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Multi‑critical topological transition 
at quantum criticality
Ranjith R. Kumar1,2*, Y. R. Kartik1,2,3, S. Rahul1,2,3 & Sujit Sarkar1*

The investigation and characterization of topological quantum phase transition between gapless 
phases is one of the recent interest of research in topological states of matter. We consider transverse 
field Ising model with three spin interaction in one dimension and observe a topological transition 
between gapless phases on one of the critical lines of this model. We study the distinct nature of 
these gapless phases and show that they belong to different universality classes. The topological 
invariant number (winding number) characterize different topological phases for the different regime 
of parameter space. We observe the evidence of two multi-critical points, one is topologically trivial 
and the other one is topologically active. Topological quantum phase transition between the gapless 
phases on the critical line occurs through the non-trivial multi-critical point in the Lifshitz universality 
class. We calculate and analyze the behavior of Wannier state correlation function close to the multi-
critical point and confirm the topological transition between gapless phases. We show the breakdown 
of Lorentz invariance at this multi-critical point through the energy dispersion analysis. We also 
show that the scaling theories and curvature function renormalization group can also be effectively 
used to understand the topological quantum phase transitions between gapless phases. The model 
Hamiltonian which we study is more applicable for the system with gapless excitations, where the 
conventional concept of topological quantum phase transition fails.

Quantum phase transitions is one of the fascinating subject in condensed matter physics. Landau’s paradigm of 
spontaneous symmetry breaking describes continuous phase transitions successfully using local order param-
eter, which is finite at the ordered phase and vanishes at the critical point1–4. Contrary to this, topological 
quantum phase transitions (TQPT)—recently observed new class of phase transition—can be understood as a 
manifestation of topological properties of electronic band structure5–7, instead of local order parameter. There 
is no spontaneous symmetry breaking associated, and hence it is not possible to define local order parameter 
for the transition between topologically distinct gapped phases. Topological gapped phases are distinguished by 
quantized topological invariants, which takes discrete values across TQPT points8,9.

Despite the failure of Landau’s approach, recently, a theory of critical phenomena was found to be successful 
to extract the critical behavior and obtain universality classes by identifying critical exponents using scaling 
relations in TQPTs10–14. These TQPT points are essentially quantum critical points (QCP), since they occur at 
zero temperature. One can define spacial and temporal characteristic lengths that have diverging behavior as 
we approach QCP. This diverging property of characteristic lengths with critical exponent ν (correlation length 
exponent) and z (dynamical critical exponent), enable one to define universality classes of TQPTs15–17. Local-
ized edge modes in the topological non-trivial phases tend to delocalize and penetrate into the bulk as one 
approaches the TQPT point. The exponential decay of edge modes into the bulk depends on the distance to the 
topological transition (g) and is characterized by a length scale ξ = |g |−ν . This characteristic length ξ can be 
referred as correlation length with critical exponent ν18,19. Correlation length exponent can be obtained using 
several approaches including the numerical studies of penetration length of the edge modes as a function of the 
distance to the transition10,11, and also from the scaling properties of the Berry connection20–22. At QCP energy 
dispersion Ek is found to be Ek ∝ kz , where z is dynamical critical exponent. Expanding the energy dispersion 
around the QCP and identifying the dominant momentum one can find the value of z, which governs the shape 
of the spectra at the gap closing point23.

As one approaches TQPT point the system exhibits scale invariance. Exploiting this property, a scaling 
theory, analogous to the Kadanoff ’s scaling theory of conventional critical phenomena24, has been proposed20,25. 
The topological invariant—calculated by integrating curvature function over the whole Brillouin zone in the 
momentum space—takes integer values for topological gapped phases and changes abruptly at the critical point. 
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The curvature function diverges at the critical point signaling the critical behavior of TQPT point. Based on this 
behavior of curvature function a renormalization group (RG) approach has been developed26,27. A knot-tying 
scaling procedure is proposed based on the divergence in the curvature function at the critical point. This scaling 
procedure changes the curvature function and drives the system to its fixed point configuration, without changing 
the topology of the band structure. Since the topological invariant does not change during this process, the RG 
flow lines distinguish between distinct topological gapped phases. In one dimensional systems this scaling pro-
cedure is analogous to stretching a string until the knots are revealed28. This curvature function renormalization 
group (CRG) has been used in studying the topological phase transition in, Kitaev model, Su-Schrieffer–Heeger 
model25, periodically driven systems27,29, systems without inversion symmetry30, models with Z2 invariant31, 
quantum walks that simulate one and two-dimensional Dirac models32, multi-critical 1D topological insulator33 
and also in interacting systems21,34 etc.

All these characterizing tools mentioned above have been widely used to distinguish between gapped phases 
separated by a topological transition. However, the appearance of transition between stable gapless phases with 
trivial and non-trivial topological characters have also been observed in a wide class of magnetic systems35–39. 
Exponentially localized edge modes at the QCPs, in one and two-dimensional symmetry protected topological 
phases, are stable to disorder and can give rise to topologically distinct gapless phases40,41.

Motivation.  In this work, we are motivated to study the TQPT occurring between two gapless phases 
through a Lorentz symmetry breaking point. We consider transfer field Ising model (TFIM) with three spin 
interaction42, where the study of edge modes at criticality has revealed the appearance and disappearance of 
localized edge modes at one of the quantum critical lines with corresponding change in the parameter values43. 
In other words, both topological and non-topological characters appear on the same critical line for different 
parameter regimes. This provides an interesting platform to study TQPT between gapless phases as well as to 
understand the validity of characterizing tools in identifying this transition.

Motivation of this work is twofold. First is to prove that, indeed the critical line possess distinct gapless 
phases and there is a TQPT between these phases occurring through a multi-critical point which breaks the 
Lorentz invariance in our model Hamiltonian. Second one is to perform this using characterizing techniques 
that have been used to distinguish between gapped phases, thereby validating the reliability of these techniques 
to distinguish between gapless phases. We also show the relation between the breaking of Lorentz invariance 
and topological quantum phase transition at the multi-critical point. This phenomenon can be analogously 
understood from the topological semimetals, where the Dirac points confluence to form quadratic dispersion 
at a critical point which breaks the Lorentz symmetry44,45.

There are several studies on multi-critical behavior and topological transition using conventional RG tech-
niques in the literature46–50. The conventional RG captures the physics of correlated topological systems with local 
Coulomb interaction in one, two and three dimensions. However, here we adopt CRG based on the diverging 
behavior of curvature function as we approach the topological quantum critical point. Since the curvature func-
tion encapsulates the topological signatures of the band structure, its prominent behavior near the transition 
point is promising and sufficient to address the unconventional topological transition between gapless phases 
in our model.

Model hamiltonian and topological quantum phase diagram
We consider transverse field Ising model with three spin interaction42,51

where σ x,z  are Pauli matrices. Performing Jordan–Wigner transformation σ x
i = 1− 2c†i ci and 

σ z
i = −

∏

j<i(1− 2c†j cj)(ci + c†i ) , the model Hamiltonian can be written in spinless fermionic form as

where nearest neighbor superconducting gap is equal to nearest neighbor hopping amplitude �1 and next nearest 
neighbor superconducting gap is equal to next nearest neighbor hopping amplitude �2 . In this equation, c†i (ci) is 
creation (annihilation) fermionic operator and h.c represents the Hermitian conjugate. It is a one-dimensional 
mean-field model for a triplet superconductor. The three spin interaction added to the transverse field Ising 
model can be physically realized in realistic Hamiltonians since the term is generated through real-space renor-
malization group treatments42.

