16.

ChIP-seq data processing

Publicly available H3K4me1 ChIP-seq and matched input data files
were obtained for the 12 cell lines of the comparator set (see Sup-
plemental Table S2A) and aligned to hg18 with BWA (Li and Durbin
2009). Duplicate reads were removed with SAMtools (Li et al.
2009). Matched inputs for each sample were trimmed to 10 million
reads prior to alignment and used for peak calling with MACS
(Zhang et al. 2008). Called peaks were used to generate a list of
potential enhancer sites. All identified ChIP enriched peaks across
the 12 cell lines were then compiled and overlapping peaks were
collapsed resulting in 309,713 regions. The maximum signal was
then retrieved in each region across all 12 cell lines and the results
were tabled. To normalize for read depth and varying enrichment
across ChIP samples, maximum signals were quantile normalized.
Shannon entropy scoring was performed on normalized maxi-
mum signals to quantify cell type specificity for each region.

RNA-seq data processing

Publicly available RNA-seq data were obtained for all 12 cell lines of
the comparator set (Supplemental Fig. S2A). Reads were aligned to
hg18 with TopHat (Trapnell et al. 2009) allowing for a maximum of
10 multiple alignments. Gene expression score FPKM was de-
termined for all RefSeq genes using Cufflinks (Trapnell et al. 2010).
An FPKM threshold of 0.3 was chosen to balance the false dis-
covery and false negative rates as described by Ramskold et al.
(2009). Genes with FPKMs <0.3 were rounded to zero and then the
results were tabled. The data obtained for neural precursor cells
(NPCs) was sequenced on the ABI SOLiD platform, and was aligned
using TopHat modified for colorspace reads. Given the different
platforms used in sequencing the 12 samples, FPKMs were quantile
normalized. Shannon entropy scoring was then performed on the
normalized FPKMs to score cell line specificity of gene expression.

Colon cancer VEL data validation

H3K4me1 ChIP-seq and matching input (Supplemental Table S3B)
for the colon crypt was processed as described above. The crypt
peaks were added to the 309,713 peaks of the comparator set and
peaks within 1 bp were consolidated. The maximum signal in all
regions was obtained for all 13 cell lines and the results were tabled
and quantile normalized. These results were then Shannon en-
tropy scored. Previously published Affymetrix Human Exon 1.0 ST
exon array data for healthy colon crypt and colon cancer cell lines

Combinatorial effects of multiple enhancer variants
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were also obtained (Akhtar-Zaidi et al. 2012). The median PLIER
normalized expression score across three biological replicates of
the colon crypt was used in subsequent analysis. To accurately
compare colon crypt array data to the RNA-seq data of the com-
parator set, array expression was quantile normalized with the
RNA-seq data table and then Shannon entropy scoring was used to
quantify specificity of gene expression. Predictions were made as
described above for interactions that occur in the colon crypt and
CRC samples. For validation of the crypt predictions, colon cancer
cell lines were analyzed in pairs. H3K4me1 sites that show differ-
ential enrichment of H3K4me1 between crypt and cancer (i.e., lost
VELs) and those that are defined as unchanged, present in the
crypt and cancer lines, were considered for validation. As the dis-
tributions of expression were different between the six colon
cancer cell lines and the median colon crypt expression, data sets
were quantile normalized to control for any bias toward increase or
decrease in gene expression between the cancer cell lines and the
crypt due to differences in distributions.

FDR calculation with CRC VEL data

Fold changes of transcripts in colon cancer versus normal colon
crypts were calculated (CRC/median of five normal crypt samples).
Enhancer–gene predictions were made in the normal colon crypts
and used to determine the gene targets of enhancers lost, i.e., lost
VELs, in the colon cancer cell lines. If the enhancer was lost and the
expression of the predicted gene targeted decreased >1.3-fold, then
the enhancer–gene pair was considered successfully validated. The
positive prediction rate was determined by calculating the percent
of lost VEL predicted targets that decreased by >1.3-fold. Genes
associated with a lost VEL that failed to show a decrease in gene
expression in CRC by >1.3-fold were considered false positives. The
FDR was determined by measuring the percent of genes that
did not decrease by >1.3-fold. The null distribution of the FDR
was determined by randomly assigning genes to colon crypt en-
hancers, and the percent of lost VELs that were randomly associ-
ated with a gene that decreased in expression >1.3-fold was used to
calculate the null distribution for the FDR. The PreSTIGE FDR was
then corrected by dividing the FDR by the FDR of randomly as-
sociating gene targets to enhancers.

