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Territoriality ensures paternity in a 
solitary carnivore mammal
Francisco Palomares   1, María Lucena-Pérez2, José Vicente López-Bao   1,3 & José Antonio 
Godoy2

In solitary carnivorous mammals, territoriality is assumed to benefit male fitness by ensuring the 
exclusivity of matings within territories via mate guarding and female defence. However, this 
hypothesis remains empirically untested. Here, we examined this hypothesis for solitary territorial 
carnivores using the Iberian lynx (Lynx pardinus) as a case study. We expected that territorial males 
sire all litters born within their territories, translating into the absence of multi-paternity cases within 
the same litter. We analysed parentage in 43 kittens, belonging to 20 different litters. For 42 kittens, 
a father could be assigned using microsatellites and always coincided with the individual holding 
the territory. For 16 kittens from 10 litters for which we also had information on SNPs, paternity 
assignments coincided with microsatellites, except for a litter (two kittens) from the same litter 
for which a different male was assigned, but the territorial male could not be excluded. Our results 
indicated that multi-paternity in the Iberian lynx must be a rare event, and that territorial males sire all 
litters born from the females with which they share territories. We propose that both the low number of 
mature individuals in the lynx population and the fact that female oestrus is induced by male presence 
may explain results.

The spacing pattern in mammal populations, such as the defence of exclusive animal home ranges (i.e., territo-
riality), is the result of the tactics chosen by individuals to maximize their fitness1–3. In the case of females, food 
acquisition and defence of offspring have been identified as important drivers of their spatio-temporal distribu-
tion3–5. Consequently, it is expected that the distribution of females will determine the spacing patterns of males, 
at least during the mating season1, 2, 6. Male mammals show a diverse array of mating bonds, including obligate 
monogamy, unimale and group polygyny and promiscuity7. These are associated with a wide variety of different 
forms of mate guarding, including for instance, the defence of female groups or receptive females.

In solitary carnivorous mammals, where males are not involved in parental care, male reproductive success is 
largely limited by access to females and their defence from other males, rather than by acquisition of nutrients1. 
This results in a strong territorial spacing system directed at monopolizing access to females1, 8, 9. Thus, territorial 
males are expected, theoretically, to expel intruders in order to maximize their fitness. Under this premise, it can 
be hypothesized that the energetic cost of territoriality for resident males is compensated for by the monopoliza-
tion of mating opportunities with females within male territories10. As multi-male mating by females is common 
in mammals from different families with varying life histories, mate guarding may have evolved in response to the 
threat of infanticide and the subsequent tendency of females to mate multiply5.

In this study, we comprehensively examined the mate guarding and female defence hypothesis for solitary 
territorial carnivores. We used the Iberian lynx (Lynx pardinus), a solitary, resident, and territorial carnivore11, 
as a model species. We combined long-term datasets of genetic (to evaluate genetic paternity of kittens) and field 
data (radio-tracking and camera-trapping data) from the Doñana lynx population (SW Iberia). Over the last few 
decades, lynx have been extensively studied within the Doñana area12–14. The Iberian lynx exhibit a territorial 
spacing pattern both in males and females, with male territories overlapping with either one or several females, 
depending on female territory size and male availability4, 11, 12. Home range size and territoriality in females have 
been related to food availability and possibly to the defence of offspring from infanticide4, 15, 16. However, for 
males, mate guarding and female defence have often been assumed, but not empirically tested11, 12. Under the 
mate guarding and female defence hypothesis, we predict that territorial males should sire all litters born from 
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females overlapping with their territories. Consequently, it should be expected that multi-paternity events do not 
occur, or are extremely rare.

Results
Over the study period (1995–2008), we compiled information for a total of 43 kittens (all successfully genotyped 
by microsatellites and 16 by SNPs), grouped into 19 litters (17 from Coto del Rey and 3 from La Vera), involving 
10 different females and 11 different males (Table 1). In 17 out of 20 litters, we knew that in the nucleus there were 
between 1 and 3 adult males besides the male overlapping with the focal female territory.