The Bloch Hamiltonian of Eq. (2), which is a 2× 2 matrix, can be written as

where χz(k) = −2�1 cos k − 2�2 cos 2k + 2µ, and χy(k) = 2�1 sin k + 2�2 sin 2k. The excitation spectra can be 
obtained as

This model supports topological distinct gapped phases (i.e w = 0, 1, 2 ) separated by the three quantum critical 
lines as shown in Fig. 1. The energy gap closes at these quantum critical lines, �2 = µ+ �1 , �2 = µ− �1 and 
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�2 = −µ , obtained for momentum k0 = ±π , k0 = 0 and k0 = cos−1(−�1/2�2) respectively. The topological 
angle can be written as φk = tan−1

(

χy(k)/χz(k)
)

.
The model has been studied previously in different contexts42,43,51,52. The model was first introduced by the 

authors of Ref.42 to study the persistence of quantum criticality at high temperature in correlated systems. The 
authors of Ref.52 has studied the physics of Majorana zero modes in the gapped phases of this model with both 
broken and unbroken time-reversal symmetry. One of the authors (S.S) has studied the quantization of geometric 
phase with integer and fractional topological characterization for this model in Ref.51. Very recently authors of 
Ref.43 have solved the problem of bulk-boundary correspondence at the quantum critical lines and discussed 
the principle of least topological invariant number at the criticality.

In this work we intent to show explicitly that there exist a TQPT between two gapless phases (CP-1 and CP-2 
in Fig. 1) on the critical line �2 = µ− �1 through a multi-critical point �1 = 2µ (point ‘b’ in Fig. 1). We also 
explore the nature of transition and critical behavior implementing the scaling law of critical theories and show 
that these characterizing tools, which are used to characterize the transition between gapped phases, are also 
efficient tools to characterize the TQPT between gapless phases.

There are two multi-critical points at the intersections of the critical lines. For the parameter value µ = 1 a 
multi-critical point with an emergent U(1) symmetry exist at (�1, �2) = (0, 1)52. This multi-critical point ‘a’ in 
the phase diagram (Fig. 1) occurs at the intersection of the critical lines �2 = µ+ �1 and �2 = µ− �1 . It posses 
linear spectra at the gap closing momenta k = 0 and k = ±π and does not break the Lorentz invariant. Since it 
does not involve any topological transition between gapless phases on a critical line, we consider it a trivial multi-
critical point. Another multi-critical point exist at (�1, �2) = (2,−1) . This multi-critical point ‘b’ in the phase 
diagram occurs at the intersection of critical lines �2 = µ− �1 and �2 = −µ . Since it posses quadratic spectra 
at k = 0 and breaks Lorentz invariance, we consider it to be a non-trivial multi-critical point. This is exactly the 
point �1 = 2µ , through which TQPT between gapless phases occur.

The transition can be verified by investigating behavior of pseudo spin-vector in the parameter space51,53. The 
model Hamiltonian can be expressed in terms of pseudo spin-vector as

where χz(k) = −2�1 cos k − 2�2 cos 2k + 2µ, and χy(k) = 2�1 sin k + 2�2 sin 2k . The pseudo spin-vector takes 
a closed curve in the parameter space around the origin for a set of parameter values representing a gapped 
phase. For gapless phase the curve passes through the origin and this behavior is characteristic of criticality. In 
Fig. 2 we have shown the behavior of pseudo spin-vector in the parameter space on the critical line �2 = µ− �1 . 
The curve is always closed and passes through the origin indicating the criticality. As one goes from Fig. 2a–c, 
system is passing from topologically trivial gapless phase to non-trivial gapless phase through a multi-critical 
point (Fig. 2b). Trivial gapless phase is the phase boundary between w = 0 and w = 1 gapped phases, as well 
as, non-trivial gapless phase is the phase boundary between w = 1 and w = 2 gapped phases. The non-trivial 
gapless phase is characterized by the emergence of secondary loop which passes through the origin. Therefore 
this behavior of pseudo spin-vector suggest that there exist a TQPT between two gapless phases on the critical 
line �2 = µ− �1.

(5)H(k) = χ(k).σ ,

Figure 1.   Topological phase diagram of model Hamiltonian for µ = 1 . Line ‘ac’ represents the critical line 
�2 = µ− �1 (blue line), line ‘be’ represents the critical line �2 = −µ (magenta line) and line ‘ad’ represents the 
critical line �2 = µ+ �1 (red line). Points ‘a’ and ‘b’ are multi-critical points (green and black dots respectively) 
which differentiate between three distinct gapped phases with w = 0, 1, 2 (represented in different colors). Here 
CP-1 is critical/gapless phase for the transition between w = 0 and w = 1 . CP-2 is critical/gapless phase for the 
transition between w = 1 and w = 2.
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Results and discussion
Energy dispersion and critical exponents.  One can distinguish between the universality classes of 
the gapless phases by calculating the values of critical exponents. In this section we calculate the correlation 
length critical exponent ( ν ) and dynamical critical exponent (z) for the two gapless phases on the critical line 
�2 = µ− �1.

The spectra of this model on the critical line �2 = µ− �1 is gapless and linear for �1 < 2µ , and quadratic for 
�1 ≥ 2µ . On the critical line �2 = −µ spectra has two gapless points at the two incommensurate momenta, ±k0 , 
symmetric about the point k = 0 as shown in Fig. 3a–c. As we approach multi-critical point on this critical line, 
the two incommensurate points confluence at k0 = 0 (i.e, (�1, �2) = (2,−1) ), as shown in Fig. 3d. Therefore the 
spectra is non-relativistic (breaks Lorentz invariance) and become quadratic in nature instead of linear. Energy 
dispersion for one dimensional system close quantum critical point can be written as Ek =

√

|g|2νz + k2z  , where 
ν is correlation length critical exponent and z is dynamical critical exponent23. At the critical point the gap func-
tion � = |g |2νz should go to zero, therefore E ∝ kz.

The energy dispersion expanded around the gap closing momenta k0 = 0 can be written as

where C2 = (16�2µ+ 4�1µ− 4�1�2) and C4 = 1
3 (�1�2 − �1µ− 16�2µ) . Gap function g2νz = (2µ− 2�1 − 2�2)

2 
implies νz = 1 . At QCP the gap function goes to zero and the shape of the spectra can be obtained as Ek ∝ kz , 
by identifying the dominant coefficient among C2 and C4 . Above the multi-critical point (trivial gapless phase, 
i.e., �1 < 2µ ) one can observe that the coefficient of quadratic term C2 is much larger than C4 . Therefore quadratic 
term dominate implying Ek ∝ k , hence z = 1 . Similarly below the multi-critical point (non-trivial gapless phase, 
i.e., �1 > 2µ ) one can find that C4 dominates over C2 and the spectra Ek ∝ k2 implying the value of z = 2 . At the 
multi-critical point (i.e, �1 = 2µ and �2 = −µ ) the coefficient C2 = 0 , which entails z = 2 since Ek ∝ k2 . 

(6)Ek = ±
√

(2µ− 2�1 − 2�2)2 + C2k2 + C4k4,

Figure 2.   Parameter space for pseudo spin-vector on the critical line �2 = µ− �1 . (a) Trivial gapless phase (b) 
multi-critical point (c) non-trivial gapless phase.

