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Abstract

DNA double-strand breaks are repaired by multiple mechanisms that are roughly grouped into the categories of homology-
directed repair and non-homologous end joining. End-joining repair can be further classified as either classical non-
homologous end joining, which requires DNA ligase 4, or ‘‘alternative’’ end joining, which does not. Alternative end joining
has been associated with genomic deletions and translocations, but its molecular mechanism(s) are largely uncharacterized.
Here, we report that Drosophila melanogaster DNA polymerase theta (pol theta), encoded by the mus308 gene and
previously implicated in DNA interstrand crosslink repair, plays a crucial role in DNA ligase 4-independent alternative end
joining. In the absence of pol theta, end joining is impaired and residual repair often creates large deletions flanking the
break site. Analysis of break repair junctions from flies with mus308 separation-of-function alleles suggests that pol theta
promotes the use of long microhomologies during alternative end joining and increases the likelihood of complex insertion
events. Our results establish pol theta as a key protein in alternative end joining in Drosophila and suggest a potential
mechanistic link between alternative end joining and interstrand crosslink repair.
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Introduction

DNA double-strand breaks (DSBs) and interstrand crosslinks

pose serious threats to cell survival and genome stability. Because

these lesions compromise both strands of the double helix, they

impede DNA replication and transcription and therefore must be

removed in a timely and coordinated manner. Interstrand

crosslink repair has been shown to involve a DSB intermediate

in some cases (reviewed in [1]). Therefore, there may be

substantial mechanistic overlap in the processes used during

repair of these two lesions.

Error-free repair of DSBs can be accomplished through

homologous recombination (HR) with an undamaged homologous

template (reviewed in [2]). However, in contexts where suitable

templates for HR do not exist, error-prone repair mechanisms are

also used. For example, non-homologous end joining (NHEJ)

frequently creates small insertions and deletions during DSB

repair, particularly in cases where the broken ends cannot be

readily ligated (reviewed in [3]). Analogously, the use of translesion

DNA polymerases during interstrand crosslink repair can result in

mutations, due to the reduced fidelity of these polymerases [4,5].

Accumulating evidence suggests that NHEJ is composed of at

least two genetically distinct mechanisms. Classical NHEJ (C-

NHEJ) involves the sequential recruitment of two highly conserved

core complexes (reviewed in [6]). First, the Ku70/80 heterodimer

recognizes and binds to DNA ends in a sequence-independent

manner, thereby protecting them from degradation. In many

eukaryotes, Ku70/80 also recruits DNA-PKcs, forming a synaptic

complex that can recruit additional processing enzymes such as

the Artemis nuclease and the X family DNA polymerases mu and

lambda. These proteins expand the spectrum of broken ends that

can be rejoined. The second core complex, composed of DNA

ligase 4, XRCC4, and XLF/Cernunnos, catalyzes ligation of the

processed ends. Depending on the substrate, C-NHEJ can result in

perfect repair of broken DNA, or it can result in small deletions of

1–10 nucleotides and/or insertions of 1–3 nucleotides [7].

Although C-NHEJ can repair blunt-ended substrates, a subset of

C-NHEJ products appear to involve annealing at 1–4 nucleotide

microhomologous sequences on either side of the break.

Alternative end-joining (alt-EJ) is defined as end-joining repair

that is observed in cells or organisms lacking one or more C-NHEJ

components (reviewed in [8]). Alt-EJ in yeast is associated with

deletions larger than those typically created by C-NHEJ, together

with an increased tendency to repair by annealing at micro-

homologous sequences. Ku and ligase 4-independent end joining

observed in mammalian cells also displays an increased tendency

towards use of short microhomologies compared to C-NHEJ

[9,10]. Therefore, alt-EJ is sometimes called microhomology-

mediated end joining (MMEJ) [11]. However, the relationship

between MMEJ and alt-EJ is still unclear, and alt-EJ may comprise

one or more C-NHEJ-independent repair mechanisms [8].

The importance of alt-EJ repair is highlighted by multiple

studies that suggest it may promote chromosome instability and

carcinogenesis. Alt-EJ produces chromosome translocations in
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mouse embryonic stem cells lacking Ku70 [12] and the use of alt-

EJ during V(D)J recombination in C-NHEJ-deficient murine

lymphocytes causes complex chromosome translocations and

progenitor B cell lymphomas [13]. Furthermore, alt-EJ has been

implicated in various translocations associated with chronic

myeloid leukemia and human bladder cancer [14,15]. Important-

ly, alt-EJ also operates during V(D)J rejoining in C-NHEJ-

proficient B lymphocytes [16], suggesting that its role in DSB

repair is not limited to situations where C-NHEJ is defective.

However, alt-EJ is frequently masked by more dominant repair

processes that are essential for vertebrate development, making it

difficult to study. Therefore, its molecular mechanisms and the

proteins involved remain largely unknown.

Several lines of evidence demonstrate that Drosophila is an

excellent model system in which to study alt-EJ in a metazoan. The

Drosophila genome lacks several mammalian C-NHEJ components,

including DNA-PKcs and Artemis. This may predispose flies towards

non-C-NHEJ repair. Consistent with this, we have previously shown

that a DSB caused by excision of a P element transposon in flies is

readily repaired by a DNA ligase 4-independent end-joining process

[17]. Interestingly, although Drosophila orthologs for the Pol X

family DNA polymerases mu and lambda have not been identified

[18], we and others have found evidence for polymerase activity in

Drosophila end-joining repair [17,19,20]. Specifically, end joining in

flies is often associated with the insertion of nucleotides at repair

junctions, frequently involving imperfect repeats of 5–8 nucleotides.

Full or partial templates for the insertions, occasionally possessing

mismatches, can often be identified in adjacent sequences, suggesting

the action of an error-prone polymerase. Similar templated

nucleotides (T-nucleotides) have previously been identified at

translocation breakpoints in human lymphomas [21–23]. Therefore,

T-nucleotides could represent a signature of alt-EJ and may be

informative regarding its molecular mechanisms.

Additional insight into alt-EJ is provided by recent reports

suggesting a mechanistic link between alt-EJ and interstrand

crosslink repair. For example, a study of two Chinese hamster

ovary cell lines sensitive to the crosslinking agent mitomycin C

found that they were also deficient in alt-EJ [24]. Furthermore,

certain interstrand crosslink-sensitive cell lines from Fanconi

Anemia patients are also impaired in DNA-PKcs-independent

rejoining of linearized plasmids [25]. Based on these reports, we

hypothesized that additional mechanistic insight into both

interstrand crosslink repair and alt-EJ could be gained by

searching for mutants defective in both processes. To test this,

we have screened Drosophila mutants that are sensitive to DNA

crosslinking agents for additional defects in alt-EJ repair. In this

work, we describe our studies with one such mutant, mus308.

The mus308 (mutagen sensitive 308) mutant was originally

identified by its extreme sensitivity to interstrand crosslinking

agents but normal resistance to alkylating agents [26]. Subse-

quently, mus308 was found to code for DNA polymerase theta,

which is most similar to A family DNA polymerases such as

Escherichia coli Pol I [27]. Orthologs of polymerase theta (hereafter

referred to as pol h) are found in many metazoans, including

Caenorhabditis elegans, Arabidopsis thaliana, and Homo sapiens, but not in

unicellular eukaryotes, including the yeasts [28–30]. Several lines

of evidence suggest that pol h may play an important role in

maintaining genome stability. Similar to flies, C. elegans with

mutations in POLQ-1 are defective in repair of interstrand

crosslinks [28]. Mice lacking pol h (chaos1 mutants) have a high

frequency of spontaneous and mitomycin C-induced micronuclei

in erythrocytes, consistent with genomic instability [31]. In

addition, vertebrate pol h orthologs have been implicated in a

wide range of repair processes, including base excision repair,

bypass of abasic sites, and somatic hypermutation of immuno-

globulin genes [32–36]. Finally, upregulation of pol h is observed

in a variety of human tumors and is associated with a poor clinical

outcome, suggesting that its overexpression may contribute to

cancer progression [37].

