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An 8-week feeding trial was conducted to evaluate the effects of dietary carbohydrate
to lipid (CHO:L) ratios on growth performance, muscle fatty acid composition, and
intermediary metabolism in juvenile black seabream (Acanthopagrus schlegelii). Five
isonitrogenous and isoenergetic diets (48.0% crude protein and 18.0 MJ kg−1 gross
energy) were formulated to contain different CHO:L ratios ranging from 0.33 to 3.75.
Triplicate groups of 20 fish averaging 0.51 ± 0.01 g were fed with experimental diets
twice daily to apparent satiation. The results indicated that final body weight (FBW),
percentage weight gain (PWG), specific growth rate (SGR), and protein efficiency ratio
(PER) were significantly influenced by the dietary CHO:L ratios (p < 0.05). The highest
FBW, PWG, and SGR were observed in fish fed the diet with a CHO:L ratio of 1.36
(p< 0.05). A two-slope broken-line regression analysis based on PWG indicated that the
optimal dietary CHO:L is 1.08. Lipid content in the whole body decreased, and glycogen
concentration in the liver increased with the increase of dietary CHO:L ratios from 0.33
to 3.75 (p < 0.05). Moreover, there was a positive correlation between muscle fatty acid
composition and dietary fatty acid composition. The relative expression levels of genes
involved in glucose metabolism, such as gk, pepck, and glut2 were upregulated by
increasing the dietary CHO:L ratio. Also, the mRNA expression level of genes related to
lipid synthesis, such as fas and accα were significantly upregulated with dietary CHO:L
ratios increasing from 0.33 to 3.75. The highest expression of genes involved in fatty
acid β-oxidation, such as cpt1 and acox1, were observed in fish fed the 1.36 CHO:L
ratio diet. The gene expression of16 fatty acyl desaturase (fads2) in the liver significantly
increased with increase of dietary CHO:L ratios from 0.33 to 3.75. Fish fed the diet with
CHO:L ratios of 2.26 and 3.75 had lower expression levels of elovl5 than those fed the
other diets. These results demonstrate that dietary optimal CHO:L ratios could improve
PWG and SGR but also influence expression of genes involved in glucose and lipid
metabolism. Based on the overall results, the optimal dietary CHO:L ratio is 1.08 for
black seabream.
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INTRODUCTION

Development of the cost-effective and nutritionally adequate
formulated diet is fundamental to the future feasibility for marine
fish culture. The rapid growth of aquaculture output depends on
the production of aquatic feed, whereas the supply of fish meal
and fish oil, which are the most important ingredients in aqua-
feeds, has remained comparatively static and gradually decreased
over the last decade (Oliva-Teles et al., 2015; Matulić et al., 2020;
Wang et al., 2020). In aquaculture, aqua-feed cost are very high,
accounting for more than 60% of the total production cost. The
fish meal is known as the best protein for aqua-feeds (Han et al.,
2016; Hua et al., 2019). Fish meal resources are limited, and
fish meal prices have recently increased as populations of wild
fisheries have declined due to overfishing (Hutchins et al., 1998;
Hardy, 2010; Raggi et al., 2019; Ma et al., 2020). To minimize
dietary protein levels, much attention was given to analyzing
the viability of non-protein energy substitutes and proved that
providing sufficient energy with dietary lipids and carbohydrates
can reduce the use of costly protein (Kim and Lee, 2005; Li et al.,
2012a,b; Darias et al., 2015). Therefore, dietary carbohydrates
and lipids are of increasing importance to aquaculture as these
two main nutrients are used as non-protein energy sources in
fish feeds and reduce protein requirements (Lin and Shiau, 2003;
Li et al., 2012a,b, 2019).

Carbohydrates and lipids are cheaper sources of energy
compared to proteins, and they can spare dietary protein for
growth rather than being used as an energy source, which is also
coupled with increased ammonia excretion into the water. Fish
growth performance and metabolic efficiency vary depending
on the dietary lipid and carbohydrate levels (Gümüş and Ikiz,
2009; Li et al., 2014; Xing et al., 2016). Any imbalances in
the supply of lipids and carbohydrates negatively affect growth
performance, nutrient utilization, and even the health status of
fish (Erfanullah and Jafri, 1998; Li et al., 2012b). Recently, an
increasing number of studies have investigated the interactions
between lipid and carbohydrate levels in fish species, such as
red drum (Sciaenops ocellatus; Ellis and Reigh, 1991), rainbow
trout (Oncorhynchus mykiss; Gümüş and Ikiz, 2009), blunt snout
bream (Megalobrama amblycephala; Li et al., 2014), and large
yellow croaker (Larmichthys crocea; Zhou et al., 2016). However,
most studies mainly focused on determining the most favorable
carbohydrate-to-lipid ratio for growth performance (Gao et al.,
2010; Miao et al., 2016). The effects of different dietary CHO:L
ratios on the molecular glucose and lipid metabolism in fish have
rarely been investigated.

There is a strong interaction between glucose and fatty acids
in fish, and this affects glucose and lipid utilization (Menoyo
et al., 2006; Song et al., 2018). Dietary lipids can be converted
to glucose through gluconeogenesis, and alternatively, glucose
can be deposited as lipids in fish tissue (Honorato et al.,
2010). The dietary lipid and carbohydrate levels regulate relative

Abbreviations: accα, acetyl-CoA carboxylase alpha; acox1, acyl-CoA oxidase
1; cpt1, carnitine palmitoyl transferase 1; elovl5, elongase 5; g6pc, glucose-
6-phosphatase; glut2, glucose transporter 2; gk, glucokinase; fads2, fatty acyl
desaturase 2; fas, fatty acid synthase; pepck, phosphoenolpyruvate; pk, pyruvate
kinase.

expression of genes involved in glucose and lipid metabolism.
The dietary carbohydrate or glucose administration was noted to
enhance lipogenesis (Kamalam et al., 2012). On the contrary, the
β-oxidation data are conflicting as either stimulation (Kamalam
et al., 2013) or inhibition (Jin et al., 2014) effects have been
reported. Regarding long-chain polyunsaturated fatty acid (LC-
PUFA) biosynthesis, the expression of induction of desaturase
and elongase were also reported in freshwater fish and salmonids
(Seiliez et al., 2001). But in marine fish, such induction of genes
was not clear (González-Rovira et al., 2009; Vagner and Santigosa,
2011). In salmonids, desaturases and elongases were upregulated
by dietary carbohydrates (Seiliez et al., 2001; Kamalam et al.,
2013), but in marine fish species, such an effect has never
been confirmed (Castro et al., 2015). These studies suggest that
the growth performance and intermediary metabolism of fish
might be affected by the interaction between dietary CHO:L
ratios, which were seldom evaluated in marine fish; thus, special
attention is required in carbohydrate or lipid studies.