Figure 3.   (a–c) Spectra on the critical line �2 = −µ (with µ = 1 ). There are two gapless points around which 
the spectra is linear (i.e., Ek ∝ k ) which implies z = 1 . (d) Spectra at multi-critical point with �1 = 2µ and 
�2 = −µ . Two gapless points confluence at k = 0 where the spectra is quadratic (i.e., Ek ∝ k2 ) and z = 2.
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Therefore the dynamical critical exponent is found to have z = 1 with linear spectra at the trivial gapless phase 
and z = 2 with quadratic spectra at transition point (multi-critical point) as well as non-trivial gapless phase. 
Once the dynamical critical exponent z is obtained one can also obtain the value of correlation length critical 
exponent ν from the condition νz = 1 in our model. Thus in the trivial gapless phase the critical exponents are 
z = 1 and ν = 1 and in the non-trivial gapless phase z = 2 and ν = 1

2 . Note that the situation C2 = C4 is not 
possible on the critical line since it requires �1 to be complex. Equating C2 and C4 results in �1 ∝

(

4µ− i
√
177µ

)

 , 
which is not possible in our model, implying C2  = C4.

This observation suggest that these two gapless phases belong to different universality classes since their 
critical exponents has different set of values. This entails the fact that there is a TQPT in the Lifshitz universality 
class with z = 2 and ν = 1

2
23,54,55, between two distinct gapless phases through multi-critical point. Thus in this 

study the breaking of Lorenz invariance occurs at the Lifshitz universality class.
For completeness we also calculate the critical exponents for the critical theory at �2 = µ+ �1 . The spectra 

on this line is found to be linear in k as shown in Fig. 4, which implies the value of dynamical critical exponent 
to be z = 1 . Spectra close to k0 = ±π can be written as

where C2 = (4�1�2 − 4�1µ+ 4�2µ) and C4 = 1
3 (�1µ− �1�2 − 16�2µ) . At the QCP gap function goes to zero 

and coefficient C2 dominates over C4 , implying Ek ∝ k . Therefore the spectra at the gap closing point is linear 
and dynamical critical exponent z = 1 . The gap function g2νz = (2µ+ 2�1 − 2�2)

2 implies ν = 1.
We have shown the breakdown of Lorentz invariant symmetry at the multi-critical point. The authors of 

Ref.56–58 have shown explicitly that the break down of Lorentz invariance also occur for graphene and 3D Weyl 
semimetal. The authors of Ref.59 have shown explicitly the transformation from the Dirac semimetal to band 
insulator QCP at � = 0 , ( � is the energy scale), where the quasiparticle spectra is two momentum space dimen-
sion. In x-direction, it is linear in k and in the y-direction it is quadratic ( k2 ). But the model Hamiltonian which 
we have studied is one dimension, therefore only one component has appeared.

We confirm the results for our model by calculating the critical exponents from the Berry connection 
approach and also show the presence of TQPT between gapless phases using CRG analysis in the next section.

Curvature function renormalization group.  At first, we briefly review the curvature function renor-
malization group (CRG) method which encapsulates the critical behavior of a system during topological phase 
transition. Let us consider a system with a set of parameters M = (M1,M2,M3, . . .) , which upon tuning appro-
priately changes the underlying topology of the system and induces topological phase transition. The curvature 
function F(k,M) at momentum k dictate the topological properties of the system. Integral of this curvature 
function over a Brillouin zone defines topological invariant number which characterizes a gapped phase. For 
1D systems it reads

Change in this topological invariant number involves the phase transition between the distinct gapped phases. 
For 1D systems Berry connection is the curvature function. Since Berry connection is gauge dependent, one 
can choose the gauge for which F(k,M) can be written in Ornstein-Zernike form around the high symmetry 
point (HSP) k0,

where δk is small deviation from HSP, and ξ is characteristic length scale. As the system approaches critical point 
to undergo topological phase transition i.e, M → Mc , curvature function diverges and changes sign as system 
moves across critical point

(7)Ek = ±
√

(2µ+ 2�1 − 2�2)2 + C2k2 + C4k4,

(8)w =
π
∫

−π

dk

2π
F(k,M).

(9)F(k0 + δk,M) =
F(k0,M)

1± ξ 2δk2
,

Figure 4.   Spectra on the critical line �2 = µ+ �1.
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Based on the divergence of the curvature function near HSPs, a scaling theory has been developed. For given M 
we find new M′ which satisfies

where δk satisfies F(k0 + δk,M) = F(k0 − δk,M) . If the topology of the system at M and at fixed point Mf  
are same then the curvature function can be written as F(k,M) = Ff (k,Mf )+ Fd(k,Md) , where Ff (k,Mf ) is 
curvature function at fixed point and Fd(k,Md) is deviation from the fixed point. Applying Eq. (11) iteratively 
makes Fd(k,Md) → 0 , implying gradual decrease in the deviation of curvature function from the fixed point 
configuration. Hence F(k,M) → Ff (k,Mf ) . Finding the map from M to M′ iteratively, broadens the curvature 
function F(k0,M) until it reaches fixed point. This iterative procedure yields RG flow in parameter space indicat-
ing critical points of the system. Generic RG equation of parameters M can be obtained by expanding Eq. (11) 
to leading order and writing dM = M

′ −M and δk2 = dl , as25,26

The critical point can be defined by the condition | dMdl | = ∞ , and fixed point can be defined by the condition 
| dMdl | = 0 . As we approach critical point, along with the divergence of the curvature function [Eq. (10)], charac-
teristic length ξ in Eq. (9) also diverges

These divergences in F(k0,M) and ξ give rise to divergent behavior characterized by the critical exponents

In conventional Landau theory of phase transition with order parameter, correlation function plays prime role. 
The same can not be defined for topological phase transitions since there is no local order parameter. However, 
a correlation function in terms of a matrix element between Wannier states of distant home cells is proposed to 
characterize the topological phase transition20. This Wannier state correlation function �R , can be obtained from 
Fourier transform of the curvature function for 1D systems as

Substituting the Ornstein–Zernike form of curvature function yields �R ∝ e
− R

ξ  . This suggest that ξ can be treated 
as correlation length of topological phase transition with critical exponent ν . Similarly curvature function at 
HSP, F(k0,M) has the notion of susceptibility in the Landau paradigm with the critical exponent γ . These critical 
exponents define the universality class of a model undergoing topological phase transition. A generic scaling 
law—imposed by the conservation of topological invariant—can be deduced for the critical exponents as

where D is the dimensionality of the system. Thus for 1D systems we have γ = ν20. The CRG method has been 
used to understand topological transition between gapped phases. Here we use this method to understand the 
topological transition between previously discussed gapless phases in our model. We calculate the RG equa-
tions and critical exponents for the critical theories between both gapped and gapless transitions and ensure the 
reliability of this method.

CRG for the transition between gapped phases.  In this section we perform CRG for the topological transition 
across the critical line �2 = µ− �1 , i.e, between the gapped phases with w = 0, 1 and 2. The objective of this 
discussion is to distinguish between the distinct critical phases CP-1 and CP-2 . We derive RG equations to 
confirm the topological transition between the gapped phases (between w = 0, 2 and w = 1 ). We derive critical 
exponents for the CP-1 and CP-2 through Berry connection approach23 to characterize their universality classes. 
Transition between the CP-1 and CP-2 through the multi-critical point ‘b’ is studied in the next section.