Pol h is unusual in possessing an N-terminal helicase-like domain

and a C-terminal polymerase domain. Although pol h purified from

human cell lines and Drosophila has error-prone polymerase activity

and single-stranded DNA-dependent ATPase activity, helicase

activity has not been demonstrated in vitro [30,38,39]. Therefore, it

remains unclear exactly how the structure of pol h relates to its

multiple functions in DNA repair in different organisms.

We report here that in addition to its role in DNA interstrand

crosslink repair, Drosophila pol h is involved in end-joining repair

of DSBs. This alt-EJ mechanism operates independently of both

Rad51-mediated HR and ligase 4-dependent C-NHEJ. Genetic

analysis using separation-of-function alleles provides support for

distinct roles of both the N- and C-terminal domains of pol h in

alt-EJ. Collectively, our data support a model in which helicase

and polymerase activities of Drosophila pol h cooperate to

generate single-stranded microhomologous sequences that are

utilized during end alignment in alt-EJ.

Results

Drosophila pol h is important for both interstrand
crosslink repair and end-joining repair of DNA double-
strand breaks

Drosophila mus308 mutants were initially identified based on

their sensitivity to low doses of chemicals that induce DNA

interstrand crosslinks [26]. To confirm this phenotype, we

assembled a collection of previously identified mus308 mutant

alleles [40,41] and measured the ability of hemizygous mutant

larvae to survive exposure to the crosslinking agent mechloreth-

amine (nitrogen mustard). Of the mutants that we tested, four were

unable to survive exposure to 0.005% mechlorethamine: D2, D5,

2003, and 3294 (data not shown), consistent with their inability to

repair interstrand crosslinks.

Author Summary

DNA double-strand breaks, in which both strands of the
DNA double helix are cut, must be recognized and
accurately repaired in order to promote cell survival and
prevent the accumulation of mutations. However, error-
prone repair occasionally occurs, even when accurate
repair is possible. We have investigated the genetic
requirements of an error-prone break-repair mechanism
called alternative end joining. We have previously shown
that alternative end joining is frequently used in the fruit
fly, Drosophila melanogaster. Here, we demonstrate that a
fruit fly protein named DNA polymerase theta is a key
player in this inaccurate repair mechanism. Genetic
analysis suggests that polymerase theta may be important
for two processes associated with alternative end joining:
(1) annealing at short, complementary DNA sequences,
and (2) DNA synthesis that creates small insertions at
break-repair sites. In the absence of polymerase theta, a
backup repair mechanism that frequently results in large
chromosome deletions is revealed. Because DNA polymer-
ase theta is highly expressed in many types of human
cancers, our findings lay the groundwork for further
investigations into how polymerase theta is involved in
repair processes that may promote the development of
cancer.

DNA Pol h Promotes Alt-EJ
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To determine the molecular lesions responsible for mechlor-

ethamine sensitivity, we sequenced the entire mus308 coding

region of flies hemizygous for each mutant allele. Pol h possesses

both a conserved N-terminal helicase-like domain and a C-

terminal pol I-like polymerase domain (Figure 1, Figure S1) [30].

Three of the four alleles contain unique sequence changes that are

predicted to affect pol h primary structure (Figure 1, Figure S2,

and Figure S3). The 2003 allele is a nonsense mutation upstream

of the polymerase domain, while the D5 allele is a missense

mutation that alters a highly conserved proline in the conserved N-

terminus. The 3294 allele changes an invariant glycine in the

helicase domain to serine. Interestingly, this residue is conserved in

the related mus301 helicase, but not in other DNA helicases (data

not shown). No mutations were found in the coding sequence of

the D2 allele. Because homozygous D2 flies have undetectable

levels of pol h protein [38], the D2 mutation may affect a

regulatory region of mus308.

One explanation for the extreme sensitivity of mus308 mutants

to mechlorethamine could be a defect in the repair of certain types

of DSB intermediates that are created during crosslink repair. To

test this, we exposed flies hemizygous for each mutant allele to

increasing doses of ionizing radiation (IR). Although IR creates

many different types of lesions, unrepaired DSBs are thought to be

the main cause of cell death following irradiation. All four mus308

mutants survived IR exposures as high as 4000 rads (Figure 2A),

although bristle and wing defects characteristic of apoptotic cell

death were frequently observed at high doses. Drosophila lig4

mutants, which are completely defective in C-NHEJ, also survive

IR doses in excess of 4000 rads [17]. However, spn-A mutants,

which lack the Rad51 recombinase required for strand invasion

during homologous recombination initiation [42], are highly

sensitive to IR [17]. Thus, in Drosophila, HR is the dominant

mechanism used to repair IR-induced DSBs.

To test whether pol h acts to repair IR damage in the absence of

HR, we created mus308 spn-A double mutants and exposed them

to doses of 125–1000 rads. Strikingly, doses as low as 125 rads

resulted in almost complete killing of mus308 spn-A mutants

(Figure 2B). In contrast, lig4 spn-A double mutants are only slightly

more sensitive than spn-A single mutants to IR [17]. Thus, in the

absence of HR, pol h participates in a process crucial for repair of

damage caused by ionizing radiation.

Because interstrand crosslink repair and alternative end joining

have been shown to have partially overlapping genetic require-

ments in mammals [24,25], we hypothesized that the extreme

sensitivity of mus308 spn-A mutants to IR might relate to a role of

pol h in an alternative end-joining mechanism. To explore this

hypothesis, we tested each mus308 mutant allele using a site-

specific double-strand break repair assay that can distinguish

between synthesis-dependent strand annealing (SDSA, a specific

type of HR) and end joining (EJ) (Figure 3A) [43]. We have

previously shown that the majority of end joining observed in this

assay occurs independently of DNA ligase 4, and is therefore a

form of alt-EJ [17]. In this system, excision of a P element (P{wa})

located on the X chromosome is catalyzed by P transposase,

resulting in a 14-kilobase gap relative to an undamaged sister

chromatid. The DNA ends remaining after excision each have 17-

nucleotide non-complementary 39 single-stranded overhangs [44].

These ends are highly recombinogenic and repair by SDSA is

initially favored. However, because repair synthesis in this system

is not highly processive, most repair products that are recovered

from wild-type flies result from incomplete repair synthesis from

one or both sides of the break, followed by end joining of the

nascent DNA (SDSA+EJ events) [45]. To quantitate the

percentage of repair events that derive from each mechanism,

repair events are recovered from male pre-meiotic germline cells

by mating individual males to females homozygous for the P{wa}

element. Each of the resulting female progeny represents a single

repair event that can be classified by eye color. Red eyed-females

inherit a repair event involving homology-dependent synthesis that

generated complementary single-stranded regions that subse-

quently anneal (repair by SDSA). Yellow-eyed females inherit a

chromosome that was repaired by EJ or SDSA+EJ mechanisms

(these repair events are hereafter referred to as (SDSA)+EJ; for

further details, see Materials and Methods).

Overall, the results from the P{wa} assay indicated that mus308

mutants are defective in end-joining repair of DSBs. We observed

no decrease in the percentage of red-eyed progeny recovered from

mus308 mutant males (Figure 3B), suggesting that SDSA repair is

not impaired when pol h is missing or defective. In contrast, all

four mus308 mutant alleles resulted in a significantly decreased

percentage of yellow-eyed progeny relative to wild type (p,0.001,

Kruskal-Wallis test). Because yellow-eyed progeny can only result

from a repair mechanism involving end joining, these data suggest

that pol h is involved in an end-joining process.