Black seabream (Acanthopagrus schlegelii) is a popular and
commercially important marine carnivorous fish species cultured
in China, Japan, Korea, and some countries of Southeast Asia
due to its high economic value (Nip et al., 2003; Jin et al., 2017).
This species is a good candidate for intensive culture because it
has many desirable characteristics, such as resistance to disease,
rapid growth rate, good meat quality, and ability to tolerate
environmental changes (Hong and Zhang, 2003; Shao et al., 2008;
Kalhoro et al., 2018). However, the feed used for black seabream
farming are trash fish traditionally, and they do not meet the
nutrient requirements to sustain optimum growth and cause
water pollution (Ma et al., 2008; Jin et al., 2017). The nutritional
studies demonstrate that black seabream need lipid and protein
in diets, approximately 14 and 40%, respectively (Shao et al.,
2008; Peng et al., 2009; Zhang et al., 2010). Currently, there is no
report available regarding the optimal dietary carbohydrate-to-
lipid ratio requirement and glucose utilization in black seabream.
The objective of the present study was to evaluate the effects
of dietary CHO:L ratio on growth performance, muscle fatty
acid composition, and intermediary metabolism in juvenile black
seabream. Furthermore, the results obtained from this study
might present some new insight into the non-protein energy
utilization by fish and might facilitate the advancement of the
low-protein and high-energy feed for black seabream.

MATERIALS AND METHODS

Diets Preparation
All feed ingredients were purchased from Ningbo Tech-
Bank Corp., Ningbo, China. The formulation and proximate
composition of the experimental diet are presented in Table 1.
Five isonitrogenous and isoenergetic diets (48.0% crude protein
and 18.0 MJ kg−1 gross energy) were formulated to contain
various CHO:L ratios ranging from 0.33 to 3.75. Fish meal and
soybean meal were used as protein sources. The soybean oil
and fish oil in equal amounts were used as the lipid sources,
and dextrin was used as the carbohydrate source. Cellulose was
used to equilibrate the carbohydrate levels required. All dry
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TABLE 1 | Formulation and proximate composition of experimental diets (% dry matter).

Ingredients (%) Dietary carbohydrate to lipid ratios

0.33 0.76 1.36 2.26 3.75

Fish meala 40 40 40 40 40

Soybean meala 24 24 24 24 24

Dextrina 6 12 18 24 30

Fish oila 6.5 4.2 2.9 1.6 0.3

Soybean oila 6.5 4.2 2.9 1.6 0.3

Soybean lecithina 1.9 1.9 1.9 1.9 1.9

Vitamin supplementb 0.5 0.5 0.5 0.5 0.5

Mineral supplementc 1.0 1.0 1.0 1.0 1.0

Ca(H2PO4)2 1.7 1.7 1.7 1.7 1.7

Choline chloride 0.3 0.3 0.3 0.3 0.3

Cellulose 11.6 10.2 6.8 3.4 0

Proximate composition (%)

Moisture 9.88 10.18 9.57 9.24 10.19

Crude protein 47.02 47.13 47.14 48.97 48.44

Crude lipid 15.41 13.14 11.22 7.95 6.48

Ash 6.68 6.45 6.58 6.92 5.56

Energy (MJ·kg−1)d 18.06 18.05 18.05 18.06 18.06

Crude fiber 15.91 13.05 10.18 8.92 5.03

Carbohydrate: lipid (CHO:L) 0.33 0.76 1.36 2.26 3.75

Nitrogen-free extracte 5.10 10.05 15.31 18.00 24.30

aNingbo Tech-Bank Feed Co., Ltd., China. b,cSimilar as (Jin et al., 2017). dCalculated values based on 23.6, 39.5, and 17.2 kJ/g for protein, lipid and
carbohydrate respectively. eNitrogen-free extract content = 100 – moisture – crude protein – crude lipid – ash – crude fiber.

ingredients were ground into fine powder with a particle size
less than 177 microns and micro-components, such as minerals
and vitamin premix, were added, followed by an appropriate
quantity of oil and water (35% w/w). The ground ingredients
were mixed in a Hobart-type mixer until homogenous, and cold-
extruded pellets were produced using a twin screws extruder
(F-26, machine factory of South China University of Technology,
Guangzhou, China). The pellet strands were cut off into two
uniform sizes of 2 and 4 mm in diameter using a granulating
machine (G-250, Machine factory of South China University
of Technology, Guangzhou, China). Pellets were steamed for
30 min at 90◦C. Then pellets were air-dried to approximately
10% moisture. All diets were stored at −20◦C in plastic-lined
bags until use in the feeding trial. The fatty acid profiles of
the experimental diets were determined with few modifications
(Zuo et al., 2013; Jin et al., 2017). Fatty acid methyl esters were
separated and measured by GC-MS (Agilent technologies 7890B-
5977A). Results are presented as a percentage of total fatty acids
in Table 2.

Feeding Trial
The juvenile black seabream were purchased from a local
commercial hatchery at Xiangshan Bay, Ningbo, China. All
fish were acclimated for 2 weeks prior to experimentation
and were fed a commercial diet (Ningbo Tech-Bank Corp,
Zhejiang, China; 45% crude protein and 12% lipid) as described
previously (Jin et al., 2017). At the beginning of the experiment,
fish were fasted for 24 h. Then, a total of 300 juvenile black

seabream of almost similar size (initial weight 0.51 ± 0.01 g)
were randomly distributed into 15 300-L cylindrical fiberglass
tanks filled with 250 L of water at the stocking rate of 20
fish per tank. Each experimental diet was randomly assigned
to three replicates. During the feeding trial, fish were fed with
experimental diets twice a day (08:00 and 17:00) to apparent
satiation. All tanks were provided with a continuous flow of
water (0.5 L min−1) and water was continuously aerated with
air stones to maintain the dissolved oxygen level near saturation.
During the experimental period, water temperature was 27–33◦C,
pH was 6.7–7.7, salinity was 22–26 mg L−1, ammonia nitrogen
was lower than 0.05 mg L−1, and dissolved oxygen content was
6.5–7.6 mg L−1, and all were measured daily with a YSI Pro
plus instrument (YSI, Yellow Springs, OH, United States). The
experimental units were under a natural light and dark cycle.