The curvature function can be calculated as

(10)lim
M→M

+
c

F(k0,M) = − lim
M→M

−
c

F(k0,M) = ±∞.

(11)F(k0,M
′) = F(k0 + δk,M),

(12)
dM

dl
=

1

2

∂2k F(k,M)|k=k0

∂MF(k0,M)
.

lim
M→Mc

ξ = ∞.

(13)F(k0,M) ∝ |M−Mc|−γ , ξ ∝ |M−Mc|−ν .

(14)�R =
∫

dk

2π
eikRF(k,M).

(15)γ =
D
∑

i=1

νi ,

(16)

F(k,M) =
dφk

dk

=
d

dk

[

tan−1

(

2�2 sin(2k)+ 2�1 sin(k)

2µ− 2�2 cos(2k)− 2�1 cos(k)

)]

=
�1 cos(k)(µ− 3�2)+ 2�2µ cos(2k)− �

2
1 − 2�22

2�1 cos(k)(�2 − µ)− 2�2µ cos(2k)+ �
2
1 + �

2
2 + µ2

,
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where M = {µ, �1, �2} . Behavior of F(k,M) near the QCPs for the transition between gapped phases is shown in 
Fig. 5. The transition between w = 0 and w = 1 is shown in Fig. 5a for the parameter values �2 = −0.5 and µ = 1 . 
For this transition critical point is obtained for �1 = 1.5 at k0 = 0 . In Fig. 5b, curvature function for transition 
between w = 2 and w = 1 for parameter values �2 = −1.5 and µ = 1 is shown, where the critical point appear 
for �1 = 2.5 at k0 = 0 . Curvature function tend to diverge as we approach the critical points and flips sign as 
we cross it. This confirms that F(k,M) takes the Ornstein–Zernike form of Eq. (9) around the HSP k0 = 0 . RG 
flow equations can be constructed now to see the flow line’s behavior in the parameter space to understand the 
topological transition in the model. The RG equations can be derived for k0 = 0 as (refer to “Method” section 
for a detailed derivation)

For a constant value of µ , Eqs. (17) and (18) satisfy the conditions

One can observe critical line and fixed line respectively at �2 = µ− �1 and �2 = �1(�1+µ)
�1−8µ  . RG flow lines for the 

coupling parameters �1 and �2 are depicted in Fig. 6 for k0 = 0 . It consists of two figures for different values of 
µ . In each figure the quantum critical line and fixed line are represented as solid and dashed lines respectively. 
Direction of the RG flow, in the �1-�2 plane, is shown by the arrows, which signals the presence of critical and 
fixed lines. The critical line is denoted by solid line in the flow diagram which traces a line �2 = µ− �1 as pre-
dicted analytically. This line distinguish between, w = 0 and w = 1 gapped phases for �1 < 2µ and w = 2 and 
w = 1 gapped phases for �1 > 2µ for µ  = 0 . The RG flow of coupling parameters �1 and �2 flows away from the 
critical line and towards the stable fixed line as shown in Fig. 6a,b. One can dubiously distinguish between w = 0 
and w = 2 gapped phases based on the flow lines, which flows towards �1 = 2µ in w = 2 phase and towards the 
fixed line in w = 0 phase.

Multi-critical point appear exactly at the intersection of critical and fixed lines, i.e at the point 
(�1, �2) = (2µ,−µ) . This intersection point can be obtained analytically by equating critical and fixed line 
equations, which yield a quadratic equation �21 − 4µ�1 + 4µ2 = 0 . The solution of this quadratic equation is 
�1 = 2µ which is the multi-critical point for the HSP k0 = 0 . The curvature function is found to be diverging 
at this point. This multi-critical point distinguish the critical phases �1 < 2µ and �1 > 2µ on the critical line, 
whose physics can also be captured by the CRG method which is discussed in the next section.

In order to show the distinct nature of CP-1 and CP-2, we calculate the critical exponents, explained in Eq. 
(13), and characterize their universality classes. Set of critical exponents (z, ν, γ ) characterize the critical phases 
which governs the transition between w = 0 and w = 1 as well as w = 2 and w = 1 gapped phases. To calculate 
these critical exponents we first expand the Hamiltonian terms χz and χy from Eq. (3), around the HSP k0 = 0.
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d�1
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�1

2 + �1(µ− �2)+ 8�2µ

2(�1 + �2 − µ)
, ,
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)
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2 + �1(µ− �2)+ 8�2µ

)

2(�1 + 2�2)(�1 + �2 − µ)
..

(20)
∣

∣

∣

∣

d�1

dl

∣

∣

∣

∣

=
∣

∣

∣

∣

d�2

dl

∣

∣

∣

∣

= ∞ and

∣

∣

∣

∣

d�1

dl

∣

∣

∣

∣

=
∣

∣

∣

∣

d�2

dl

∣

∣

∣

∣

= 0.

Figure 5.   Curvature function F(k,M) near the HSP k0 = 0 plotted for �2 < 0 . (a) Curvature function plotted 
for several values of �1 at µ = 1 and �2 = −0.5 for the transition between w = 0 and w = 1 . (b) Curvature 
function plotted for several values of �1 at µ = 1 and �2 = −1.5 for the transition between w = 2 and w = 1 . 
In both (a) and (b) the plot is around the QCPs, which defines the topological transition between gapped 
phases. As the QCP is approached, curvature function diverges at HSP and flips sign as we cross it. The scaling 
procedure proposed in CRG will fit here since the condition F(k0,M′) = F(k0 + δk,M) is satisfied.
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where (2µ− 2�1 − 2�2) = δg , such that F(k0, δg) = F0|δg |−γ and ξ = ξ0|δg |−ν . We substitute B = (8�2+2�1)
2  

and A = (4�2 + 2�1) and write the Berry connection in Ornstein-Zernike form in Eq. (9) as (refer to “Method” 
section for details)

here we observe that among the coefficients of δk2 , the second term diverges more quickly and becomes dominant 
as we approach QCP. For transition between gapped phases w = 0 and w = 1 , coefficient δk2 term dominates over 
the coefficient δk4 term implying ξ ∝ |δg|−1 , thus the correlation length and dynamical critical exponents ν = 1 
and z = 1 respectively. For transition between gapped phases w = 2 and w = 1 , coefficient δk4 term dominates 
over the coefficient δk2 term implying ξ ∝ |δg|−

1
2 , thus the critical exponents can be obtained as ν = 1

2 and z = 2 . 
The curvature function at the HSP k0 = 0 can be obtained as F(k0, δg) = 2(�1+2�2)

δg  . As we approach critical line 
�2 = µ− �1 the curvature function F(k0, δg) ∝ |δg|−1 implying the curvature function critical exponent to be 
γ = 1.

Summarizing above results suggest that the set of critical exponents for CP-1 between w = 0 and w = 1 
are (ν, z, γ ) = (1, 1, 1) and for CP-2 between w = 2 and w = 1 are (ν, z, γ ) = ( 12 , 2, 2) . This clearly indicate 
that the two gapless phases belong to different universality classes. There is a TQPT between these two gapless 
phases through multi-critical point which we discuss in the next section. This result coincide with the results 
that we obtained from energy dispersion analysis.

