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1. Introduction

Over the last two decades, many studies have been devoted

to the design of silicon-based negative electrodes for next-
generation lithium-ion battery (LIB) technology. Researchers

are motivated by a desire to move away from the traditional
graphite anode with a specific capacity of 372 mAh g@1 to Si,

owing to its high theoretical specific capacity of around
3579 mAh g@1,[1] high volumetric capacity (2190 mAh cm@3), low

average delithiation potential (ca. 0.4 V vs. Li+/Li), low potential

hysteresis, and thus high energy efficiency.[2, 3] However, com-
mercialization of this amazing material is delayed by an un-

solved issue of its significant volume expansion (up to 280 %)
during the electrochemical reaction with lithium and the for-

mation of lithiated Li3.75Si alloy. The mechanical stress occurring
during alloying leads to degradation, cracking, and electrical
contact loss in the electrode.[4] Another resulting issue of Si ex-

pansion is the formation of a non-uniform thick solid electro-

lyte interphase (SEI), which obstructs the movement of Li+

ions, leading to capacity fading.[5] Various strategies have been
employed to improve the electrochemical performance of Si. It

has been observed that the decrease of Si particle size to the
nanoscale prevents the cracking of particles.[6] Amorphous

phase Si (a-Si) has been found to be preferable over crystalline
Si, because it experiences uniform expansion during the repeti-

tive lithiation/delilthiation reaction and mitigates the cracking

of Si particles.[4, 7, 8] Incorporation of dopants, especially n-type
dopants, into Si materials leads to enhanced electron mobili-

ty.[9, 10] Among the investigated Si nanostructures (spheres,
tubes, wires, etc.), Si thin films provide the ideal possibility to

design high-capacity microscale LIBs.[11–13] A 50 nm thick Si thin
film electrode was reported to retain the highest stable specific
capacity of 2000 mAh g@1 for 3000 cycles.[10] However, to en-

hance the energy and power density in thin-film LIBs, the mass
of active material should be increased. The issues of “thick”
thin films (>200 nm) are cracking (island formation[14]) and de-
lamination from the substrate, owing to the occurrence of

strain–stress at the Si–substrate interface during lithiation. As
previously reported, the soft and flexible substrates can be

used to release emerging stress at the interface between the
current collector and the thin films.[15–18]

Three-dimensional (3D) structured Si thin film anodes are ca-

pable of accommodating the volume changes and releasing
the tensile stress at the interface, thus reducing the delamina-

tion of the Si thin film.[19] Moreover, this concept provides fast
Li+ diffusion, thereby remarkably increasing the volumetric ca-

pacity. Many attempts to optimize the shape of Si thin films

(wires,[20] ribbons,[21] hills,[22] patterns)[23, 24] and to modify the
substrate surfaces[25–27] have been performed and still continue,

in order to improve the electrochemical battery performance
and expand the battery cycle life.

Herein, we present a facile and cheap approach, employing
a 3D porous Cu substrate, prepared by etching in ammonia so-

This work reports the preparation of a three-dimensional Si
thin film negative electrode employing a porous Cu current

collector. A previously reported copper etching procedure was
modified to develop the porous structures inside a 9 mm thick
copper foil. Magnetron sputtering was used for the deposition
of an n-type doped 400 nm thick amorphous Si thin film. Elec-
trochemical cycling of the prepared anode confirmed the ef-

fectiveness of utilizing the approach. The designed Si thin film
electrode retained a capacity of around 67 mAh cm@2

(1675 mAh g@1) in 100th cycle. The improved electrochemical
performance resulted in an enhancement of both areal capaci-
ty and capacity retention in contrast with flat and rough cur-
rent collectors that were prepared for comparison.
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lution, and magnetron sputtering (MS) for Si thin film deposi-
tion, which allowed us to obtain Si with an amorphous phase

with n-type dopant impurities for enhancing electron conduc-
tivity. The porous substrate structure provided a high surface

area and room for the volume expansion of Si. The substrate
thickness was chosen to be as thin as possible (ca. 9 mm) in

order to achieve a more flexible Si anode for the effective re-
laxation of emerging stress at the interface. The additional

benefit is the lightweight and decreased thickness of the pre-

pared anode, which is important for some applications, where
the weight and dimensions of power source play an important

role (i.e. medical implants, portable electronic devices, etc.).
The electrochemical performance of the Si thin film anode on

a 3D porous Cu substrate was compared with that of Si thin
film anodes on flat and rough substrates to show the direct in-
fluence of the substrate surface conditions and the perspective

of the applied concept.