Sample Collection
In the present study, all procedures complied with Chinese law
pertaining to experimental animals. The protocol was approved
by the Ethic-Scientific Committee for Experiments on Animals
of Ningbo University. At the end of the feeding trial, fish
in each tank were sampled 24 h after the last feeding. The
fish in each tank were anesthetized with MS-222 (Shanghai
Reagent Corp., Shanghai, China) and then individually weighed,
counted, and sampled to determine survival, percentage weight
gain (PWG), specific growth rate (SGR), feed conversion ratio
(FCR), and protein efficiency ratio (PER). Five fish from each
tank were randomly sampled and frozen at −20◦C to analyze
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TABLE 2 | Fatty acid composition of experimental diets (% total fatty acids).

Parameters Dietary carbohydrate to lipid ratios

0.33 0.76 1.36 2.26 3.75

C14:0 3.85 3.84 3.84 3.80 3.85

C16:0 17.65 17.84 17.84 18.21 18.82

C18:0 5.15 5.12 5.12 5.08 4.97

C20:0 0.45 0.40 0.03 0.43 0.37

SFA1 27.10 27.19 26.83 27.52 28.01

C16:1n 3.89 3.72 3.62 3.42 3.20

C18:1n-9 16.69 15.83 14.95 13.97 11.44

C20:1n-9 1.82 1.69 1.62 1.47 1.33

C22:1n-11 0.37 0.28 1.67 0.25 0.15

MUFA2 22.78 21.53 21.86 19.11 16.12

C18:2n-6 24.67 23.95 22.76 21.67 18.88

C18:3n-6 0.09 0.08 0.12 0.09 0.08

C20:2n-6 0.16 0.16 0.14 0.16 0.19

C20:4n-6 0.52 0.53 0.54 0.52 0.56

C22:4n-6 0.05 0.07 0.07 0.09 0.07

n-6 PUFA3 25.49 24.79 23.62 22.52 19.79

C18:3n-3 3.25 3.18 3.10 2.94 2.62

C18:4n-3 1.06 1.07 1.10 1.11 1.17

C20:4n3 0.47 0.32 0.33 0.34 0.36

C20:5n-3 (EPA) 4.96 4.80 4.81 4.90 5.02

C22:5n-3 (DPA) 0.68 0.72 0.74 0.76 0.76

C22:6n-3 (DHA) 7.41 7.52 7.88 8.61 9.57

n-3 PUFA4 17.84 17.62 17.96 18.65 19.50

EPA + DHA 12.37 12.33 12.70 13.51 14.59

Data are presented as means ± SE (n = 3). Some fatty acids, found in only trace amounts or not detected, such as C8:0, C12:0, C13:0, C15:0, C14:1n-7, and
C20:5n-6 were not listed in Table 2. 1SFA; saturated fatty acids; 2MUFA, mono-unsaturated fatty acids; 3n-6 PUFA; n-6 polyunsaturated fatty acids; 4n-3 PUFA; n-3
polyunsaturated fatty acid.

whole-body proximate composition. Hepatosomatic index (HSI),
viscerosomatic index (VSI), and condition factor (CF) were
determined from three individual fish per tank by obtaining
tissues (livers and viscera) and expressing ratios as a percentage
of body weight. Muscle samples were also collected from three
fish per tank to analyze the fatty acid composition. Blood was
sampled from the caudal vasculature of five fish per tank using
1 ml heparinized syringes and stored at 4◦C. Then the blood
samples were centrifuged at 956× g for 10 min at 4◦C to separate
the serum for biochemical indices analysis. The liver from five fish
after taking a blood sample in each tank were pooled into 1.5 ml
eppendorf tubes and immediately frozen in liquid nitrogen and
then stored at−80◦C for gene expression analysis.

Proximate Composition Analysis
Proximate composition of whole body and diets were analyzed
following the standard procedures of the Association of Official
Analytical Chemists (AOAC, 2006). Moisture content was
determined by drying the samples to a constant weight at
105◦C. Crude protein (N × 6.25) was determined via the Dumas
combustion method with a protein analyzer (Leco FP528, St.
Joseph, MI, United States). The crude lipid was determined by
the ether extraction method using the Soxhlet Method (Soxtec
System HT6, Tecator, Sweden), and ash content was determined

by using a muffle furnace at 550◦C for 8 h. The crude fiber
was analyzed by the fritted glass crucible method using an
automatic analyzer (ANKOM A2000i, Macedon, New York,
NY, United States).

Serum Biochemical Analysis
The serum biochemical parameters, including glucose (GLU),
triglyceride (TG), cholesterol (CHOL), and total protein (TP),
were measured by an automatic biochemical blood analyzer
(Selectra Pro-M 13-7476). The glycogen contents in liver
were determined by the assay kit (No. A043; Jian Cheng
Bioengineering Institute, Nanjing, China) as previously described
(Hassid and Abraham, 1957).

Fatty Acid Analysis
The fatty acid profiles of experimental diets and fish muscle tissue
were determined with a few modifications (Zuo et al., 2013). The
freeze-dried samples were added to 12-ml volumetric glass screw
cap tubes (Teflon gasket), 3 ml potassium hydroxide in methanol
(1 N) was added and heated at 72◦C in a water bath for 20 min.
After cooling, 3 ml of 2 N HCl in methanol was added and
the mixture heated at 72◦C in a water bath for 20 min. Finally,
1 ml hexane was added to the mixture, shaken vigorously for
1 min, and then permitted to separate into two layers. Fatty acid
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TABLE 3 | Real time PCR primer sequences for analysis of gene expression in
liver of black seabream.