Note that for CP-1 the scaling law in Eq. (15) is obeyed, while for CP-2 it is violated. The dynamical critical 
exponent is found to take the value z = 1 for CP-1 since the spectra is linear in k around the gap closing point. 
In the case of CP-2, the spectra is found to be quadratic in k around the gap closing point which yields z = 2 . 
For this case one can write an effective form of Eq. (23) around the HSP as

Integrating this over its width ξ−1
i  for the conservation of topological invariant, yields the scaling law 

γ = 2
∑D

i=1 νi . Thus when z = 2 the scaling law will get modified into γ = 2ν for 1D systems (refer to “Method” 
section for details).

In order to verity this modification in scaling law, we perform the CRG for the HSP k = π which address the 
topological transition between gapped phases w = 2 and w = 1 for �2 > 0 . This transition happens through the 
critical line �2 = µ+ �1 . As we approach this QCP the curvature function in Eq. (16), diverges at the HSP k0 = π 
as shown in Fig. 7 and takes the Ornstein-Zernike form around this HSP. RG flow equations for the coupling 
parameters �1 , �2 and µ can be derived as (refer to “Method” section for a detailed derivation)

(21)χz = (2µ− 2�1 − 2�2)+
(8�2 + 2�1)

2
δk2

(22)χy = (4�2 + 2�1)δk,

(23)F(k, δg) =

(

2BAδk2−A(δg+Bδk2)

δg2

)

1+ (2δgB+A2)

δg2
δk2 + B2

δg2
δk4

=
F(k0, δg)

1+ ξ 2δk2 + ξ 4δk4
.

(24)F(k, δg) =
F(k0, δg)

(1+ ξ 4δk4)
.

Figure 6.   Flow diagram for k0 = 0 in �1-�2 plane for (a) µ = 0.5 and (b) µ = 1 . The RG flow directions are 
pointed by the arrows. The critical lines are shown as solid lines and fixed lines as dashed lines. Analyzing RG 
flow, distinct topological phases and the transition between them can be understood.
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For a constant value of µ , Eqs. (25) and (26) satisfy the conditions

The critical line and fixed line can be found at �2 = µ+ �1 and �2 = �1(µ−�1)
8µ+�1

 respectively. The RG flow diagram 
for coupling parameters at k0 = π is shown in Fig. 8. It consists of two figures for different values of µ . In each 
figure the quantum critical line and fixed line are represented as solid and dashed lines respectively. The critical 
line �2 = µ+ �1 , represented as solid line in the flow diagram, distinguish between w = 2 and w = 1 gapped 
phases. The RG flow lines flowing away from this critical line indicate the TQPT between these gapped phases. 
The fixed lines are represented as dashed curve in Fig. 8a,b. A part of this fixed line is stable where flow lines 
flows towards it and a part is unstable where flows are away from it for µ  = 0 . The intersection of these critical 
and fixed lines can be obtained analytically by equating critical and fixed line equations. This yield �1 = −µ , 
which indicate there is no intersection point for positive µ or �1 values.
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Figure 7.   The behavior of the curvature function around the HSP k0 = π for �2 > 0 . Several values of �1 , 
around the critical value �1 = 0.5 , are plotted at µ = 1 and �2 = 1.5 . Curvature function shows suitable 
behavior to perform CRG as it diverges at HSP on approaching critical point.

Figure 8.   Flow diagram for k = π in �1-�2 plane for (a) µ = 0.5 and (b) µ = 1 . The RG flow directions are 
pointed by the arrows. The critical and fixed lines are shown as solid and dashed lines respectively.
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We verify the value of critical exponent ν using Berry connection approach. Expanding the Hamiltonian terms 
χz and χy of Eq. (3) around the HSP k0 = π upto first order in k and writing the Berry connection F(k0,M) in 
the form of Eq. (9) yields (refer to “Method” section for details)

where A = (4�2 − 2�1) and δg = (2µ+ 2�1 − 2�2) . This clearly indicate ξ ∝ |δg |−1 , which implies the 
correlation length critical exponent ν = 1 . The curvature function at the HSP k0 = π can be written as 
F(k0, δg) = 2(2�2−�1)

δg  . As we approach the critical line �2 = µ+ �1 , curvature function is F(k0, δg) ∝ |δg |−1 
which implies the value of γ = 1 . Thus we obtain a set of critical exponents i.e, (z, ν, γ ) = (1, 1, 1) for the transi-
tion between gapped phases at k0 = π . Note that the critical exponents obey the scaling law in Eq. (15). Since 
the spectra on the critical line is linear around the gap closing point with z = 1 , the scaling law ν = γ is obeyed. 
Even though there is a transition between w = 1 and w = 2 gapped phases for both k0 = 0 and k0 = π HSPs, 
the nature of energy spectra, critical theory and the scaling of curvature function are different. This results in 
the modified scaling law observed previously for CP-2 at k0 = 0.

CRG for the transition between gapless phases.  In this section we discuss the topological transition between the 
gapless phases through multi-critical point on the critical line �2 = µ− �1 . The gapless phases CP-1 and CP-2 
are found to have different set of critical exponents. The nature of transition between these two distinct gapless 
phases is indeed topological and occurs through the multi-critical point ‘b’ (see Fig. 1). We perform CRG again 
and derive RG equations and critical exponents to prove the existence of topological transition between gapless 
phases and also to characterize the critical behavior at the multi-critical point.

Curvature function on the critical line �2 = µ− �1 can be obtained as

where M = {µ, �1} . Fig. 9a shows F(k,M) for the transition between gapless phases through multi-critical point. 
Surprisingly the curvature function tend to diverge as we approach the multi-critical point. For the parameter 
value µ = 1 multi-critical point is obtained at the critical value �1 = 2 . Curvature function shows diverging 
peak as we approach critical value and flips sign across it. This behavior of the curvature function allow one to 
perform CRG to understand the topological transition between gapless phases.

The behavior of curvature function at the multi-critical point ‘a’ is shown in Fig. 9b. It is a trivial multi-critical 
point at which two critical line, �2 = µ+ �1 and �2 = µ− �1 meet. Hence, as we approach this multi-critical 
point from either directions the curvature function diverges at both HSPs k0 = 0 and k0 = π . This multi-critical 
point preserve Lorentz invariance and no topological transition occurs between gapless phases as in the case of 
the multi-critical point ‘b’.

The RG flow equations, which signals the topological transition between the gapless phases through multi-
critical point, for the coupling parameters �1 and µ , can be derived as (refer to “Method” section for a detailed 
derivation)

(29)F(k, δg) =

(

A
δg

)

1+ (A2)

δg2
δk2

=
F(k0, δg)

1+ ξ 2δk2
,

(30)

F(k,M) =
dφk

dk

=
d

dk

[

tan−1

(

2(µ− �1) sin(2k)+ 2�1 sin(k)

2µ− 2(µ− �1) cos(2k)− 2�1 cos(k)

)]

= −
�1(�1 − 2µ)

2
(

�
2
1 − 2�1µ+ 2µ2 + 2µ(µ− �1) cos(k)

) − 1,

Figure 9.   Curvature function F(k,M) near the multi-critical points. (a) Curvature function is plotted around 
the multi-critical point ‘b’ in the phase diagram, which distinguish between the distinct gapless phases (CP-1 
and CP-2) on the critical line �2 = µ− �1 . (b) Curvature function is plotted around the multi-critical point ‘a’ in 
the phase diagram. Both are plotted for several values of �1 at µ = 1.
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One can immediately spot a critical line for �1 = 2µ and a fixed line for �1 = µ at which the RG equations 
satisfy the condition

The RG flow lines for the coupling parameters �1 and µ is shown in Fig. 10. Quantum critical line and fixed 
line are represented as solid and dashed lines respectively. The line �1 = 2µ , solid line in Fig. 10, indicate the 
multi-critical points for different values of µ . This line distinguish between the w = 0 (CP-1) and w = 1 (CP-2) 
gapless phases on the critical line �2 = µ− �1 . Therefore it indicate the TQPT between these gapless phases 
through the multi-critical point. The dashed line in Fig. 10, �1 = µ represent fixed points in the flow diagram. 
The intersection of critical and fixed lines can be obtained analytically at µ = 0 and also can be observed at the 
same point in the flow diagram.