2. Results and Discussion

The Raman spectrum of the obtained Si thin film is shown in
Figure 1. The Raman spectrum exhibits the following peaks re-

lated to Si: the longitudinal optical mode of 310 cm@1, the lon-
gitudinal acoustic mode of 400 cm@1, the transverse optical

mode at 480 cm@1, and the overtone of the longitudinal and

transverse phonons at around 650 cm@1. The presence of these
peaks allows us to conclude that the material sputtered on a

Cu substrate is Si in an amorphous phase.[28]

Figure 2 a shows the 3D AFM image of the edge of the Si

thin film deposited on the polished glass (see the Experimental
Section). The plot (Figure 2 b) illustrates the thickness profile of

the Si film to be around 400 nm, which was checked at several
chosen points on the edge of the Si thin film. From the base

of the AFM image, the average roughness of the Si thin film
surface can be estimated to be within :25 V 25 nm (width V
height).

SEM images are used to describe the morphology and struc-
ture of the Cu foils and Si thin film. Figure 3 illustrates the top-
view images of Cu substrates with different surface conditions

without (left column) and with a Si thin film (right column).

The smooth surface for the flat Cu foil (Figure 3 a) and hill-like

formations on a surface of the rough foil (Figure 3 b) can be

observed. Figure 3 c demonstrates the porous structure of the
current collector. This resulting network with ledges and caves

is a result of the reaction between copper and ammonia solu-
tion within the original solid structure; a slightly rough sample
surface can be detected on the inserted image at higher mag-
nification. Figure 3 d–f illustrates the Si thin films deposited on
the substrates. It can be seen that the thin film tends to repeat

the substrate structure in the first (Figure 3 d) and second case
(Figure 3 e), and almost completely fills the pores in the case of
the porous current collector (Figure 3 f). From the insets of the
Si thin film images at higher magnification in Figure 3 d–f, the
spherical shape of the Si particles with a particle size up to
100 nm can be observed.

To evaluate the electrochemical performance of the Si thin
film as an anode material, cycling voltammetry (CV) was used
at a scan rate of 0.1 mV s@1 between 0 and 3 V. Three investi-

gated Si thin film electrodes demonstrated similar patterns of
Si lithiation/delithiation in the CV plot (Figure 4 a). Considering

the first cycle scans, it can be see that the first electrochemical
reaction occurred during discharging, and was detected at a

Figure 1. Raman spectrum of Si thin film.

Figure 2. AFM mapping results. a) 3D image of thin film with edge illustra-
tion; b) the thickness profile of thin film.

Figure 3. SEM images of substrates and Si on their surface: a) flat Cu;
b) rough Cu; c) porous Cu; d) Si on flat Cu; e) Si on rough; f) Si on porous
Cu.
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potential of 0.4 V. This is usually ascribed to the irreversible de-

composition of electrolyte on the Si electrode surface, resulting

in SEI layer formation.[29] The cathodic peaks at 0.1 and 0.02 V
indicate the first reversible lithiation reaction of Si and LixSiy

alloy formation. The corresponding delithiation reaction of
LixSiy back to Si is represented by the anodic peaks at 0.41 and

0.53 V.
The obtained peak positions are in a good agreement with

the literature data for Si thin film anodes.[30–32]

Figure 4 b–d illustrates the potential profiles of the investi-
gated anodes, recorded at a current density of 30 mA cm@2 in

the potential range of 0.1–1.5 V. The first lithiation plateau oc-
curred at a potential of around 0.4 V and was present for all

samples. Observing the charge–discharge curves for flat (see
Figure 4 b) and rough (see Figure 4 c) a-Si thin films, we can

detect the initial discharge capacities around 95 mAh cm@2

(2375 mAh g@1) and 94 mAh cm@2 (2350 mAh g@1), respectively.
In addition, the SEI formation process causes an irreversible ca-
pacity loss in the first cycle. Thus, the irreversible capacity loss
constitutes 17 and 25 mAh cm@2 for the flat and rough Si film

anodes, respectively. By using a 3D porous substrate (Fig-
ure 4 d) the performance of the a-Si thin film could be signifi-

cantly enhanced. From Figure 4 d, we can observe that the ini-
tial discharge capacity was increased to 102 mAh cm@2