Function classification Gene names Primers

Glycolysis gk F: GAGCAGGTTATGCCCATTGT

R: TGGAAGTGAATGCGAGTCAG

pk F: CCGTCCCTTTCACTAATCCA

R: CCGTCCCTTTCACTAATCCA

Gluconeogenesis pepck F: GGACCTGGCACGGTACTAAA

R:CACGGGAAAACTGCTACCAT

g6pc F: TCTTCTGTCTTCCCCTGACG

R: TTCTGCTTCATCTGCTCGAC

Glucose glut2 F: ACAGAGGAGCGGATCAAAGA

transporter R: GCAATCACTCCTGCTTCCTC

Lipogenesis accα F: CGAGATGTTTCGCAATGAAA

R: AGCTCCACGTTTGCGTAGTT

fas F: AGTGGGGAGTTGTTGGACAG

R: ACAGTCGGCTCAAAGGAGAA

Fatty acid cpt1 F: GGCAGATCATGTTTGTGTGC

β-oxidation R: CATCGCTTACTTCCACAGCA

acox1 F: CTTCACCCCTACATGCACCT

R: CACTGTTGGCCTAGCACTGA

Long chain fads2 F: GGTGGGCATGTTCTTGATCT

PUFA R: ACTGTGTTCGGTCCTTCACC

biosynthesis elovl5 F: TCATCCCGTGATGCTTTACA

R:CACAGGGCAAACTTTTGGAT

β-actin F:CAGGACTCCATACCGAGGAA

R:TGCGTGACATCAAGGAGAAG

gk, glucokinase; pk, pyruvate kinase; pepck, phosphoenolpyruvate; g6pc, glucose-
6-phosphatase; glut2, glucose transporter 2; accα, acetyl-CoA carboxylase alpha;
fas, fatty acid synthase; cpt1, carnitine palmitoyl transferase 1; acox1, acyl-CoA
oxidase 1; fads2, fatty acyl desaturase 2; elovl5, elongase 5.

methyl esters were separated and identified by GC-MS (Agilent
technologies 7890B -5977A) as previously detailed (Jin et al.,
2017). Results are presented as a percentage of total fatty acids.

Total RNA Extraction, Reverse
Transcription and Real-Time PCR
Total RNA was extracted from the liver tissues using TRIzol
reagent (Takara, Japan) according to the manufacturer’s
instructions. Quantity and quality of isolated RNA were
determined spectrophotometrically (Nanodrop 2000, Thermo
Fisher Scientific) and on a 1.2% denaturing agarose gel,
respectively. The cDNA was generated from 1,000 ng of DNase-
treated RNA and synthesized by a Prime ScriptTM RT Reagent
Kit with gDNA Eraser (perfect Realtime; Takara, Japan). The
housekeeping gene β-actin was used as reference gene after
confirming its stability across the experimental treatment.
Specific primers for the candidate genes glucokinase (gk),
pyruvate kinase (pk), phosphoenolpyruvate (pepck), glucose-
6-phosphatase (g6pc), glucose transporter 2 (glut2), acetyl-coA
carboxylase alpha (accα), fatty acid synthase (fas), carnitine
palmitoyl transferase 1 (cpt1), acyl-COA oxidase (acox1),
fatty acyl desaturase (fads2), and elongase 5 (elovl5) used for
qPCR were designed using Premier 3.0 software (Table 3).
The primer specificities of the candidate genes were checked
as previously detailed (Bustin et al., 2010) by systematically

running melting curve assays after the qPCR program and
DNA sequencing technology (BGI, China). Amplification was
performed using a quantitative thermal cycler (Roche, Light
cycler 96, Switzerland). PCR measurements were performed
in a total volume of 20 µL, containing 1.0 µL of each primer,
10 µL of 2 × conc. SYBR Green I Master (Roche, Switzerland),
2 µL of cDNA, and 6 µL DEPC-water. The procedure of
quantitative PCR was employed: 95◦C for 2 min, followed by
45 cycles of 95◦C for 10 s, 58◦C for 10 s, and 72◦C for 20 s.
Standard curves were generated using six different dilutions
(in triplicate) and the amplification efficiency was analyzed
as follows: E = 10(−1/Slope)

− 1 (Jothikumar et al., 2006). In
this study, the gene expression was presented as relative gene
expression, which we used as the relative quantification method
to analyze data from RT-qPCR experiment. Expression levels
of target genes were calculated using the 2−11Ct method
(Livak and Schmittgen, 2001).

Calculations and Statistical Analysis
The parameters were calculated as follows:

Percent weight gain (PWG, %)= 100× (Wt−Wi) / Wi
Survival (%)= 100×(final amount of fish) / (initial amount
of fish)
Specific growth rate (SGR, % day−1) = 100 × (Ln Wt−Ln
Wi)/ t
Protein efficiency ratio (PER) = weight gain (g) / protein
intake (g)
Condition factor (CF, g cm−3) = 100 × (body weight, g) /
(body length, cm) 3
Hepatosomatic index (HSI, %) = 100 × (liver weight /
whole body weight)
Viscerosomatic index (VSI, %) = 100 × (viscera weight, g)
/ (body weight g)
Feed conversion ratio (FCR)= feed intake (g, dry weight) /
weight gain (g, wet weight)

Here, Wt is the final body weight (g), Wi is the initial
body weight (g), t is the experimental duration in days.
The results are presented as the means ± SE (n = 3).
Prior to statistical analysis, normality and homogeneity of
variance were checked, and percentage data were subjected to
arcsine transformation. When the ANOVA identified significant
differences between dietary treatments (p < 0.05), multiple
comparisons were then made with Tukey’s test. A two-
slope, broken-line regression analysis was conducted based on
PWG to determine the optimum CHO:L ratio (Figure 1).
All statistical analyses were performed using SPSS 23.0 (SPSS,
IBM, United States).

RESULTS

Growth Performance, Feed Utilization
and Organosomatic Indices
The effects of different dietary CHO:L ratios on growth
performance, feed utilization, and organosomatic indices are
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TABLE 4 | Growth performance, feed utilization, and morphological indices of black seabream fed with experimental diets for 8 weeks.