To characterize the critical behavior at the multi-critical point we calculate the critical exponents (z, ν, γ ) as 
done in the case of gapped phases. Critical exponents can be calculated by expanding the Hamiltonian terms χz 
and χy from Eq. (3) on the critical line �2 = µ− �1 , around the HSP k0 = 0 upto third order.

where B =
(

8µ−6�1
2

)

 , and

where (�1 − 2µ) = δg and A =
(

16µ+18�1
6

)

 . Now the Berry connection can be written as (refer to “Method” 
section for details)

For different parameter values on the critical line, we observe the coefficient of δk4 is dominant over δk2 . This 
implies the correlation length ξ ∝ |δg |−

1
2 , suggesting the correlation length exponent and dynamical critical 

exponents to be ν = 1
2 and z = 2 respectively. To calculate the critical exponent γ  we obtain the curvature 

function at HSP, which has a form F(k0, δg) = 4µ−3�1
2 |δg|−1 . Therefore as we approach multi-critical point the 

curvature function critical exponent takes the value γ = 1 . Note that the scaling law is violated here also as in the 
case of the transition between the gapped phases w = 2 and w = 1 for �2 < 0 . As proposed earlier the scaling law 
get modified as γ = 2ν since the dynamical critical exponent z = 2 . Thus the critical phase at the multi-critical 
point, which governs the topological transition between two gapless phases on the critical line �2 = µ− �1 , has 
critical exponents (ν, z, γ ) = ( 12 , 2, 1).
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(
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Figure 10.   RG flow lines on the critical line �2 = µ− �1 . RG flow are away from the line �1 = 2µ (solid line) 
and towards the line �1 = µ (dashed line) which are critical and fixed lines respectively.



12

Vol:.(1234567890)

Scientific Reports |         (2021) 11:1004  | https://doi.org/10.1038/s41598-020-80337-7

www.nature.com/scientificreports/

General discussions on RG flow behavior.  Here we discuss the general features of RG flow of coupling param-
eters for gapped phases. Behavior of RG flow lines are different for different quantum critical lines i.e, for k0 = 0 
and k0 = π , shown in Figs. 6 and 8. This difference is due to the distinct nature of fixed lines for both HSPs. In 
Fig. 6 we observe the fixed line at �2 = �1(�1+µ)

�1−8µ  . This fixed line is stable for finite range of parameter values and 
flow lines flows towards it. However, it is not the same case in Fig. 8. The fixed line occurs at �2 = �1(µ−�1)

8µ+�1
 , which 

has both stable and unstable parts. This causes a major distortion in the RG flow on �1-�2 plane. Thus the nature 
of RG flow are different for different critical lines.

An interesting point can be observed when one set the parameter µ = 0 . RG flow in this case is shown in 
Fig. 11 for both HSPs. Setting µ = 0 , removes non-topological phase ( w = 0 ) completely and only topological 
gapped phases remain. It also eliminate the non-trivial multi-critical point along with distinct gapless phases. 
Hence, the RG flow at µ = 0 for both HSPs are similar in nature. The fixed lines for both HSPs are unstable with 
RG flow lines flowing away. It is interesting to note that for k0 = 0 (Fig. 11a), the fixed line coincide with critical 
line for k0 = π . Similarly for k0 = π (Fig. 11b) the fixed line coincide with the critical line for k0 = 0.

RG flow lines in Fig. 6 shows asymptotic nature around the the line �1 = 2µ . The flow direction is reversed 
on the opposite sides of the multi-critical point, which occurs at the intersection of fixed and critical lines. This 
nature of RG flow lines are due to the term �1 − 2µ in the denominator of RG equation for �2 in Eq. (18). This 
RG equation blows up for �1 = 2µ which accounts for the asymptotic nature of RG flow lines in Fig. 6. For �2 
value above the multi-critical point, RG flow asymptotically increase for �1 < 2µ and asymptotically decrease for 
�1 > 2µ . This flow directions reverses for �2 value below the multi-critical point. Similar nature can be expected 
for HSP k0 = π around the line �1 = −2µ.

Correlation function for gapped and gapless phases.  Now we discuss the physical significance of correlation 
length as a length scale to determine the correlation between Wannier states. In the case of one dimensional 
systems, the curvature function is given by the Berry connection F(k,M) =

∑

n �ukn|iδk|ukn� , where n is the 
index of all occupied bands. The Fourier transform of which gives the charge polarization correlation function 
( �R ), between Wannier states at a distance R apart20,27.

We have two bands in our model and only the lower band (n = 1) is occupied. Therefore we have �R = �R|r|0� , 
which is a measure of overlap between Wannier states at 0 and R. The zeroth component �0 is the charge polariza-
tion, which is the topological invariant. Since Wannier state �r|R� = W(r − R) is a localized function with center 
at R, the quantity �R|r|0� is expected to decay with R to zero.

The correlation function �R can be analytically calculated in the continuous approximation for the appropri-
ate gauge choice of Berry connection, which takes Ornstein-Zernike form. We study the behavior of �R near 
the critical line �2 = µ− �1 which occurs at the HSP k0 = 0 . Since the critical line has distinct gapless phases 
(CP-1 and CP-2), we study the nature of �R separately near these gapless phases. As we approach the CP-1 i.e, 
for the transition between gapped w = 0 to w = 1 phase, the correlation function �R can be obtained as (refer 
to “Method” section for details)

(36)�R =
∫

dk

2π
eik.RF(k,M) =

∫

dk

2π
eik.R

∑

n

�ukn|iδk|ukn� =
∑

n

�Rn|r|0n�.

(37)�R =
1

2ξ

(

2(�1 + 2�2)

2µ− 2�1 − 2�2
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−
|R|
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)

,

Figure 11.   (a) Flow diagram for k0 = 0 [Eqs. (17), (18)] at µ = 0 , (b) Flow diagram for k0 = π [Eqs. (25), (26)] 
at µ = 0 . The RG flow directions are pointed by the arrows. The critical lines are shown as solid lines and fixed 
lines as dashed lines.
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where ξ = 2(�1+2�2)
2µ−2�1−2�2

 . Similarly as we approach the CP-2 i.e, for the transition between gapped w = 1 to w = 2 
phase, �R can be obtained as (refer to “Method” section for details)

where ξ =
√

2�1+8�2
2(2µ−2�1−2�2)

 . Behavior of correlation function near the critical lines between distinct gapped 
phases is depicted in Fig. 12. Figure 12a shows the decay in the correlation function in Eq. 37 as we approach a 
critical point at �1 = 1.5 on CP-1. We observe the decay length of the �R is shorter for the parameter value away 
from the critical value and it gets longer as we approach the critical point. In other words the correlation function 
decays slower near the critical line as the decay is sharp deep inside the gapped phase. Similar behavior can be 
observed for the transition across CP-2 as shown in Fig. 12b. In this case the critical point is at �1 = 2.5 . �R shows 
sharp decay for the parameter value away from the critical value and the decay length is longer as we approach 
the critical point. This indicate the TQPT between the gapped phases as this behavior of correlation function is 
universal around a QCP. Note that for w = 0 gapped phase, �2 range from −1 to 1 (see Fig. 1). In this range of 
�2 , we consider one attractive (− ve) and the other one repulsive (+ ve) coupling. Figure 12a is plotted for attrac-
tive coupling of �2 and Fig. 12c is plotted for repulsive coupling of �2 . The critical value of �1 = 0.7 near to which 
�R decay slowly and sharp decay can be observed for the value away from critical value. We observe the decay in 
�R is much slower in the repulsive case than in the attractive case at the same distance from the critical line.