To further demonstrate that pol h is not involved in DNA

synthesis during SDSA, we recovered independent (SDSA)+EJ

events in males, isolated genomic DNA, and used PCR to estimate

the approximate amount of DNA repair synthesis that occurred

prior to end joining. The amount of repair synthesis in (SDSA)+EJ

repair products did not differ significantly between wild-type and

mus308 mutant flies (Figure 3C). We conclude that pol h is not

required for DNA synthesis during SDSA, but plays an important

role in end-joining repair following aborted SDSA.

DSB repair in mus308 mutants frequently results in
Rad51-independent genomic deletions

Mutations that abolish end joining in flies cause an increased

frequency of genomic deletions during repair of site-specific DSBs

Figure 1. Schematic of the mus308 gene. Exons are represented by boxes. The helicase-like domain (light gray shading) and polymerase domain
(dark gray shading) are shown. Locations of the D5, 3294, and 2003 point mutations are indicated with arrows (numbers correspond to amino acid
positions in the protein). Not shown is the D2 mutation, which results in severely reduced levels of pol h.
doi:10.1371/journal.pgen.1001005.g001
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[46,47]. To determine whether mutation of mus308 also results in

repair-associated deletions, we took advantage of the fact that

deletions can be easily scored in the P element excision assay.

Because P{wa} is inserted in the essential scalloped (sd) gene, repair

events that delete into sd exons cause a scalloped-wing phenotype

when recovered in heterozygous females and lethality in

hemizygous males [48,49]. We observed a substantial increase in

the percentage of deletion-associated repair events isolated from

mus308 mutant males relative to wild type (Figure 3D). Overall, the

total percentage of end-joining repair events involving deletions

recovered from mus308 mutants was elevated from 3- to 26-fold

over wild type, depending on the mus308 allele tested.

Previously, we observed a similar deletion-prone phenotype in

flies lacking the DmBlm protein, which is involved in repair of

Figure 2. Drosophila pol h is required for repair of IR–induced damage in the absence of Rad51. (A) mus308 mutants are not sensitive to
ionizing radiation. Female flies heterozygous for the indicated mus308 alleles were mated to Df(3R)Sz29/TM3 males and third instar larval progeny
were irradiated with increasing doses of IR. The percent survival of mus308 hemizygous mutants was calculated relative to an unirradiated control.
Each dose was repeated twice; the average of the two experiments is shown. (B) spn-A mus308 double mutants are extremely sensitive to ionizing
radiation. Heterozygous spn-A057mus308D5 females were mated to heterozygous spn-A093mus308D5 males and third instar larval progeny were
irradiated with increasing doses of IR. The percent survival of spn-A mus308 compound heterozygotes was calculated relative to an unirradiated
control. Each dose was repeated at least twice. Error bars represent standard deviations.
doi:10.1371/journal.pgen.1001005.g002

DNA Pol h Promotes Alt-EJ
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Figure 3. Pol h is involved in end-joining repair. (A) A P element excision assay monitors DSB repair outcomes. The P{wa} transposon is inserted
in a 5.2 kb intron of the essential scalloped (sd) gene. A copia retrotransposon flanked by long terminal repeats (LTR) is inserted into an exon of the
white gene, causing reduced expression of white. Excision of P{wa} results in a 14-kilobase gap relative to an intact sister chromatid. Following
excision, repair events from the male pre-meiotic germline are recovered in female progeny and the method of repair is inferred from their eye color.
SDSA = synthesis-dependent strand annealing, SDSA+EJ = SDSA+end joining, EJ = end joining. Accompanying deletion into sd exons (EJ with
deletion) results in a scalloped-wing phenotype and/or male lethality. (B) Pol h mutants are defective specifically in end-joining repair of DSBs. Each
bar represents the mean percentage of repair events recovered from independent males possessing the indicated mus308 allele in trans to

DNA Pol h Promotes Alt-EJ
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DSBs by SDSA [48]. Because our data did not support a role for

pol h in homologous recombination, we expected the deletion-

prone phenotype of mus308 mutants to persist even in SDSA-

deficient flies. To confirm this, we assayed repair following P{wa}

excision in mus308 mutants lacking the Rad51 protein, which

renders them unable to carry out HR repair [42,45].

As expected, PCR analysis of repair products showed that

SDSA was abolished in both spn-A and spn-A mus308 mutants (data

not shown). Approximately 17% of P{wa} chromosomes recovered

from spn-A mutant males showed evidence for end joining at the

17-nucleotide overhangs that are created by P transposase

(Figure 4A and Table 1); the other 83% of P{wa} chromosomes

recovered were presumably uncut. We observed a 30–50%

decrease in end-joining repair products in spn-A mus308 double

mutants compared to spn-A mutants (p,0.001, Kruskal-Wallis

test), confirming a unique role for polh in end joining when HR is

absent. Importantly, mutation of mus308 still caused an increased

percentage of deletions in the absence of Rad51 (Figure 4B). From

these data, we conclude that the deletions formed during break

repair in mus308 mutants are not the result of aborted SDSA.

Rather, they are a consequence of a deletion-prone repair

mechanism that operates in the absence of both SDSA and pol

h-dependent end joining.

During the course of these experiments, we made a number of

observations suggesting that Rad51 and pol h act in parallel and

distinct DSB repair mechanisms. First, we recovered fewer spn-A

mus308 double mutant males than would be predicted from

Mendelian ratios. For example, in crosses between mus308D2 and

mus308D5 heterozygotes, 38% of the progeny were mus308D2/

mus308D5 compound heterozygotes. In contrast, only 16% of

progeny recovered from parallel matings between spn-A057

mus308D2 and spn-A093mus308D5 mutants were spn-A mus308

compound heterozygotes (P,0.05, Fisher’s exact test; Figure 5A).

This difference in viability between mus308 and spn-A mus308

mutants was even more extreme in flies in which excision of P{wa}

was occurring (P,0.01; Figure 5A). In addition, we observed

heightened male sterility in various combinations of spn-A mus308

mutants undergoing P{wa} transposition, with 51% of the double

mutant males unable to produce viable progeny in the most severe

allele combination (Figure 5B). Finally, we observed morpholog-

ical abnormalities, specifically abdominal closure defects and

aberrant cuticle banding patterns, in 100% of spn-A093mus308D5/

spn-A057mus308D2 double mutants (Figure 5C). These defects were

more severe in the double mutants experiencing P{wa} transpo-

sition, but were not apparent in either mus308 or spn-A single

mutants. From these data, we conclude that Rad51 and pol h
participate in independent pathways required for repair of DSBs

that arise during both endogenous developmental processes and

during P element transposition.

Pol h–mediated end joining is distinct from C-NHEJ
P element ends are good substrates for DNA ligase 4-independent

end joining [17]. Based on the results presented above, it seemed

likely that pol h is involved in an end-joining process different from

C-NHEJ. To formally test this, we repeated the P{wa} assay in lig4

mus308 double mutants that lack DNA ligase 4 and are unable to

repair DSBs by C-NHEJ. Unlike spn-A mus308 mutants, we

observed no viability, fertility, or morphological defects in lig4

mus308 mutants. We also observed no defect in HR repair in the

double mutants (Figure 4C), consistent with results obtained using

mus308 single mutants. In contrast, we observed a further decrease

in the percentage of end joining repair products recovered from lig4

mus308 double mutants relative to mus308 mutants, from 3.0% to

1.3% (P,0.01, Kruskal-Wallis test). Previously, we have shown that

end-joining repair of DSBs induced by P{wa} excision is unaffected

in lig4 mutants [17]. Therefore, the removal of pol h-mediated end

joining reveals a previously hidden role for DNA ligase 4 in the

repair of DSBs created by P transposase. Strikingly, although only

50% of end-joining products isolated from mus308 mutants involved

large, male-lethal deletions, 100% of end-joining products recov-

ered from lig4 mus308 mutant males were associated with large

deletions (Figure 4D).