Parameters Dietary carbohydrate to lipid ratios p-values

0.33 0.76 1.36 2.26 3.75

IBW1 (g) 0.51 ± 0.02 0.51 ± 0.02 0.53 ± 0.01 0.52 ± 0.02 0.53 ± 0.01 0.632

FBW2 (g) 4.20 ± 0.25bc 4.53 ± 0.08ab 4.86 ± 0.05a 4.42 ± 0.40ab 3.91 ± 0.18c 0.005

PWG3 (%) 717.99 ± 43.17bc 789.25 ± 33.96ab 822.89 ± 5.27a 753.50 ± 45.76ab 642.83 ± 40.44c 0.001

SGR4 (% day−1) 3.75 ± 0.10bc 3.90 ± 0.07ab 3.97 ± 0.01a 3.83 ± 0.09ab 3.58 ± 0.10c 0.001

FCR5 1.37 ± 0.04a 1.28 ± 0.01b 1.27 ± 0.47b 1.27 ± 0.02b 1.36 ± 0.02a 0.001

PER6 1.55 ± 0.05bc 1.63 ± 0.05a 1.67 ± 0.00a 1.61 ± 0.04ab 1.52 ± 0.02c 0.001

Survival (%) 96.67 ± 5.77 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 98.33 ± 2.89 0.552

HSI7 (%) 1.53 ± 0.45b 1.40 ± 0.26b 2.64 ± 0.28a 2.59 ± 0.25a 2.14 ± 0.27a 0.001

VSI8 (%) 7.73 ± 0.79b 6.26 ± 0.38c 8.62 ± 0.45a 6.90 ± 0.36bc 6.56 ± 0.86c 0.000

CF9 (g cm−3) 3.07 ± 0.19 3.30 ± 0.38 3.22 ± 0.24 3.37 ± 0.51 3.04 ± 0.42 0.770

Values means ± SE (n = 3) in each row with different superscript letters are significantly different (p < 0.05). 1 IBW, initial body weight; 2FBW, final body weight; 3PWG,
percent weight gain; 4SGR, specific growth rate; 5FCR, feed conversion ratio; 6PER, protein efficiency ratio; 7HSI, hepatosomatic index; 8VSI, viscerosomatic index; 9CF,
condition factor.

TABLE 5 | The whole-body composition of black seabream fed with experimental diets for 8 weeks.

Parameters Dietary carbohydrate to lipid ratios p-values

0.33 0.76 1.36 2.26 3.75

Moisture (%) 72.71 ± 0.46 72.07 ± 0.43 72.19 ± 0.69 73.03 ± 0.22 72.63 ± 0.13 0.727

Protein (%) 16.30 ± 0.14 16.40 ± 0.24 16.32 ± 0.27 16.75 ± 0.26 16.60 ± 0.50 0.101

Lipid (%) 7.97 ± 0.83a 7.78 ± 0.81a 6.90 ± 0.34ab 6.61 ± 0.08b 4.96 ± 0.60c 0.001

Ash (%) 5.02 ± 0.59 5.02 ± 0.53 5.27 ± 0.19 5.45 ± 0.50 5.19 ± 0.35 0.732

Values means ± SE (n = 3) in each row with different superscript letters are significantly different (p < 0.05).

TABLE 6 | Hematological indices and liver glycogen content of black seabream fed with experimental diets for 8 weeks.

Parameters Dietary carbohydrate to lipid ratios p-values

0.33 0.76 1.36 2.26 3.75

GLU1 (mmol/l) 2.63 ± 0.57 2.72 ± 0.17 3.08 ± 0.53 3.00 ± 0.44 2.66 ± 0.49 0.660

TG2 (mmol/l) 3.64 ± 0.31a 3.32 ± 0.33a 3.05 ± 0.46a 2.38 ± 0.23b 2.26 ± 0.40b 0.003

CHOL3 (mmol/l) 7.86 ± 0.10a 7.75 ± 0.33a 7.40 ± 0.25a 5.64 ± 0.81b 5.33 ± 0.05b 0.000

TP4 (g/l) 32.38 ± 0.69 32.79 ± 0.56 33.74 ± 1.31 31.98 ± 1.70 31.60 ± 1.66 0.351

GLG5 (mg/g) 19.21 ± 0.65d 21.72 ± 0.78c 21.36 ± 0.45c 25.71 ± 0.92b 27.85 ± 1.08a 0.000

Values means ± SE (n = 3) in each row with different superscript letters are significantly different (p < 0.05). 1GLU, glucose; 2TG, triglycerides; 3CHOL, cholesterol; 4TP,
total protein; 5GLG, liver glycogen.

shown in Table 4. PWG, SGR, and PER were significantly
influenced by dietary CHO:L ratio (p < 0.05). Fish fed the
1.36 CHO:L ratio diet had higher PWG, SGR, and PER than
those fed the other diets. Two-slope, broken-line regression
analysis of PWG against dietary CHO:L ratio indicated that
the optimal dietary CHO:L ratio for juvenile black seabream is
1.08 (Figure 1). However, lower FCR was recorded in fish fed
with 0.76, 1.36, and 2.26 CHO:L ratio diets than those fed the
other diets. Survival ranged from 96 to 100%, and there was no
significant difference among all dietary treatments (p > 0.05).
HSI and VSI were significantly affected by the dietary CHO:L
ratios (p < 0.05), but there were no significant differences
observed in condition factor among all treatments (p> 0.05).

Proximate Composition in the
Whole Body
There were no significant differences in moisture, crude protein,
and ash contents of the whole body among all treatments
(p > 0.05). However, fish fed the 2.26 and 3.75 CHO:L diets had
lower crude lipid content in the whole body than those fed the
other diets (p< 0.05) (Table 5).

Serum Biochemical Parameters
The effects of dietary CHO:L ratios on contents of serum glucose
(GLU), cholesterol (CHOL), triglycerides (TG), and total protein
(TP) are presented in Table 6. The TG and CHOL concentrations
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TABLE 7 | Fatty acid composition (% of total fatty acid) of muscle of black seabream fed with experimental diets for 8 weeks.