For none of the 17 litters for which we obtained microsatellite genotypes of 2 to 4 kittens, the data indicated 
multiple paternities when we did not assume monogamy of the female (Table 1). Paternity assignments were thus 
identical in both scenarios, but probabilities were higher when assuming monogamy (Supplementary Table S1). 
Similarly, for none of the five litters for which we genotyped 2 to 3 kittens using SNPs (number total of kit-
tens = 16), data suggested multiple paternity (Supplementary Table S1).

Out of the 43 kittens successfully genotyped, in 40 cases (93%) we identified the male suggested by field data 
as the most likely father using microsatellites (Table 1). Paternity probability assignment was 1, >0.9 and <0.5 
in 26.2%, 45.2%, and 4.8% of cases, respectively, for the scenario that did not assume monogamy in females 
(Supplementary Table S1). These probabilities changed to 57.1%, 26.2% and 0%, respectively, for the scenario 
that assumed monogamy in females (Supplementary Table S1). For the kittens where we also had information 
on SNPs, paternity assignments coincided with those of microsatellites in all cases except for two kittens from 
the same litter (Viciosa 2002), in which there was a discrepancy (Table 1). The assignment was ambiguous with 
microsatellites, as the probability that Oscar, the territorial male, had sired the kittens was only slightly higher 
than that of Uda (P = 0.519–0.620 and 0.346–0.478 for Oscar and Uda, respectively), and both had zero mis-
matches with the two kitten-mother duets. This was due to both candidates having very similar genotypes and 
an estimated relatedness of 0.9 (Supplementary Table 2). Only Uda was genotyped for SNPs and he presented 
zero mismatches with both offspring-mother duets (out of 1,406 loci compared). However, since Oscar could not 
be genotyped with SNPs we considered this an unresolved ambiguity. In a single litter (Iguazú 2000) we could 
exclude the territorial male as the father of the single genotyped kitten: no male was assigned, and the potential 
father (Barro) accumulated 4/35 microsatellite and 23/1397 SNP mismatches with the genotyped kitten in this 
litter.