From these results, we conclude that at least three distinct

mechanisms for end-joining repair exist in Drosophila. One, which

corresponds to C-NHEJ, requires DNA ligase 4 and other

canonical NHEJ proteins, including XRCC4, Ku70, and Ku80

[46,47,50]. Another mechanism, which is at least partially

independent of DNA ligase 4, is defined by a requirement for

pol h and corresponds to alt-EJ. Interestingly, alt-EJ appears to be

used more frequently than C-NHEJ, at least for the repair of P

element-induced breaks. In the absence of these two repair

processes, a Rad51-independent backup mechanism characterized

by extensive genomic deletions operates at low efficiency.

Pol h has two distinct functions in alternative end joining
Alt-EJ repair in Drosophila is frequently associated with annealing

at microhomologous sequences of more than four nucleotides and

with long DNA insertions at repair junctions [8]. To determine

whether pol h-dependent end joining involves either of these types of

repair, we sequenced repair junctions obtained from spn-A and spn-A

mus308 double mutants following P{wa} excision. Because we

sequenced only one junction per male germline, each junction

analyzed represents an independent repair event. Five distinct

junction types were identified. Three of these types are characteristic

of junctions arising from C-NHEJ in mammalian systems [7]:

junctions involving small, 1–3 base pair insertions, junctions involving

annealing at 1–3 nucleotide microhomologies, and junctions for

which no microhomologies can be identified (apparent blunt end

junctions). The other two types of junctions, characteristic of alt-

EJ [8], involve annealing at 5–10 nucleotide microhomologous

sequences or insertions of more than three base pairs.

Approximately 58% of junctions from spn-A mutants showed

structures considered typical of C-NHEJ repair, while 29%

involved annealing at 5–10 nucleotide microhomologies and

13% had insertions of greater than three base pairs (Figure 6A

and Table 1). Potential templates for the larger insertions could

almost always be identified in flanking sequences. These insertions

may be analogous to T-nucleotides that have been observed at

translocation breakpoint junctions isolated from certain human

cancers [21–23].

Df(3R)Sz29. (SDSA)+EJ = repair involving HR initiation followed by end joining or repair involving only end joining. Number of independent males
assayed: wild type = 101, D2 = 155, D5 = 161, 2003 = 155, 3294 = 100. Error bars represent SEM. (*** indicates p,0.001, Kruskal-Wallis non-parametric
ANOVA). p .0.5 for all comparisons between different mus308 alleles. (C) Synthesis during HR is not impaired in pol h mutants. Each bar represents
the percentage of repair events recovered from yellow-eyed females that showed evidence for repair synthesis of at least the indicated length.
Number of independent repair events: wild type = 32, D2 = 28, D5 = 53. (D) Pol h mutants have an increased frequency of DSB repair events with
flanking deletions. For all genotypes, small deletions ,3.6 kilobases upstream or ,1.6 kilobases downstream of P{wa} were detected by PCR. Large
deletions resulted in scalloped-winged female progeny and/or male lethality.
doi:10.1371/journal.pgen.1001005.g003

DNA Pol h Promotes Alt-EJ
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When we sequenced repair junctions from spn-A mus308

mutants, we observed two distinct patterns, depending on the

mus308 alleles used. For both the D2/2003 and D5/2003 allele

combinations, the percentage of junctions involving annealing at

long microhomologies was significantly decreased (P,0.01,

Fisher’s exact test; Figure 6A, Table 2, and Table 3). Only 12%

of D2/2003 junctions possessed an insertion greater than three

base pairs, compared to 44% of junctions recovered from males

with the D5 and 2003 alleles. In addition, most insertions isolated

from D5/2003 males were highly complex and had multiple copies

of imperfect repeats of T-nucleotides. Similar results were

obtained with the D5/3294 allele combination (data not shown).

An overall comparison of insert length showed that flies with wild-

type mus308 alleles had an average insert length of 5.5 nucleotides,

compared to 3.8 nucleotides for D2/2003 mutants and 13.3

nucleotides for D5/2003 mutants.

Figure 4. Pol h–dependent end joining acts independently of HR and C-NHEJ. (A) Decreased end joining in mus308 mutants does not
depend on homologous recombination. Each bar represents the mean percentage of end-joining events recovered from independent males of each
genotype. Number of independent males assayed: spn-A = 63; spn-A057mus308D2/spn-A057mus3082003 = 216; spn-A057mus308D2/spn-A057mus308D2 = 33;
spn-A093mus308D5/spn-A057mus3082003 = 80; spn-A093mus308D5/spn-A093mus3083294 = 128. Error bars represent SEM. ** indicates p,0.01, *** indicates
P,0.001 (Kruskal-Wallis non-parametric ANOVA). (B) Genomic deletions during DSB repair in mus308 mutants do not depend on initiation of HR. Each
bar represents the percentage of yellow-eyed female progeny with scalloped wings (representing large flanking deletions) recovered from males of
indicated genotype. (C) Mutation of mus308 in a lig4169a background further reduces end-joining repair relative to mus308 single mutants. Each bar
represents the mean percentage of repair events recovered from wild type, mus3082003/Df(3R)kar3l, or lig4169a; mus3082003/Df(3R)kar3l males. Number
of independent males assayed: wild type = 101, mus308 = 182, lig4 mus308 = 57. Error bars represent SEM. ** indicates p,0.01, *** indicates P,0.001
(Kruskal-Wallis non-parametric ANOVA). (D) Genomic deletions always occur during DSB repair in lig4 mus308 mutants. All yellow-eyed repair events
recovered from lig4169a; mus3082003/Df(3R)kar3l males had large deletions that resulted in male lethality and/or female progeny with scalloped wings.
Number of independent repair events assayed: wild type = 101, mus308 = 167, lig4 mus308 = 22.
doi:10.1371/journal.pgen.1001005.g004
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In summary, both mus308 mutant combinations significantly

abrogated annealing at long microhomologies during alt-EJ repair.

However, we observed a distinct difference in repair junctions

recovered from males harboring the D2 allele, which greatly

reduces overall pol h protein levels [38], compared to flies with the

D5 allele, which alters a conserved residue near the helicase-like

domain. These results suggest that pol h has two distinct functions

in alt-EJ: one that promotes the annealing of long microhomo-

logous sequences during end alignment, and another that is

responsible for complex T-nucleotide insertions. Flies with the D2

allele are impaired in their ability to carry out both the annealing

and insertion functions, whereas flies possessing the D5 separation-

of-function allele cannot perform the microhomology annealing

function but can still produce complex insertions.

Pol h operates in alternative end joining of
complementary-ended double-strand breaks

P element-induced breaks are unique in that they possess 17-

nucleotide non-complementary ends that are poor substrates for

Table 1. P{wa} repair junctions recovered from spn-A093/057 mutants.