Parameters Dietary carbohydrate to lipid ratios p-values

0.33 0.76 1.36 2.26 3.75

C14:0 2.24 ± 0.31a 2.04 ± 0.05ab 2.03 ± 0.09ab 1.70 ± 0.20b 1.66 ± 0.15b 0.0015

C16:0 16.38 ± 0.64 16.41 ± 0.83 17.83 ± 1.34 17.84 ± 0.75 17.75 ± 0.58 0.125

C18:0 5.67 ± 0.04b 5.98 ± 0.72b 6.94 ± 0.53ab 7.49 ± 0.31a 7.54 ± 0.38a 0.002

C20:0 0.27 ± 0.04ab 0.29 ± 0.06a 0.23 ± 0.05ab 0.20 ± 0.03bc 0.19 ± 0.02c 0.040

SFA1 23.70 ± 0.69b 23.69 ± 2.25b 27.70 ± 1.07a 27.26 ± 0.99a 27.20 ± 1.13a 0.000

C16:1n 3.1 ± 0.38a 2.8 ± 0.07ab 2.69 ± 0.09ab 2.35 ± 0.23b 2.24 ± 0.20b 0.005

C18:1n-9 14.96 ± 1.24 14.13 ± 0.49 14.64 ± 1.03 13.53 ± 0.78 12.9 ± 0.83 0.109

C20:1n-9 1.23 ± 0.13a 1.11 ± 0.04ab 0.94 ± 0.02bc 0.94 ± 0.12bc 0.79 ± 0.04c 0.001

C22:1n-11 0.37 ± 0.03 0.37 ± 001 0.43 ± 0.01 0.42 ± 0.06 0.38 ± 0.03 0.083

MUFA2 19.66 ± 1.73a 18.41 ± 0.53ab 18.7 ± 1.10ab 17.24 ± 1.15bc 16.31 ± 1.09c 0.043

C18:2n-6 19.19 ± 1.21a 17.94 ± 0.47ab 16.61 ± 0.80bc 14.7 ± 1.02c 12.06 ± 0.54d 0.000

C18:3n-6 0.12 ± 0.04b 0.11 ± 0.04b 1.64 ± 0.09a 0.28 ± 0.38b 0.1 ± 0.01b 0.000

C20:2n-6 0.36 ± 0.04 0.43 ± 0.07 0.41 ± 0.02 0.36 ± 0.06 0.77 ± 0.60 0.360

C20:4n-6 0.95 ± 0.05ab 1.03 ± 0.09a 0.89 ± 0.01ab 0.98 ± 0.09ab 0.83 ± 0.02b 0.016

C22:4n-6 0.13 ± 0.05 0.15 ± 0.03 0.17 ± 0.03 0.18 ± 0.04 0.19 ± 0.00 0.324

n-6 PUFA3 20.74 ± 1.14a 19.66 ± 0.49a 19.73 ± 0.85a 16.49 ± 0.77b 13.95 ± 1.08c 0.000

C18:3n-3 1.92 ± 0.21a 1.78 ± 0.06a 1.64 ± 0.09ab 1.41 ± 0.08bc 1.15 ± 0.05c 0.000

C18:4n-3 0.67 ± 0.12a 0.56 ± 0.07ab 0.66 ± 0.07a 0.54 ± 0.09ab 0.46 ± 0.03b 0.055

C20:4n-3 0.41 ± 0.05d 0.43 ± 0.03cd 0.52 ± 0.01bc 0.56 ± 0.06ab 0.65 ± 0.04a 0.000

C20:5n-3 (EPA) 3.95 ± 0.16b 4.21 ± 0.25ab 4.50 ± 0.29a 4.29 ± 0.21ab 4.09 ± 0.08ab 0.081

C22:5n-3 (DPA) 1.32 ± 0.06b 1.49 ± 0.09ab 1.58 ± 0.02a 1.58 ± 0.09a 1.62 ± 0.10a 0.006

C22:6n-3 (DHA) 12.22 ± 0.69bc 12.91 ± 0.98ab 14.06 ± 0.52a 13.88 ± 0.59a 10.95 ± 0.67c 0.002

n-3 PUFA4 20.16 ± 0.66c 21.72 ± 0.90ab 22.52 ± 0.62a 22.15 ± 0.83a 20.59 ± 0.88bc 0.017

EPA + DHA 16.17 ± 0.70b 17.12 ± 1.23ab 17.35 ± 1.00ab 18.39 ± 0.79a 17.04 ± 0.75ab 0.003

Data are presented as means ± SE (n = 3). Values in the same row with different superscripts are significantly different (p < 0.05). Some fatty acids, found in only trace
amounts or not detected, such as C8:0, C12:0, C13:0, C15:0, C14:1n-7, and C20:5n-6 were not listed in Table 7. 1SFA, saturated fatty acids, 2MUFA, mono-unsaturated
fatty acids; 3n-6 PUFA; n-6 polyunsaturated fatty acids; 4n-3 PUFA; n-3 polyunsaturated fatty acids.

in serum were significantly affected by dietary CHO:L ratios
(p < 0.05). CHOL in serum significantly decreased with the
dietary CHO:L ratios increasing from 0.33 to 3.75. However, GLU
and TP concentrations in serum had no statistical differences
among all dietary treatments (p > 0.05). Hepatic glycogen
concentration significantly increased with the dietary CHO:L
ratios increasing from 0.33 to 3.75 (p< 0.05; Table 6).

Muscle Fatty Acid Composition
The fatty acid profiles (percentage of total fatty acids) of
the muscle of black seabream fed different dietary CHO:L
ratios are shown in Table 7. Overall, 19 fatty acids were
observed and identified with the key fatty acids being palmitic
acid (PA, C16:0), stearic acid (SA, C18:0), oleic acid (OA,
C18:1n-9), linoleic acid (LA, C18:2n-6), eicosapentaenoic acid
(EPA), and docosahexaenoic acid (DHA). Muscle fatty acid
composition clearly reflected the dietary fatty acid composition.
Significant differences were observed for most fatty acids
in the muscle of black seabream fed the different dietary
CHO:L ratios diets (p < 0.05). Fish fed the 1.36 CHO:L
ratio diet showed significantly higher percentages of EPA,
DHA, and n-3 PUFA in muscle than those fed the other
diets (p< 0.05).