Litters Microsatellites SNPs

Nucleus1 Mother Year Spatial father2
Other known males 
in the nucleus

Number genotyped kittens 
(total kittens in the litter) Genetic father

Number 
genotyped kittens Genetic father

CR Nuria 1995 Borja (RT) Maki, ungenotyped 2 (3) Borja 0 —

CR Gloria 1996 Barro (RT) Borja, Maki, 
ungenotyped 2 (?) Barro 2 Barro

CR Gloria 1997 Barro (RT) Maki, ungenotyped 3 (3) Barro 1 Barro

CR Nuria 1997 Barro (RT) Maki, ungenotyped 1 (3) Barro 1 Barro

CR Iguazu 2000 Barro (CT) Uda, Oscar 1 (3) NA3,4 1 NA4

CR Roja 2000 Barro (CT) Uda, Oscar 2 (4) Barro 2 Barro

CR Escarlata 2000 Barro (CT) Uda, Oscar 1 (2) Barro 1 Barro

CR Viciosa 2002 Oscar (CT) Barro, Uda 3 (3) Oscar 2 Uda

CR Wari 2004 Uda (CT) Oscar 2 (2) Uda 1 Uda

VE Jabata II 2006 Pavon (RT) — 2 (2) Pavon 0 —

CR Wari 2006 Roman (RT) Arrayan, Nati II 2 (2) Roman 1 Roman

CR Rayuela 2006 Nati II (RT) Roman, Arrayan 2 (2) Nati II 0 —

CR Viciosa 2006 Arrayan (RT) Roman, Nati II 2 (2) Arrayan 0 —

CR Viciosa 2007 Arrayan (RT) Roman, Nati II 3 (3) Arrayan 0 —

CR Wari 2007 Roman (RT) Arrayan, Nati II 2 (3) Roman 0 —

CR Rayuela 2007 Nati II (RT) Roman, Arrayan 2 (2) Nati II 0 —

CR Viciosa 2008 Baya (RT) — 3 (3) Baya 2 Baya

VE Bonares 2008 Clavo (RT) Boliche 2 (2) Clavo 0 —

CR Wari 2008 Baya (RT) — 4 (4) Baya 3 Baya

VE Jabata II 2008 Boliche (RT) Clavo 2 (2) Boliche 0 —

Table 1.  Litters from Iberian lynx from Doñana National Park where paternity assignments were performed. 
Information on the nucleus in which the litter was located, the mother of the litter, the supposed father 
according to spatial data, the number of known adult males in the nucleus, the number of genotyped kittens by 
any method, total number of kittens in the litter (between brackets; ?=unknown) and paternity assignments 
using microsatellites and SNPs information. Paternity assignment for microsatellites was performed for two 
scenarios (not assuming and assuming monogamy of females). Detailed probabilities for all cases are shown 
in Supplementary Table S1. 1CR = Coto del Rey, VE = Vera. 2Between brackets methods of spatial father 
determination: RT = radio-tracking; CT = camera-trapping. 3NA = not assigned. 4The potential father was 
categorically excluded as a father of the kitten by both microsatellite and SNP genotype data.
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Discussion
Our results indicate that multiple paternity in the Iberian lynx must be an extremely rare event, if it occurs at 
all, and that territorial males sired almost all litters born from females overlapping with their territories. There 
was only one litter with some discrepancy in paternity assignment: according to microsatellites the overlapping 
male sired the litter, whereas SNPs assigned another male of the same nucleus as the father. It is not rare for 
Iberian lynx males to perform excursions into neighbouring territories during the mating period, which may 
allow for paternity theft or multiple male mating by females11, 17. However, the microsatellite genotypes of these 
two conflicting males were totally compatible with kittens and females, in addition to be highly similar between 
them (Supplementary Table S2). This makes us to be cautious and do not discard a possible genotyping error or 
confusion between samples. So we cannot rule out that the territorial male sired the litter rather than the other 
male. On the other hand, there was another kitten with no father assigned (the only one genotyped in the litter) 
despite the fact that its potential father according to field data, and two other males, were genotyped in the same 
area and included as candidate parents in the analyses. Furthermore, in this case, the territorial male was categor-
ically excluded with high confidence as a parent of the only kitten genotyped by SNP data. It is worth noting that 
the excluded territorial male did successfully breed that same year with two other females occupying territories 
adjacent to this female. Thus, this male did successfully defend two females, but data suggest that he failed in the 
defence of a third one.

Our results confirm the mate guarding and female defence hypothesis in the case of the Iberian lynx. This 
hypothesis predicts that territorial males, or socially dominant males in species that live in groups, should sire 
all litters born within their territories and, therefore, multiple paternity within the same litter or litter pater-
nities from other males should not be expected1, 8, 9. Territorial or socially dominant males would be expected 
to monopolize mating opportunities with females, maximizing their fitness10. Male mammals associating with 
females either socially or spatially would try to guard, or conceal, those females from other males8, 9. Despite the 
theoretically accepted importance of the behaviour of mate guarding and female defence by males, in general 
there is little empirical information on the effectiveness of this behaviour in assuring reproduction for most 
species.