Type of repair event Sequence 59 of breaka
Microhomology/inserted
sequence Sequence 39 of breaka Number of isolates

Original sequence acccagacCATGATGAAATAACATA - TATGTTATTTCATCATGacccagac -

Long microhomologyb

acccagac (CATgATGA)c cccagac 14

acccagac (CATGA) cccagac 4

noned (TGACCCAGAC) - 2

Short microhomology

acccagacCATG (ATG) TTATTTCATCATGacccagac 1

acccagacCA (TGA) cccagac 1

acccagacCATGATGAAATAA (CAT) Gacccagac 3

acccagacCATGATGAAATAAC (AT) GTTATTTCATCATGacccagac 14

acccagacCATGATGAAATAACA (TA) TGTTATTTCATCATGacccagac 5

acccagacCATGATGAAA (TA) TGTTATTTCATCATGacccagac 1

acccagacCATGATGAA (AT) GTTATTTCATCATGacccagac 1

noned (T) TCATGacccagac 1

Blunt join

acccagacCATGATGAAATA - TTATTTCATCATGacccagac 1

Insertione

acccagacCATGATGAAATAACATA A CATCATGacccagac 1

acccagacCATGATGA G CATCATGacccagac 1

acccagacCATGATGAAATAACATA AC ATGTTATTTCATCATGacccagac 3

acccagacCATGATGAAATAACAT GT TATGTTATTTCATCATGacccagac 1

acccagacCATGATGA AC ATGTTATTTCATCATGacccagac 1

acccagacCA AG ATGacccagac 1

acccagacCATGATGAAATAACATA TTC ATGTTATTTCATCATGacccagac 1

acccagacCATGATGAAATAACAT GTTA TATGTTATTTCATCATGacccagac 1

acccagacCATGATGAAATAACATA TTTAT TGTTATTTCATCATGacccagac 1

acccagacCATGATGAAATAACAT TTATCA TGTTATTTCATCATGacccagac 1

acccagacCATGATGAAATAACAT TTAACATAAC ATGTTATTTCATCATGacccagac 1

acccagacCATGATGAAATAACATA TTATTATTATA TTATTTCATCATGacccagac 1

acccagacCATGATGAAATAACAT GAAATAATAAC ATGTTATTTCATCATGacccagac 1

acccagacCATGATGAAATAACAT GTATTACATAAC ATGTTATTTCATCATGacccagac 1

acccagacCATGATGAAATAA TAATAATAATATAA TATGTTATTTCATCATGacccagac 1

acccagacCATGATGAAATA TCATGAAATATCATA TCATCATGacccagac 1

a Uppercase letters represent the 17-nucleotide 39 single-stranded tails that remain following transposase action, lowercase letters correspond to the 8 base pair target
sequence duplicated upon P element insertion.
b Microhomologies (in parentheses) are sequences that could have been derived from either side of the break site. Long microhomologies were five or more
nucleotides, while short microhomologies were three or fewer nucleotides.
c represents an 8-nucleotide imperfect microhomology.
d indicates a deletion that extends past the 8 base pair target sequence.
e Insertions were identified as any sequence not present at the original break site. Templated insertions and corresponding potential templates in flanking sequences
are underlined.
doi:10.1371/journal.pgen.1001005.t001

DNA Pol h Promotes Alt-EJ

PLoS Genetics | www.plosgenetics.org 8 July 2010 | Volume 6 | Issue 7 | e1001005



C-NHEJ. To test whether the results obtained with P elements can

be generalized to other types of breaks, we used the I-SceI

endonuclease and the previously characterized [Iw]7 reporter

construct [50] to create site-specific DSBs in wild-type flies and

flies lacking either DNA ligase 4 or pol h. I-SceI produces a DSB

with 4-nucleotide complementary overhangs that can be directly

ligated through a C-NHEJ mechanism [50,51]. Accurate repair

regenerates the original I-SceI recognition sequence, which can

then be cut again, while inaccurate end-joining repair abolishes

further cutting. We utilized an hsp70 or ubiquitin-driven I-SceI

construct integrated on chromosome 2 to drive high levels of I-SceI

expression [50,52]. Nearly 100% of repair events that we

recovered involved gene conversion (HR repair from the

homologous chromosome) or inaccurate end-joining (data not

shown). In the [Iw]7 system, both gene conversion events and large

deletions that remove the white marker gene are phenotypically

indistinguishable. PCR analysis confirmed that many repair events

recovered from mus308 mutants involved large deletions (.700

base pairs, data not shown). Our subsequent analysis focused on

the characterization of repair events involving smaller deletions.

Twenty-three percent of I-SceI repair junctions isolated from

wild-type flies possessed insertions of more than 3 base pairs

(Figure 6B). This percentage was significantly increased to 46% in

lig4 mutants (P,0.01, Fisher’s exact test), consistent with increased

use of alt-EJ in the absence of C-NHEJ. If pol h plays a general

role in insertional mutagenesis during alt-EJ repair, one would

predict that the frequency and length of insertions following I-SceI

cutting should decrease in mus308 mutants. Indeed, the percentage

of large insertions decreased to 9% in mus308 mutants (P = 0.03,

Fisher’s exact test). Wild-type flies had an average insertion length

of 7.6 base pairs, compared to 4.2 base pairs for mus308 mutants.

Strikingly, no mus308 insertion was longer than twelve base pairs,

while insertions of more than twenty base pairs occurred in both

wild type and lig4 mutants. Because microhomologies of greater

than four base pairs are not present near the I-SceI cut site in this

construct, repair involving annealing at long microhomologies was

not observed.

Surprisingly, the total percentage of repair junctions with short,

1–3 base pair insertions was not decreased in lig4 mutants relative

to wild type (17% vs. 13%, respectively). Furthermore, the

percentage of junctions involving annealing at 1–3 nucleotide

microhomologies was also similar between the two genotypes (25%

for lig4 mutants vs. 34% for wild type). These two types of

junctions have historically been associated with ligase 4-dependent

C-NHEJ repair. Our results suggest that this may not be the case.

Indeed, a fine-level sequence analysis of I-SceI repair junctions that

we have recently conducted suggests that alt-EJ may produce C-

NHEJ-like junctions in certain sequence contexts [53]. Neverthe-

less, our data obtained using two independent site-specific DSB

repair assays strongly suggest that C-NHEJ and alt-EJ represent at

least partially independent mechanisms for the repair of DSBs and

that pol h plays an important role in the generation of T-

nucleotide insertions during alt-EJ repair of both P element and I-

SceI-induced breaks.

Figure 5. Flies lacking Rad51 and Pol h have synergistic
phenotypic defects. (A) spn-A mus308 mutants are sub-viable. Females
and males with the P{wa} transposon and heterozygous for the spn-A057

or spn-A093 and mus308D2 or mus308D5 alleles were interbred and the
percentage of viable compound heterozygous progeny was determined.
The crosses were repeated in the presence of P transposase. Each bar
represents three independent experiments with at least 300 progeny per
experiment. Error bars represent SEM. * indicates p,0.05, ** indicates
P,0.01 (unpaired T test). (B) Increased male sterility in spn-A mus308
double mutant males. Each bar represents the percentage of spn-A or

spn-A mus308 males that produced no progeny. Number of independent
males assayed: spn-A = 57; spn-A057mus308D2/spn-A057mus3082003 = 305;
spn-A057mus308D2/spn-A057mus308D2 = 50; spn-A093mus308D5/spn-A057

mus3082003 = 102; spn-A093mus308D5/spn-A093mus3083294 = 100. (C) Muta-
tion of both spn-A and mus308 results in external morphological defects
such as abdominal cuticle mispatterning (note the severe disruption of
normal segmental banding patterns). Pictured are representative wild
type and spn-A057mus308D2/spn-A057mus3082003 males in which P
element excision is occurring.
doi:10.1371/journal.pgen.1001005.g005
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Discussion

Several studies have identified proteins important for end-

joining repair of DSBs in the absence of C-NHEJ factors in yeasts

[11,54,55]. More recently, the Mre11 protein has been identified

as an important alt-EJ component in vertebrate systems [10,56–

59]. However, much remains uncertain about the genetics or

mechanisms of alt-EJ in metazoans. Our previous work demon-

strated that end-joining repair of P element-induced breaks can

occur independently of DNA ligase 4, suggesting the presence of a

highly active alternative end-joining mechanism in Drosophila

[17]. We have now identified the mus308 gene, encoding DNA

polymerase theta, as a critical component of alt-EJ. Pol h-

dependent alt-EJ operates in parallel to C-NHEJ to promote

repair of both P element and I-SceI-induced breaks. Because we

observed similar alt-EJ defects with four different mus308 mutant

alleles, several of which were studied in trans to at least two

independently-derived deficiencies, we consider it highly unlikely

that the phenotypes we observed are due to second-site mutations

or other differences in genetic background.