Relative Expression of Lipid and Glucose
Metabolism-Related Genes in Liver
The relative gene expression of glucose metabolism pathways
in the liver of black seabream, including glycolysis (A),
gluconeogenesis (B), and glucose transport (C), are shown in
Figure 2. The expression level of glucokinase (gk), the key
glycolytic enzyme, and of phosphoenolpyruvate carboxykinase
(pepck), the key gluconeogenic enzyme, were significantly
affected by dietary CHO:L ratios (p < 0.05). However, pyruvate
kinase (pk) and glucose 6-phosphatase (g6pc), enzymes involved
in the final step of glycolysis and gluconeogenesis, were not
significantly influenced by dietary CHO:L ratios. The mRNA
expression level of pepck was higher in fish fed with the
carbohydrate-rich diet (p < 0.05). Moreover, the relative
expression of gk significantly increased with increase of dietary
CHO:L ratios. However, fish fed the 0.33 CHO:L diet had
lower relative expression of glut2, which is involved in glucose
transport, than those fed the 2.26 and 3.75 CHO:L ratio
diets (p< 0.05).

The relative gene expressions involved in lipid biosynthesis in
the liver of juvenile black seabream are shown in Figure 3. The
higher mRNA expression level of lipogenic genes (fas and accα)
and lower mRNA expression of fatty acid β-oxidation genes (cpt1
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FIGURE 1 | Relationship between percentage weight gain (PWG) and dietary (CHO:L) ratios based on two-slope, broken-line regression analysis, where Xopt
represents the optimal dietary (CHO:L) ratio for the maximum PWG of black seabream.

FIGURE 2 | The mRNA expression levels of genes involved in (A) glycolysis (gk, glucokinase; pk, pyruvate kinase), (B) gluconeogenesis (pepck,
phosphoenolpyruvate; g6pc, glucose-6-phosphatase), and (C) glucose transport (glut2, glucose transporter 2) in the liver of black seabream fed the different
experimental diets. Expression values are normalized by β-actin. Data are expressed as means ± SE (n = 3). Values with different superscripts are significantly
different (p < 0.05; Tukey’s range test).
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FIGURE 3 | The mRNA expression levels of genes involved in (A) lipid synthesis (fas, fatty acid synthase; accα, acetyl-coA carboxylase alpha), (B) fatty acid
β-oxidation (cpt1, carnitine palmitoyl transferase 1; acox1, acyl-CoA oxidase), and (C) long-chain PUFA biosynthesis (fads2, fatty acyl desaturase; elovl5, elongase 5)
in the liver of black seabream fed the different experimental diets. Expression values are normalized by β-actin. Data are expressed as means ± SE (n = 3). Values
with different superscripts are significantly different (p < 0.05; Tukey’s range test).

and acox1) were observed in fish fed with CHO:L of 1.36, 2.26,
and 3.75 diets (p < 0.05). Fish fed the 1.36 CHO:L ratio had the
highest expression of cpt1 and acox1 among all treatments. The
mRNA expression levels of genes encoding key proteins involved
in the LC-PUFA biosynthesis pathway (elovl5 and fads2) were
upregulated in the liver of black seabream (p < 0.05). However,
the relative expression of fads2 was significantly upregulated in
fish fed the 3.75 CHO:L ratio diet.

DISCUSSION

The efficiency of protein can be enhanced through the utilization
of carbohydrates and lipids in the diet for the cultured fish species
(NRC, 2011). Various experimental studies have revealed that fish
can efficiently utilize both carbohydrates and lipids to achieve
better growth (Kim and Lee, 2005; Li et al., 2012a,b; Darias et al.,
2015). In this study, the results demonstrated that PWG and SGR
were significantly improved with dietary CHO:L ratios increasing
up to 1.36, after which a decreasing trend was observed.
These findings are consistent with previous studies indicating
that appropriate dietary CHO:L ratios considerably improved
growth performance in African catfish (Clarias gariepinus; Ali
and Jauncey, 2004), dorado (Salminus brasiliensis; Moro et al.,
2015), large yellow croaker (Zhou et al., 2016), and Nile tilapia
(Oreochromis niloticus; Xie et al., 2017). These results also
indicated that excessive dietary CHO:L ratios directly caused
the growth depression in black seabream similar to other

fish species (Ali and Al-Asgah, 2001; Moro et al., 2015; Xie
et al., 2017). Hence, excessive increase in the input of non-
protein energy sources always has a negative impact on growth
performance, which appears to be closely associated with poor
feed consumption by fish. Although an appropriate ratio of
dietary carbohydrate and lipid is required, dietary carbohydrate
is used to improve the palatability of the diet and maximize
growth. However, lipids are used to fulfill the requirements
for essential fatty acid in fish (Ng and Romano, 2013). In the
present study, the survival was higher than 96% without any
significant difference among all the treatments, suggesting that
black seabream can thrive on a vast range of CHO:L ratios to
attain better growth results.

Consistently, the feed ingredients not only affect the growth
parameters of fish but also the physiological conditions, such as
tissue physiology and plasma biochemical factors (Tian et al.,
2012). In this study, the plasma triglyceride and cholesterol levels
significantly decreased with increase of dietary CHO:L ratios,
which was consistent with findings of other fish species (Hu
et al., 2007; Zhou et al., 2016). The most favorable reason can be
ascribed to active endogenous lipid transport in fish (Wang et al.,
2014). However, the effects of CHO:L ratios on blood indexes,
especially glucose, are still unclear, and further study is required.

In addition, a significant decrease in the whole-body lipid
content with increase of dietary CHO:L ratios was observed in
this study. It can be inferred that the whole-body lipid content in
general accord with a previous study reported by Hu et al. (2007)
that stated comparable results in yellowfin seabream (Sparus
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latus). However, conflicting conclusions observed in cobia
(Rachycentron canadum) and European sea bass (Dicentrarchus
labrax) were defined (Moreira et al., 2008; Ren et al., 2011).
The present results also provided the credible fact that high
carbohydrate intake resulted in a significantly high amount of
HSI in fish (Brauge et al., 1994; Zuo et al., 2013). The high
content of HSI with increasing levels of dietary carbohydrate
was in agreement with the higher hepatic glycogen content, and
these results were in accordance with the previous results on
juvenile cobia (Ren et al., 2011) and rainbow trout (Oncorhynchus
mykiss; Kamalam et al., 2012). The results of the present study
indicate that the higher dietary carbohydrate level can promote
glycogenesis and lipogenesis in fish (Moreira et al., 2008).