The topological transition across the critical line �2 = µ+ �1 can also be observed in terms �R . This critical 
line corresponds to the transition between gapped phases with w = 2 and w = 1 . Behavior of �R for the HSP 
k0 = π can be obtained as (refer to “Method” section for details)

where ξ =
(

4�2−2�1
2µ+2�1−2�2

)

 . Figure 12d shows oscillatory behavior of �R close to the critical point at �1 = 0.5 on 
the critical line �2 = µ+ �1 . We observe that the amplitude of the oscillation decreases, which indicate the decay 
in �R . This decay gets slower as we approach the critical point as in Fig. 12d. This clearly confirms the presence 
of TQPT across the critical point between the gapped phases w = 1 and w = 2.

Behavior of correlation function �R near a critical point signals the TQPT successfully. Therefore we ana-
lyze the same universal property of �R for the transition between gapless phases CP-1 and CP-2. The analytical 
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Figure 12.   Behavior of correlation function �R near quantum critical lines. (a) �R is plotted near the critical line 
�2 = µ− �1 for the transition between w = 0 and w = 1 (i.e CP-1) with �2 < 0 , where critical value of �1 = 1.5 . 
(b) �R is plotted near the critical line �2 = µ− �1 for the transition between w = 2 and w = 1 (i.e CP-2), where 
critical value of �1 = 2.5 . (c) �R is plotted near the critical line �2 = µ− �1 for the transition between w = 0 and 
w = 1 (i.e CP-1) with �2 > 0 , where critical value of �1 = 0.7 . (d) �R is plotted near the critical line �2 = µ+ �1 
for the transition between w = 2 and w = 1 , where the critical value of �1 = 0.5.
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expression for the gapless excitation of the correlation function �R can be obtained as (refer to “Method” section 
for details)

where ξ =
√

8µ−6�1
4(�1−2µ)  . Figure 13 shows the behavior of �R as we approach the multi-critical point at �1 = 2 . �R 

decays sharply deep within the gapless phase and the decay length increases as the �1 value approaches critical 
point. The decay tends to slow down with longer decay length for the value close to critical point. This behavior 
of �R near the multi-critical point is similar to the cases of gapped phases. One can conclude from the behavior 
of �R in Fig. 13 that it clearly indicate the presence of TQPT across the multi-critical point between the gapless 
phases CP-1 and CP-2.

Discussion
The theory of critical phenomena and curvature function renormalization scheme, developed for the topo-
logical phase transitions, provides an alternative platform to understand the transition between gapped phases 
against the conventional theory on topological invariant. We have shown explicitly that these tools can also be 
extended for the characterization of topological quantum phase transition occurring between gapless phases. 
The two distinct gapless phases of our model Hamiltonian has been analyzed and they were found to belong to 
different universality classes based on the values of critical exponents. Among the three quantum critical lines 
of the model Hamiltonian, two are topological in nature and also capture the essential TQPT across the gapless 
topological quantum critical line. This interesting feature is absent in the original Kitaev chain. CRG analysis 
confirmed the presence of topological quantum phase transition between the gapless phases through the non-
trivial multi-critical point. We have shown explicitly the break down of Lorentz invariance at the topological 
multi-critical point. The values of critical exponents revealed that the transition is in the Lifshitz universality 
class. We have performed the calculation of Wannier state correlation function for the TQPT between gapped 
and gapless phases. Decrease in the decay rate of correlation function as we approach multi-critical point revealed 
the presence of TQPT between gapless phases.

Methods
Derivation of CRG equations.  For gapped phases.  Here, we derive the RG equations for k0 = 0 . Refer-
ring the generic form of the RG equation in Eq. (12) we obtain three RG equations corresponding to the param-
eters. Curvature function can be obtained as

where M = {�1, �2,µ} . Second derivative of F(k,M) at k0 = 0 is

Derivative of the curvature function at k0 = 0 with respect to the parameters �1, �2 and µ are correspondingly

(40)�R =
1

2 ξ
√
2

(

4µ− 3�1

2(�1 − 2µ)

){

sin

(

|R|
√
2 ξ

)

+ cos

(

|R|
√
2 ξ

)}

exp

(

−
|R|
ξ

)

,

(41)F(k,M) =
�1 cos(k)(µ− 3�2)+ 2�2µ cos(2k)− �

2
1 − 2�22

2�1 cos(k)(�2 − µ)− 2�2µ cos(2k)+ �
2
1 + �

2
2 + µ2

,

(42)∂2k F(k,M)|k=0 =
(�2 + µ)

(

�1
2 + �1(µ− �2)+ 8�2µ

)

(�1 + �2 − µ)3
.

(43)∂�1F(0,M) =
�2 + µ

(�1 + �2 − µ)2
,

Figure 13.   Behavior of correlation function �R near the multi-critical point �1 = 2µ . The critical value �1 = 2 
with µ = 1.
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This gives three RG equations for the parameters as

Following the similarly procedure one can obtain RG equations for HSP k0 = π . Second derivative of F(k,M) 
is taken at k0 = π

Derivative of F(k,M) at k0 = π with respect to the parameters are

After few steps of calculation one can arrive at the RG equations

For gapless phases.  As in the case of gapped phases, CRG can be performed for gapless phases as well. In our 
model, curvature function on the critical line �2 = µ− �1 is

here M = {�1,µ} . Second derivative of curvature function at k0 = 0 can be obtained as

(44)∂�2F(0,M) =
2µ− �1

(�1 + �2 − µ)2
,

(45)∂µF(0,M) = −
�1 + 2�2

(�1 + �2 − µ)2
.

(46)

d�1

dl
=

1

2

(�2 + µ)
(

�1
2 + �1(µ− �1)+ 8�1µ

)

(�1 + �2 − µ)2

(�1 + �2 − µ)3(�2 + µ)

=
�1

2 + �1(µ− �2)+ 8�2µ

2(�1 + �2 − µ)
,

(47)

d�2

dl
=

1

2

(�2 + µ)
(

�1
2 + �1(µ− �2)+ 8�2µ

)

(�1 + �2 − µ)2

(�1 + �2 − µ)3(2µ− �1)

= −
(�2 + µ)

(

�1
2 + �1(µ− �2)+ 8�2µ

)

2(�1 − 2µ)(�1 + �2 − µ)
,

(48)

dµ

dl
= −

1

2

(�2 + µ)
(

�1
2 + �1(µ− �2)+ 8�2µ

)

(�1 + �2 − µ)2

(�1 + �2 − µ)3(�1 + 2�2)

= −
(�2 + µ)

(

�1
2 + �1(µ− �2)+ 8�2µ

)

2(�1 + 2�2)(�1 + �2 − µ)
.