Importantly, pol h does not appear to participate in homology-

directed repair. HR repair of DSBs following P{wa} excision is

thought to proceed largely through synthesis-dependent strand

annealing (SDSA) [60]. We observed that SDSA frequencies in the

P{wa} assay were similar in wild type and mus308 mutants.

Although we did not formally test for a role of pol h in single-

strand annealing (SSA), a non-conservative HR pathway that

involves annealing at direct repeats larger than 25 nucleotides, a

separate study demonstrated that pol h has no effect on SSA repair

[47]. In addition, comparison of the DNA sequences located 3

kilobases to either side of P{wa} by BLAST does not reveal any

significant similarities of more than 20 nucleotides. Therefore, it

seems unlikely that the repair observed in mus308 mutants arose

through an SSA mechanism.

Three findings suggest that mus308-dependent alt-EJ is an

important repair option for both cell and organism survival in flies,

particularly in the absence of homologous recombination. First,

spn-A mus308 double mutants are sub-viable and have severe

defects in adult abdominal cuticle closure, consistent with a high

level of apoptosis in rapidly proliferating histoblasts during

pupariation. Second, spn-A mus308 double mutant males under-

going P{wa} excision have up to 30-fold increased sterility relative

to spn-A mutants. Third, mus308 mutant males undergoing I-SceI

cutting show premature sterility and produce few progeny. The

few germline repair events that are recovered from each male are

frequently clonal, suggesting extensive germline apoptosis (A. Yu,

unpublished data).

Evidence for two functions of pol h in alternative end
joining

Pol h orthologs characterized from a variety of metazoans

possess both helicase-like and DNA polymerase domains

Figure 6. Pol h is required for two distinct classes of alt–EJ repair
products. (A) Annealing at long microhomologies is greatly decreased in
pol h mutants. Repair junctions isolated following P{wa} excision were
amplified from spn-A and spn-A mus308 females of the indicated
genotypes and sequences were aligned to the original P{wa} chromo-
some. White, blunt joins; hatched, 5–10 bp microhomologies; light gray,
1–4 bp microhomologies; dark gray, 1–3 bp insertions; black, $4 bp
insertions. Number of junctions sequenced: spn-A = 68, spn-A093mus308D5/
spn-A057mus3082003 = 23, spn-A057mus308D2/spn-A057mus3082003 = 25. The
percentage of 5–10 bp microhomologies was significantly decreased in

both spn-A mus308 mutants (P,0.01, Fisher’s exact test). (B) Reduced
frequency of $4 bp insertions during inaccurate end-joining repair of a
chromosomal I-SceI DSB in mus308 mutants. Complementary ended DSBs
were induced by expression of I-SceI endonuclease in the pre-meiotic
germline of wild type (n = 70), lig4169a (n = 83), and mus3082003/Df(3R)
kar-Sz29 (n = 57) males, and independent inaccurate end-joining repair
junctions were sequenced. White, blunt joins; light gray, 1–4 bp
microhomologies; dark gray, 1–3 bp insertions; black, $4 bp insertions.
No .4 bp microhomologies are available near the DSB in this system.
* indicates P = 0.03, ** indicates P,0.01, relative to wild type (Fisher’s
exact test).
doi:10.1371/journal.pgen.1001005.g006
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[27–31,35]. Pol h purified from both Drosophila and human cells

has a Pol I-like polymerase activity and single-stranded DNA-

dependent ATPase activity [30,38]. However, DNA helicase

activity of the purified protein remains to be demonstrated.

Although our experiments did not formally test for helicase activity

of pol h, our results are consistent with pol h having a DNA

unwinding or strand displacement function. Flies with the D5 and

3294 mutations (located in or near the conserved helicase domain)

produce repair products with complex T-nucleotide insertions but

not products involving annealing at long microhomologies. The

D5 and 3294 alleles may therefore encode proteins that retain

polymerase activity but lack unwinding activity, resulting in an

inability to expose internal microhomologous sequences. Because

the microhomologies used in repair following P element excision

are often located in the 17-nucleotide 39 single-stranded tails, pol h
may also be important for the unwinding of secondary structures

that form in single-stranded DNA. Alternatively, the DNA-

dependent ATPase activity demonstrated by pol h might represent

an annealing function of the protein that is required during alt-EJ.

Such an annealing activity was recently described for the human

HARP protein, which is able to displace stably bound replication

protein A and rewind single-stranded DNA bubbles [61].

One notable aspect of alt-EJ in Drosophila is the large

percentage of repair junctions with templated insertions. These

insertions may be ‘‘synthesis footprints’’ that are formed during

the cell’s attempt to create microhomologous sequences that can

be used during the annealing stage of alt-EJ when suitable

endogenous microhomologies are not present or are not long

enough to allow for stable end alignment. Indeed, analysis of the

insertions from I-SceI repair junctions suggests a model involving

local unwinding of double-stranded DNA and iterative synthesis of

3–8 nucleotide runs [53]. The P{wa} repair junctions isolated from

mus308D2/mus3082003 mutants are consistent with an important

(but not exclusive) role for the polymerase domain of pol h in the

synthesis of T-nucleotides.

We speculate that pol h may be involved in both DNA

unwinding and repair synthesis during alt-EJ (Figure 7). Linking

these two activities in one protein would provide a convenient

mechanism for creating longer microhomologies that could

increase the thermodynamic stability of aligned ends prior to the

action of a DNA ligase. Studies based on the crystal structure of a

dual function NHEJ polymerase-ligase protein found in Mycobac-

terium tuberculosis suggest that a synaptic function for an NHEJ

polymerase is plausible [62]. Because ligase 4 is not involved in alt-

EJ in Drosophila, another ligase must be involved in the ligation

step. Studies from mammalian systems have identified DNA ligase

3 as a likely candidate [63,64].

Potential roles of pol h in DNA interstrand crosslink repair
Pol h was originally identified in Drosophila based on the

inability of mus308 mutants to survive exposure to chemicals that

induce DNA interstrand crosslinks. A crucial question posed by

our findings is whether pol h performs a common function during

the repair of both DSBs and interstrand crosslinks. The C. elegans

Table 2. P{wa} repair junctions recovered from spn-A093/057 mus308D5/2003 mutants.