In the liver, the excess amount of dietary glucose is
transformed into glycogen or lipids or used for energy. The
production of pyruvate by glycolysis is either oxidized for energy
or directed into pathways for lipogenesis (Uyeda and Repa,
2006). The glucose transportation rate and glycolysis potential
can be increased by higher absorptions of carbohydrates, such
as the upregulation of the hepatic genes glut2 and gk in black
seabream. This is in agreement with results in gilthead sea
bream (Sparus aurata) and rainbow trout (Panserat et al.,
2000), where the activity of gk was intensely upregulated by
a rich carbohydrate diet. Although the lack of transcriptional
regulation of pk by dietary carbohydrates may probably be
associated to a post-transcriptional mechanism (Enes et al.,
2006), there was no transcriptional regulation of g6pc, and
key gluconeogenic enzyme pepck was downregulated by dietary
carbohydrates. Taking into account these outcomes, we suggest
that carbohydrate catabolism is regulated at a nutritional level
in this species. These analytical interpretations are in agreement
with the results from European sea bass and gilthead sea bream
(Enes et al., 2011), where the activity of pepck recommend that
gluconeogenesis is partly regulated by dietary carbohydrates at
the transcriptional level.

The lipid metabolism in the liver is a very complex process;
hepatocytes not only import and export lipids via lipoprotein, but
they also oxidize lipids through fatty acid oxidation or synthesize
new lipid by de novo lipogenesis (Akie and Cooper, 2015). It
is generally reported that fas is the significant lipogenic enzyme
for the anabolic alteration of dietary carbohydrates to fatty acids
(Chen et al., 2015), and accα is reflected as an important enzyme
in the synthesis of long-chain poly-unsaturated fatty acids (Qian
et al., 2015; Castro et al., 2016). In the present study, both fas and
accα played a vital role in fatty acid biosynthesis. The expressions
of fas and accα genes were all upregulated in the fish fed with a
higher CHO:L ratio diet, and the results are parallel with previous
work in other fish species (Xiong et al., 2014; He et al., 2015). The
significant difference of these outcomes may possibly be due to
the elevation of de novo lipogenesis in response to the elevated
level of carbohydrates in the low-lipid diet (NRC, 2011). The gene
expression of cpt1, a marker of mitochondrial FA β-oxidation
was downregulated in the liver of fish fed with higher dietary
carbohydrate and lower lipid diets. However, in a number of
studies, the expression of the cpt1 gene was not nutritionally
regulated (Kennedy et al., 2006; Morais et al., 2011; Kamalam
et al., 2012). Furthermore, lipogenesis and FA β-oxidation are

two different pathways generally regulated in opposite directions
(Zheng et al., 2014; Bonacic et al., 2016). The downregulated
expression of acox1 and cpt1 were potentially associated with
increasing dietary CHO:L ratios from 2.26 to 3.75; similar results
were reported for Ctenopharyngodon idellus (Li et al., 2016). The
possible reason can be endorsed to the provision of digestible
carbohydrates in diets that could spare the use of lipids as source
of energy (Garcia-Meilan et al., 2014).

On the other hand, the high amount of ARA, EPA, and
DHA in fish muscle can also affect the gene expression of cpt1
and acox1 because lipid accumulation mostly takes place when
excess lipids that were consumed by fish could not be oxidized
(Lu et al., 2014). Contrary to humans and other mammals,
dietary excessive LC-PUFA in fish oil supplementation decreased
lipogenesis and triglyceridaemia (Ikeda et al., 1998; Davidson,
2006; Harris et al., 2008), and such effects are not clear in fish.
Many studies in fish showed that fish oil either depressed (Jordal
et al., 2007), had no particular effects (Regost et al., 2003; Richard
et al., 2006), or had contrary effects (Menoyo et al., 2004) on
lipogenesis. In this study, upregulation of fads2 and elovl5 were
noticed. The improved transcript levels of fads2 and elovl5 were
also examined in rainbow trout (Seiliez et al., 2001; Kamalam
et al., 2013) and European sea bass (Geay et al., 2010). The
maximum fads2 efficiency is considered to be regulated by the
levels of substrate and product availability (Vagner and Santigosa,
2011). In addition, this regulation may explain the capacity
of conversion of C18 PUFA into LC-PUFA at an appreciable
rate in fish species. Furthermore, the amount of n-3 LC-PUFA,
principally EPA and DHA, decreased in the muscle of fish fed
a carbohydrate-rich diet. The reduced n-3 LC-PUFA content in
fish fed a diet with higher CHO:L ratios could be interconnected
to an increase in SFA derived by lipogenesis from carbohydrates
as in earlier findings in other species, such as rainbow trout
and European sea bass (Alvarez et al., 1998; Castro et al., 2015).
This suggested that the CHO:L ratios might affect the tissue FA
composition and also FA biosynthesis of fish differently according
to fish species, feeding habits, dietary carbohydrate level, and
lipid sources (Castro et al., 2016). A future study concerning
the dietary CHO:L ratios effect on the FA biosynthesis of black
seabream is needed to elucidate. However, the levels of n-3
LC-PUFA (EPA and DHA) in the muscle of black seabream
fed a dietarily optimal CHO:L ratio contributed possible health
benefits to fish consumers.

CONCLUSION

In conclusion, based on two-slope, broken-line regression
analysis, the optimal dietary CHO:L ratio is recommended to
be 1.08 for juvenile black seabream. Dietary CHO:L ratio could
influence the tissue fatty acid profile and the accumulation of
glycogen in tissues. Moreover, dietary CHO:L ratios upregulated
or downregulated relative expression levels of genes involved
in glucose and lipid metabolism. The results of the present
study could provide important insight for molecular studies
on fish nutrition and sustainable aquaculture development
of black seabream.
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