Recent studies on genetic parentage and relatedness have showed that male mate guarding is somewhat inef-
fective in gregarious species, or species that live in groups comprising a dominant mated pair and theoretically 
one or more related, but reproductively suppressed, subordinates (i.e., where social monogamy is expected). For 
example, non-genetic monogamy and cases of mixed paternities have been reported in populations of canids (red 
fox, Vulpes Vulpes18; African wild dogs, Lycaon pictus19; Island foxes, Urocyon littoralis20), herpestids (dwarf mon-
gooses, Helogale parvula21), procyonids (white-nosed coati, Nasua narica22; southern Illinois raccoons, Procyon 
lotor23), mustelids (Eurasian badgers, Meles meles24) and felids (African lions, Panthera leo25). However, to our 
knowledge, our study and that of Hedmark et al.26 with wolverines (Gulo gulo), are the only studies in mamma-
lian carnivores where empirical support for the mate guarding and female defence hypothesis has been provided. 
These two species share an intra-sexual territorial spacing system, and a polygamous social system with males, 
able to overlap territories and reproduce with several females11, 12, 26, 27. Empirical genetic confirmation of expected 
paternity between males and females sharing space in other mammal species is also scarce (but see refs 28–30, 
who reported genetic and behavioural monogamy in the old field mouse, Peromiscus polionotus, the California 
mouse P. californicus, and the dwarf antelope, Kirk’s dik-dik, Madoqua kirkii, respectively).

On the contrary, extra-pair copulation and multiple paternity is known to occur in several mammal species 
where territorial or social dominance is expected, including carnivores from eight families, among them felids6. 
The most convincing explanation is that multi-male mating confuses paternity, thereby deterring infanticide by 
males6. Mate guarding and, perhaps even in some cases, behavioural monogamy, may have evolved in response to 
the threat of infanticide and the subsequent tendency of females to mate multiply. Infanticide has been reported 
in one case, and is suspected in another case in Iberian lynx16, and in fact multi-male mating is suspected to occur 
occasionally17. Nevertheless, although we can not discard the Iberian lynx females are able to mate in occasions 
with several males in the same breeding season, our results indicated that they can be considered as genetic 
monogamous, since we did not detect any case of multiple parternity. The absence of multiple paternity or that 
males from neighbouring territories are not able to sire litters, has been explained by the fact that males of these 
species show high levels of litter care31, 32. In the Peromiscus species mentioned earlier, males generally show a 
substantial amount of parental care31, similar to that in numerous monogamous birds, where high levels of male 
care are often associated with a high degree of paternity certainty32. However, this explanation does not apply to 
the results found for Iberian lynx since males do not participate in the care of young11 (also see ref. 33, for the case 
of dik-diks).

In the case of the Iberian lynx population studied here, the absence of multiple paternity may be related to two 
non-exclusive factors. First, the Doñana Iberian lynx population is critically threatened by extinction, and many 
optimal territories used to be empty or occupied by immature individuals (see refs 34, 35 for details). Therefore, a 
low number of mature individuals could favour mate guarding and female defence by males. Similarly, Hedmark 
et al.26 also proposed that the low density might explain the social monogamy found in the wolverine population 
they studied. In these situations, males can concentrate on female defence during the oestrus and ovulation phase. 
Second, the oestrus phase in both species is induced by male presence36, 37 and, at least in the Iberian lynx, it 
usually takes only 2–3 days (A. Vargas, pers. comm.). In this situation, female guarding from neighbouring males 
may be a relatively easy task for males.

Methods
Lynx data, sample collection and genotyping.  We used data gathered from 1995 to 2008 from two lynx 
nuclei within Doñana National Park (37°10′ N, 6°23′ W), namely Coto del Rey and La Vera (Table 1; see refs 4, 
11, 12, 38; for detailed descriptions of the Doñana area and its lynx population). These two nuclei are separated 
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by the marsh and there is practically no contact between lynx living in each nucleus11, 12. Data on litter size and 
their spatial position, maternity of the litters, and spatial information of the mother and the potential father of 
kittens were obtained through capture, radio-tracking and camera-trapping activities (following the procedures 
described in refs 11–13, 39). The exact birth dates of all animals for which paternity analyses were undertaken 
were known because mothers were previously tagged with VHF collars, except in one case where the female lynx 
was known from their unique pattern of spots13 and collared later. All methods of capture, handling and collaring 
were specifically approved by the Regional Government of Andalusia and Doñana National Park, and complied 
with the norms of the Spanish Animal Protection Regulation RD1201/2005.