Type of
repair event Sequence 59 of break Microhomology/inserted sequence Sequence 39 of break

Number of
isolates

Original sequence acccagacCATGATGAAATAACATA - TATGTTATTTCATCATGacccagac -

Short microhomologya

acccagacCATGATGAAATAA (CAT) CATGacccagac 2

acccagacCATG (ATG) TTATTTCATCATGacccagac 1

acccagacCATGATGAAATAAC (AT) GTTATTTCATCATGacccagac 5

acccagacCATGATGAAATAACA (TA) TGTTATTTCATCATGacccagac 2

Blunt join

acccagacCATGATGAAATAACATA - TTATTTCATCATGacccagac 1

Insertionb

acccagacCATGATGAAATAACAT G TGTTATTTCATCATGacccagac 1

acccagacCATGATGAAATAACATA AC ATGTTATTTCATCATGacccagac 1

acccagacCATGATGAAATAACAT GTTA TATGTTATTTCATCATGacccagac 1

acccagacCATGATGAAATAACATA TGTA TATGTTATTTCATCATGacccagac 1

acccagacCATGATGAAATAACA GTGAA ATGTTATTTCATCATGacccagac 1

acccagacCATGATGAAATAACAT GTTATGT TATGTTATTTCATCATGacccagac 1

acccagacCATGATGAAATAACAT GTTATACA TATGTTATTTCATCATGacccagac 1

acccagacCATGATGAAATAACATA TATGTTATAACA TATGTTATTTCATCATGacccagac 1

acccagacCATGATGAAATAA TCATGTTATTTC ATGTTATTTCATCATGacccagac 1

acccagacCATGATGAAATAACATA TAACATGAATAAC ATGTTATTTCATCATGacccagac 1

acccagacCATGATGAAATAACATA TATAATGTTATAACATAT-
AACATATGTTATGAAATAATAACA

TATGTTATTTCATCATGacccagac 1

acccagacCATGATGAAATAACAT CATCATTTATCATTTATTATTATTA-
TTATTTATTATTATTTATTATTTA

TTATTTCATCATGacccagac 1

a Microhomologies (in parentheses) are sequences that could have been derived from either side of the break site.
b Insertions were identified as any sequence not present at the original break site. Templated insertions and corresponding potential templates in flanking sequences
are underlined.
doi:10.1371/journal.pgen.1001005.t002
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pol h ortholog, POLQ-1, is also required for resistance to

interstrand crosslinks and acts in a pathway that is distinct from

HR but depends on CeBRCA1 [28]. In S. cerevisiae, several repair

mechanisms are utilized during interstrand crosslink repair,

including nucleotide excision repair (NER), HR, and translesion

synthesis [65,66]. Given our results and the findings from C.

elegans, it seems unlikely that the role of pol h in interstrand

crosslink repair involves a function in HR.

In human cells, exposure to agents that induce interstrand

crosslinks causes a shift in repair mechanisms that leads to

increased use of non-conservative pathways associated with

complex insertions and deletions [67]. Furthermore, interstrand

crosslinks can cause frequent recombination between direct

repeats [68,69], suggesting that single-strand annealing may

provide a viable mechanism for interstrand crosslink repair. The

single-strand annealing model of interstrand crosslink repair posits

that NER-independent recognition and processing of the cross-

linked DNA is followed by generation of single-stranded regions

flanking the crosslink and annealing at repeated sequences.

Because alt-EJ frequently proceeds through annealing at short

direct repeats, it is tempting to speculate that the role of pol h in

interstrand crosslink repair might be to expose and/or promote

the annealing of microhomologous single-stranded regions that

flank the crosslinked DNA. Consistent with this model, the initial

incision step made after recognition of the interstrand crosslink

remains normal in mus308 mutants [26]. Alternatively, pol h might

utilize its polymerase activity and nearby flanking sequences as a

template to synthesize short stretches of DNA that could be used to

span a single-stranded gap opposite of a partially excised crosslink.

Such a model has been proposed to explain the formation of

microindels in human cancers [70]. We are currently testing these

two models using helicase- and polymerase-specific mus308 mutant

alleles.

Pol h and alternative end joining: promoting genome
(in)stability

Although it seems counterintuitive, alt-EJ likely functions in

some situations to promote genome stability. As evidence of this,

we found that DSB repair following P element excision in mus308

mutant flies frequently results in genomic deletions of multiple

kilobases. A similar deletion-prone phenotype was previously

observed in mus309 mutants, which lack the Drosophila BLM

ortholog [43,71]. Epistasis analysis demonstrated that the mus309

deletion phenotype depends on Rad51, implying that DmBlm acts

after strand invasion during HR and that the deletions observed in

mus309 mutants are likely a result of failed SDSA [48]. In contrast,

the deletions observed in mus308 mutants do not depend on

Rad51, demonstrating that the function of pol h in DSB repair is

independent of HR. The deletion phenotype is exacerbated in lig4

mus308 double mutants, suggesting that C-NHEJ and alt-EJ

represent two parallel mechanisms to prevent deletions. In the

absence of these two end-joining options, resection at the broken

ends may continue unchecked, resulting in extensive genomic

deletions that are generated by an unknown Rad51-independent

repair mechanism. Therefore, both C-NHEJ and alt-EJ function

to prevent overprocessing of broken DNA ends and extreme

degradation of the genome. Microhomology-mediated end

Table 3. P{wa} sequences recovered from spn-A093/057 mus308D2/2003 mutants.

Type of repair event Sequence to left of break
Microhomology/inserted
sequence Sequence to right of break Number of isolates

Original sequence acccagacCATGATGAAATAACATA - TATGTTATTTCATCATGacccagac -

Long microhomologya

acccagac (CATgATGA) cccagac 1

Short microhomology

acccagacCATGATGAAATAAC (AT) GTTATTTCATCATGacccagac 7

acccagacCATGATGAAATAACA (TA) TGTTATTTCATCATGacccagac 3

acccagacCATGATGA (AT) GTTATTTCATCATGacccagac 1

acccagacCATGATGAAATAACA (T) TATTTCATCATGacccagac 1

Blunt join

acccagacCATGATGAAATAACATA - TATGTTATTTCATCATGacccagac 1

acccagacCATGATGAAATAACAT - TATGTTATTTCATCATGacccagac 1

Insertionb

acccagacCATGATGAAATAACAT T TATGTTATTTCATCATGacccagac 1

acccagacCATGATGAAATAACATA CA ATGTTATTTCATCATGacccagac 1

acccagacCATGATGAAATAACATA AC ATGTTATTTCATCATGacccagac 1

acccagacCATGATGAAATAACATA TA TATGTTATTTCATCATGacccagac 1

acccagacCATGATGAAATAA TGT TATGTTATTTCATCATGacccagac 1

acccagacCATGATGAAATAACATA TGT TATGTTATTTCATCATGacccagac 2

acccagacCATGATGAAATAACATA ACATAA ATGTTATTTCATCATGacccagac 1

acccagacCATGATGAAATAACATA TATACCG TATGTTATTTCATCATGacccagac 1

acccagacCATGATGAAATAACATA TGTTATAAC ATGTTATTTCATCATGacccagac 1

a Microhomologies (in parentheses) are sequences that could have been derived from either side of the break site.
b Insertions were identified as any sequence not present at the original break site. Templated insertions and corresponding potential templates in flanking sequences
are underlined.
doi:10.1371/journal.pgen.1001005.t003
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joining, which shares many features with alt-EJ, has been proposed

to perform a similar function in urothelial cells [72].

Nonetheless, alternative end-joining repair can also be genome

destabilizing, as demonstrated by an increasing number of reports

linking it to cancer. We have shown that complex insertions

observed in alternative end-joining products are more frequent in

flies possessing pol h. These insertions, which are often combina-

tions of nucleotides derived from several templates inserted in both

direct and reverse-complement orientations, are remarkably similar

to T-nucleotide insertions found in translocation breakpoints

reconstructed from follicular and mantle cell lymphomas (reviewed

in [73]). Therefore, if pol h also functions in alternative end joining

and T-nucleotide generation in mammals, it might be an important

factor involved in translocation formation.

A recent study suggests that pol h levels are tightly regulated in

humans and that loss of this regulation may promote cancer

progression [37]. The protein is primarily found in lymphoid tissues

but is upregulated in lung, stomach, and colon cancers. Further-

more, high levels of pol h expression correlate with poorer clinical

outcomes. Intriguingly, pol h is regulated by endogenous siRNAs in

Drosophila [74,75], although the significance of this regulation is

currently unclear. We suggest that polh-mediated alt-EJ serves as a

medium-fidelity repair option used by cells when precise repair

cannot be carried out for any number of reasons. As such, it

prevents extreme loss of genetic information. However, its error-

prone nature requires tight regulation, which, when lost, may lead

to excessive inaccurate repair and ultimately, carcinogenesis.