Annotation of noncoding GWAS variants

We downloaded the entire NHGRI catalog of GWAS variants
(Hindorff et al. [Sept. 18, 2012]). We retrieved all SNPs in LD with
GWAS lead SNPs using LD blocks identified with publicly available
HapMap data on the CEPH ancestry population. SNPs in strong LD
(LOD > 2 and D9 > 0.99) with the lead SNP were utilized. All lead
and LD SNPs were intersected with human coding exons obtained
from UCSC Table Browser. If the lead SNP or any of its LD SNPs
intersected with the coding sequences, that lead SNP (and its LD
SNPs) was removed from the analysis. All subsequent analyses
utilized the identified noncoding GWAS SNPs.

Variant Set Enrichment Analysis

To test for enrichment of immune-related disorders in B-cell en-
hancers we used Variant Set Enrichment Analysis. SNPs associated
with one of the six disorders (rheumatoid arthritis, Crohn’s dis-
ease, multiple sclerosis, systemic lupus, ulcerative colitis, and celiac
disease) were intersected with the PreSTIGE-predicted enhancers
for all 12 cell lines of the comparator set as well as the colon crypt.
To determine if enrichment of SNPs in a given cell line is statisti-
cally significant, we generated null distributions by randomly
sampling variants from the Illumina HumanOmniExpress SNP list.

Random SNP sets were matched to disease-associated SNPs by size
so that SNPs in the random set contained the same number of LD
SNPs as the disease-associated set. Enrichment in PreSTIGE-predicted
enhancers of disease-associated SNP and 1000 random size-matched
sets were compared in order to obtain the significance of the en-
richment (Akhtar-Zaidi et al. 2012; Cowper-Sal lari et al. 2012).

Impact of enhancer variant loci on gene expression

To determine the effect of the risk variant on the expression of the
predicted gene target we obtained RNA-seq gene expression data
from 61 CEU individuals (Montgomery et al. 2010) as well as the
corresponding genotypes from HapMap (International HapMap
Consortium 2007; The International HapMap 3 Consortium 2010).
We identified individuals who were homozygous for the nonrisk
allele, heterozygous for the risk allele, and homozygous for the risk
allele for the GWAS loci associated with the six immune-related
diseases. If fewer than three individuals were homozygous for the
nonrisk allele, or fewer than three individuals inherited the risk
allele, then this SNP was excluded from the analysis. We compared
the gene expression of individuals who carried the risk allele (ho-
mozygous or heterozygous) with those who were homozygous for
the nonrisk variant. For all analyses determining the impact of
SNP genotype on expression of the target gene, the Mann-Whitney-
Wilcoxon test (P-value < 0.05) was used to determine whether the
effect was significant.

Enrichment of disease-associated SNPs for multiple enhancer
variant loci

We determined the percentage of GWAS enhancer variants with LD
SNPs that mapped to an additional enhancer predicted to target the
same gene. LD SNPs were retrieved as described above. As a control
we identified CEU SNPs that fall within GM12878 putative en-
hancers associated with PreSTIGE predictions (at high stringency)
and filtered out all SNPs that have previously been associated with
any disease. We then determined the percent of these control SNPs
that are associated with multiple enhancer variants in LD. We ran-
domly selected a matched number of control loci 100 times. The
average of 100 iterations was utilized in Fisher’s exact test comparing
disease to nondisease rate of multiple enhancer variants. All analyses
comparing the proportion of genes that are significantly impacted
by SNP genotype were compared using Fisher’s exact test.

Software availability

The PreSTIGE methodology is available for academic use at
prestige.case.edu through a Galaxy interface (Giardine et al. 2005;
Blankenberg et al. 2010; Goecks et al. 2010). Users can generate
predictions for any cell type of interest for which H3K4me1 ChIP-
seq and RNA-seq data are available. A database of the predictions
for the 13 cell lines listed in Figure 1A is also available at genetics.
case.edu/prestige.
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