Males were considered potential fathers of the litter when, during the mating period (December-April), simul-
taneous radio-tracking data of males and females was available, and the female territory overlapped with the 
male territory. In Coto del Rey nucleus adult female lynx territories usually overlapped with only one adult male 
territorry12, however in La Vera it was more common an adult female could overlap her territory with more 
than one adult male (until 3 different males recorded), although in most cases with one male overlap >50% 
of her territory11. In these cases, the male overlapping more than 50% of female territory was considered the 
potential father of the litter. We also considered a male as a potential father in cases where only the female was 
radio-tracked, but there was at least one photograph of the male during the mating period within the female ter-
ritory taken by a camera station situated ≤1 km from where the kittens were born. Accumulating evidence from 
dozens of adult lynx collared in this area indicates that both males and females maintain territories for years, and 
are easily observed and photographed when holding a territory4, 11, 12. Ranges of home range sizes estimated using 
the minimum convex polygon with 95% of locations for females and males in the two study nuclei of Doñana 
were 3.9–6.6 km2 and 4.8–18.3 km2 in Coto del Rey, and 7.5–24.6 km2 and 8.5–25.0 km2 in La Vera, respectively11, 

12. For 75% of litters spatial relationships between female and the supposed father of kittens was known from 
radio-tracking data, and for the remainder 25% from camera-trapping data (Table 1).

We collected blood, tissue and faeces for genetic analyses from captured or necropsied lynx and from museum 
specimens in the collection of Doñana Biological Station (see 14 for details). All lynx for which paternity was 
analysed were tagged with transponders when they were 1–3 weeks old16, 39. Thus, these animals could be identi-
fied again when they were captured for collaring or when they were found dead. From all lynx samples, DNA was 
extracted and used to genotype up to 36 microsatellite loci (details on genotyping can be found in Casas-Marce et 
al.14). Some of these same lynx were additionally genotyped for 1,468 autosomal SNPs40.

Parentage analyses.  We inferred parental-offspring relationships using Colony 2 for Mac41. Colony 2 
uses a maximum likelihood approach to calculate parentage for a given year/cohort and allows the inclusion 
of a priori information, such as allelic frequencies of the population, mating system, genotype error rates and 
known parent-offspring relationships. We estimated the allelic frequencies from the animals born during the 
study period and assumed an error rate of 0.01 for microsatellites and 0.0002 for SNPs (both considered as a 
conservative estimations of the real error rate). As previous analysis showed a limited power for microsatellites to 
estimate paternities correctly if field information was disregarded (Lucena-Pérez et al. unpubl. data), we included 
the relationships mother-kittens, which was known for all the litter analysed. Thus, reliability of the analysis was 
high as the assignments of kittens to the true mothers were 1 in 39 cases, and between 0.954 and 0.999 in the four 
remaining ones (Supplementary Table S1). Besides, for every cohort, we set as candidate fathers all males between 
2 and 12-years-old, both ages included, known to be in every lynx nuclei according to the criteria mentioned 
above. Candidate fathers were in some instances related to the known mother or between them (Supplementary 
Table S2). The percentage of the potential fathers genotyped and included in the analysis was estimated as the 
ratio between the number of males genotyped in a nucleus and the known number of males in the nucleus plus 1 
(to account for unlikely unregistered visits of males from different areas). We performed the analyses under two 
scenarios: females are monogamous, and females are polygamous. In both scenarios, males were assumed to be 
polygamous as they can mate with more than one female in a breeding season. For SNPs, we did not include any 
prior known relationship between the individuals.

All the input data for Colony 2 was written using a Python script that extracted the information from a SQL 
database where we stored all the relevant demographic and genotypic information (https://github.com/mluce-
naperez/paternity_analysis). More details on paternity analyses are available in M. Lucena-Pérez et al. (unpubl. 
data).

Data Availability.  The datasets generated during and/or analysed during the current study are available from 
the corresponding author on reasonable request.
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