Conclusions
The results described here establish that Drosophila pol h plays

two distinct roles in an alternative end-joining mechanism operating

in parallel to canonical DNA ligase 4-mediated C-NHEJ. This novel

finding lays the groundwork for future studies focusing on the

specific roles of the pol h helicase-like and polymerase domains in

alt-EJ and DNA interstrand crosslink repair. Whether pol h plays a

similar role in alt-EJ in other organisms, including mammals,

remains to be determined. Regardless, these studies reveal an

unexpected role for DNA polymerase h that is required for genomic

integrity in Drosophila and possibly other metazoans.

Materials and Methods

Drosophila stocks and mus308 alleles
All flies were maintained on standard cornmeal-based agar food

and reared at 25uC. The mus308 D2 and D5 stocks were obtained

from the Bloomington Stock Center and the 2003 and 3294 stocks

were from the Zuker collection [76]. To identify mutations in these

stocks, genomic DNA was isolated from flies harboring each allele

in trans to Df(3R)Exel6166 and PCR was performed with primers

specific to overlapping regions of the entire coding sequence. PCR

products were sequenced and the sequence was compared to the

Drosophila reference sequence release 5.10. Sequence changes

unique to each allele were verified by sequencing in both

orientations. The lig4169a [17], spn-A093 and spn-A057 [42] stocks

harbor null alleles of DNA ligase 4 and Rad51, respectively.

Figure 7. Model for pol h function in alt–EJ. Pol h is drawn as a bipartite protein, with a helicase domain and a polymerase domain separated by a
flexible linker region. (A) Initially, the helicase activity of pol h unwinds short stretches of double-stranded DNA to expose pre-existing microhomologous
sequences. (B) These microhomologies (MH) are used to align the broken ends to provide a template for pol h polymerase activity. The unwinding
activity could also serve to make the polymerase more processive. (C) Processing of the ends and ligation results in repair accompanied by a deletion. (D)
In cases where the ends do not remain stably aligned, annealing at other microhomologies closer to the break site could result in the insertion of T-
nucleotides. Multiple rounds of unwinding, synthesis, and alignment could result in the complex insertions that are often observed in alt-EJ in flies.
doi:10.1371/journal.pgen.1001005.g007
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Mutagen sensitivity studies
For mechlorethamine sensitivity assays, balanced, heterozygous

parents were crossed to Df(3R)Exel6166 and allowed to lay eggs in

vials containing 10mL of food for three days, after which they were

moved to new vials for two additional days. The first vials were

treated with 250mL of 0.005% mechlorethamine dissolved in

ddH2O, while the second vials were treated only with ddH2O.

Survival was calculated as the number of homozygous mutant

adults divided by the total number of adults that eclosed within 10

days of treatment. Ratios were normalized to untreated controls

for each set of vials (five to eight sets of vials were counted for each

experiment). For ionizing radiation sensitivity assays, heterozygous

parents laid eggs on grape-juice agar plates for 12 hr. Embryos

developed at 25uC until larvae reached third-instar stage, at which

point they were irradiated in a Gammator 1000 irradiator at a

dose rate of 800 rads/min and larvae were transferred to food-

containing bottles. Relative survival rates were calculated as

above.

P{wa} assay
Repair of DNA double-strand breaks was monitored after

excision of the P{wa} transposon as described previously [43,77].

P{wa} was excised in males using a second chromosome transposase

source (CyO, H{w+,D2–3}) and individual repair events were

recovered in female progeny over an intact copy of P{wa}. Females

with two copies of P{wa} have apricot eyes [78]. Progeny with red

eyes possess a repair event involving HR with annealing of the copia

LTRs. A fraction of apricot-eyed females also possess HR repair

events, but these cannot be distinguished from chromosomes in

which no excision event occurred (using the CyO, H{w+,D2–3}

transposase source, ,80% of apricot-eyed female progeny inherit a

non-excised P{wa} element). Yellow-eyed females harbor a repair

event in which repair is completed by end joining.

For each genotype, at least 50 individual male crosses were

scored for eye color of female progeny lacking transposase. The

percentage of progeny from each repair class was calculated on a

per vial basis, with each vial representing a separate experiment.

Statistical comparisons were done with a Kruskal-Wallis non-

parametric ANOVA followed by Dunn’s multiple comparisons test

using InStat3 (GraphPad).

For analysis of HR synthesis tract lengths, genomic DNA was

purified and PCR reactions were performed as in [43], using

primer pairs with the internal primer located 250, 2420, and 4674

base pairs from the cut site at the 59 end of P{wa}.

For deletion analysis, the percentage of females with scalloped

wings was calculated relative to all yellow-eyed females counted.

The percentage of male lethal and small (0.1–3.6 kb) deletions was

calculated based on a subset of yellow-eyed females (one from each

original male parent) that were individually crossed to males

bearing the FM7w balancer. Vials for which no white-eyed male

progeny were recovered were scored as male lethal. Some of the

male lethal events also caused a scalloped-wing phenotype in

heterozygous females. For those that did not, testing to ensure that

the male lethality was due to deletion of scalloped coding sequence

was performed by recovering the repaired chromosomes in trans to

the hypomorphic sd1 mutation [79] and scoring for a scalloped-

wing phenotype. Repair events which could be recovered in males

were subjected to PCR analysis, using primers internal to P{wa}

[43], to detect small deletions into one or both introns of sd.

I-SceI break repair assay
Repair of I-SceI mediated DNA double strand breaks was

studied in the context of the chromosomally integrated [Iw]7

construct [52], which contains a single target site for the I-SceI

endonuclease. DSBs were induced in the male pre-meiotic

germline by crossing females harboring [Iw]7 to males expressing

the I-SceI endonuclease from a second chromosomal location

under the control of either the hsp70 promoter (70[I-SceI]1A) [52]

or the ubiquitin promoter (UIE[I-SceI]2R) [50]. Independent

inaccurate end-joining repair events from the male pre-meiotic

germline were recovered in male progeny and DNA was isolated

for analysis [80]. PCR was performed using primers PE59

(GATAGCCGAAGCTTACCGAAGT) and jn39b (GGACATT-

GACGCTATCGACCTA) to amplify a 1.3 kb fragment of the

[Iw]7 construct including the I-SceI target site. Products were gel

purified (GenScript) and sequencing of PCR products was

performed using the PE59 primer. Sequences were aligned using

ClustalW or by manual inspection against sequence obtained from

an uncut [Iw]7 construct. Statistical comparisons were done using

Excel and SPSS.

Supporting Information

Figure S1 Polymerase theta orthologues from various metazo-

ans. The conserved helicase-like (blue oval) and polymerase (pink

box) domains are indicated. All of the orthologs have additional

conserved regions in the N and C-termini (white boxes), separated

by a variable-length linker region.

Found at: doi:10.1371/journal.pgen.1001005.s001 (0.51 MB PPT)

Figure S2 Sequence changes in different mus308 mutant alleles,

compared to the Drosophila reference genome sequence. Allele-

specific changes are highlighted in yellow. 1 +1 corresponds to the

‘A’ in the start codon of mus308.

Found at: doi:10.1371/journal.pgen.1001005.s002 (0.11 MB PPT)

Figure S3 Alignment of conserved N-terminus of mus308

orthologs. Dmel, Drosophila melanogaster; Agam, Anopheles gambia;

Mmus, Mus musculus; Hsap, Homo sapiens; Drer, Danio rerio; Atha,

Arabidopsis thaliana; Cele, Caenorhabditis elegans. Conserved amino

acids are indicated below each alignment. The red arrow

corresponds to the G621S substitution in the 3294 allele, the blue

arrow corresponds to the P781L substitution in the D5 allele.

Found at: doi:10.1371/journal.pgen.1001005.s003 (0.19 MB PPT)
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