(49)∂2k F(k,M)|k=π = −
(�2 + µ)

(

�1
2 + �1(�2 − µ)+ 8�2µ

)

(�1 − �2 + µ)3
.

(50)∂�1F(π ,M) = −
�2 + µ

(�1 − �2 + µ)2
,

(51)∂�2F(π ,M) =
2µ+ �1

(�1 − �2 + µ)2
,

(52)∂µF(π ,M) =
�1 − 2�2

(�1 − �2 + µ)2
.

(53)
d�1

dl
=
�1

2 + �1(�2 − µ)+ 8�2µ

2(�1 − �2 + µ)
,

(54)
d�2

dl
=−

(�2 + µ)
(

�1
2 + �1(�2 − µ)+ 8�2µ

)

2(�1 + 2µ)(�1 − �2 + µ)
,

(55)
dµ

dl
=−

(�2 + µ)
(

�1
2 + �1(�2 − µ)+ 8�2µ

)

2(�1 − 2�2)(�1 − �2 + µ)
.

(56)F(k,M) = −
�1(�1 − 2µ)

2
(

�
2
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Derivative of curvature function with respect to the parameters �1 and µ are correspondingly

This gives RG equations for the parameters as

Derivation of critical exponents.  For gapped phases.  Components of the Hamiltonian, 
χz(k) = −2�1 cos k − 2�2 cos 2k + 2µ, and χy(k) = 2�1 sin k + 2�2 sin 2k , are expanded around HSP k0 = 0 as

We perform the expansion of χz(k) and χy(k) for HSP k0 = π only upto first order, since the higher order terms 
are insignificant due to linear spectra around k0 = π . Thus we have

Curvature function for 1D systems can be written in terms of χz(k) and χy(k) as

In the vicinity of HSPs one can write the curvature function in Ornstein-Zernike form in Eq. (9). For HSP 
k0 = 0 it reads

where F(k0, δg) = 2(�1+2�2)
(2µ−2�1−2�2)

∝ |δg|−1 =⇒ γ = 1 . Correlation length ξ for the transition between w = 0 
and w = 1 gapped phases is ξ = (4�2+2�1)

(2µ−2�1−2�2)
∝ |δg|−1 =⇒ ν = 1 , since δk2 term dominates over δk4 . Similarly 

for the transition between w = 2 and w = 1 gapped phases ξ =
√

(8�2+2�1)
2(2µ−2�1−2�2)

∝ |δg|−
1
2 =⇒ ν = 1

2 , since 
δk4 term dominates over δk2.

Following the same procedure in the vicinity of HSP k0 = π , the curvature function can be written as

(57)∂2k F(k,M)|k=0 =
�1µ(�1 − 2µ)(�1 − µ)

(

�1
2 − 2�1µ− 2µ(�1 − µ)+ 2µ2

)

(

�1
2 − 2�1µ+ 2µ(µ− �1)+ 2µ2

)3
.

(58)∂�1F(0,M) =
µ

(�1 − 2µ)2
,

(59)∂µF(0,M) = −
�1

(�1 − 2µ)2
.

(60)

d�1

dl
=

1

2

�1µ(�1 − 2µ)(�1 − µ)
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�1
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)
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µ
(

�1
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)3

= −
�1(�1 − µ)

2(�1 − 2µ)
,

(61)

dµ

dl
= −

1

2
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�1
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)
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�1

(

�1
2 − 2�1µ+ 2µ(µ− �1)+ 2µ2

)3

= −
µ(µ− �1)

2(�1 − 2µ)
.

(62)χz = (2µ− 2�1 − 2�2)+
(8�2 + 2�1)

2
δk2 = δg + Bδk2,

(63)χy = (4�2 + 2�1)δk = Aδk

(64)χz = (2µ+ 2�1 − 2�2) = δg ,

(65)χy = (4�2 − 2�1)δk = Aδk

(66)F(k,M) =
χy∂kχz − χz∂kχy

χ2
z + χ2

y

.

(67)

F(k, δg) =
(

Aδk(2Bδk)− (δg + Bδk2)A
)

δg2 + (2δgB+ A2)δk2 + B2δk4
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w h e r e  F(k0, δg) = 2(2�2−�1)
(2µ+2�1−2�2)

∝ |δg|−1 =⇒ γ = 1   .  T h e  c o r r e l a t i o n  l e n g t h 
ξ = (4�2−2�1)

(2µ+2�1−2�2)
∝ |δg|−1 =⇒ ν = 1.

For gapless phases.  Components of the Hamiltonian expanded around the HSP k0 = 0 , on the critical line 
�2 = µ− �1 are,

where (�1 − 2µ) = δg . The curvature function in Ornstein-Zernike form in Eq. (9), can be written as

where F(k0, δg) = (4µ−3�1)
2(�1−2µ) ∝ |δg|−1 =⇒ γ = 1 . The correlation length ξ =

√

8µ−6�1
4(�1−2µ) ∝ |δg|−

1
2 =⇒ ν = 1

2 , 
since δk4 term is dominant.

Derivation of modified scaling law.  In order to preserve the constant value of topological invariant, 
the divergence of the curvature function near HSP, as we approach the transition point ( M → Mc ), has to be 
conserved28. The contribution to the topological invariant from the divergence Cdiv of curvature function near 
the HSP k0 = 0 , as we approach CP-2, can be obtained by integrating over the width ξ−1

here

Thus we have

(68)
F(k, δg) =

(

A
δg

)

1+ (A2)

δg2
δk2

=
F(k0, δg)

1+ ξ 2δk2
,

(69)χz = 2µ− 2�1 cos k − 2µ cos 2k + 2�1 cos 2k

(70)=
(

8µ− 6�1

2

)

δk2 = Bδk2,

(71)χy = 2�1 sin k − 2µ sin 2k + 2�1 sin 2k

(72)= −2(�1 − 2µ)δk −
(

16µ+ 18�1

6

)

δk3 = −2δgδk − Aδk3,
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(74)=
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−2Bδgδk2+BAδk4
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(
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(
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δk4

(76)=
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,

(77)Cdiv = F(k0, δg)

ξ−1
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Combining this with Eq. (13) (i.e, F(k0,M) ∝ |M−Mc|−γ , ξ ∝ |M−Mc|−ν ), we get the modified scaling 
law for 1D as

Calculations of correlation function.  The critical line �2 = µ− �1 which occurs at k0 = 0 , has distinct 
gapless phases, CP-1 and CP-2. As we approach the CP-1, the correlation function �R can be obtained as

In terms of the parameters of the model Hamiltonian the above equation reads

where ξ = 2(�1+2�2)
2µ−2�1−2�2

 . Similarly as we approach the CP-2, �R can be obtained as

In terms of parameters of the model Hamiltonian it reads

where ξ =
√

2�1+8�2
2(2µ−2�1−2�2)

 . For the critical line �2 = µ+ �1 which occurs at k0 = π , the �R can be obtained as

Since the bulk gap closes at k0 = π the sign alternates between even and odd sites. In terms of the parameters of 
the model Hamiltonian the above equation reads

where ξ =
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2µ+2�1−2�2

)

.
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ξ 2
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