(2550 mAh g@1). However, the irreversible capacity constituted

approximately 27 mAh cm@2 (ICE = 75 %), which is the highest
among the three investigated anodes. The increased irreversi-

ble capacity loss in the 1st cycle in the case of both rough and
porous substrates could be the result of increased surface

area. The extended surface area possibly contains a higher

amount of Cu oxide, which is involved in the process of SEI
layer formation. This assumption can be confirmed by the no-

ticeable plateau at 1.2 V (see Figure 4 d), which corresponds to
the reaction of Li ions with Cu oxide, the reduction of CuO to

Cu, and the formation of Li2O, all contributing to the SEI
layer.[33] From Figure 5, we can compare the capacity retentions

of the investigated samples. The flat anode retains the stable

discharge capacity only until the 25th cycle, after which it rap-
idly decreases, achieving only 51 mAh cm@2 (1250 mAh g@1) in

100th cycle. The rough a-Si thin film exhibited a stable capacity

of 70 mAh cm@2 (1750 mAh g@1) until the 40th cycle, followed by
capacity fading to 47.4 mAh cm@2 (1185 mAh g@1) in the final

cycle. It can be seen that the rough a-Si substrate shows
better cycling stability upon cycling compared to the flat sub-

strate; however, at the same time, both substrates showed a
similar capacity value in the end. In contrast, a-Si on a porous

substrate exhibits a significant improvement in stability

throughout all cycles. The designed porous anode retained an
areal charge capacity of 76.2 mAh cm@2 (1905 mAh g@1) until the

70th cycle, and then it slowly decreased to 67 mAh cm@2

(1675 mAh g@1) in the final cycle, losing 15 % of the initial

charge. For all investigated a-Si thin film anodes, the coulom-
bic efficiency was within 97–99 % in 100th cycle.

Figure 6 illustrates post-cycling SEM images of the samples.

The post-cycling investigations of the flat Si anode (Figure 6 a)
revealed the extensive delamination of the Si thin film from

the flat substrate with the remaining Si islands being around
15 mm in length. One can see that the islands’ edges do not

touch the substrate, indicating electrical contact loss. From the
SEM images of the second anode (Figure 6 b), we detected

that the sputtered Si thin film experiences cracking, forming is-

lands with approximately the same dimensions as those for Si
on the flat substrate. However, the distances between islands

are around few micrometers and the edges of the islands were

Figure 4. Electrochemical test results. a) CV for Si thin film at a scan rate of
0.1 mV s@1 between 0 and 3 V. Charge/discharge profile of Si thin film anode
on b) flat, c) rough, and d) porous Cu foil. The current density was
30 mA cm@2 in the potential range of 0.1–1.5 V.

Figure 5. Cycling performance of the three a-Si thin film anodes. The current
density was 30 mA cm@2 in the potential range of 0.1–1.5 V.

Figure 6. SEM images of samples after 100 cycles: a) a-Si on f-Cu; b) a-Si on
r-Cu; c) a-Si on p-Cu.
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not spoiled, which is in contrast with first anode. The Si sput-
tered on the porous substrate, shown in Figure 6 c, did not ex-

hibit significant mechanical failure of the thin film. No obvious
cracks or open metallic regions with a bare surface were ob-

served for this anode, which is in contrast with the other two
examined samples. This could explain the improved capacity

retention of a-Si on a porous substrate.
The comparison of the obtained results with published data,

where similar concepts were employed (Si thin film anodes on

metallic foams,[34, 35] Cu nanowires,[36, 37] cobalt nanosheet
arrays,[38] tobacco mosaic virus),[39] is hampered by the differ-
ence in the thickness of the films, test conditions, number of
cycles, and so on. Moreover, the deposition technique, prepa-

ration conditions, and electrolyte type can also significantly
affect the electrochemical performance. The data summarized

in existing reviews on Si-based anodes[11, 13, 40] allowed us to

conclude that our concept is more than compatible for further
development, owing to a stable electrochemical performance

of the material, even with increased thickness (and mass) of
the Si thin film, and the low-cost preparation procedure.

3. Conclusions

In this study, we prepared a 3D porous Cu substrate from com-

mercial Cu foil by etching in ammonia solution and it was
used as a current collector for an a-Si thin film. The utilized

strategy for improved anode performance included a 3D
porous structure with increased surface area, the preparation
of an n-type doped Si thin film in the amorphous phase, as
well as annealing to enhance adhesion at the Si–Cu interface.

Consequently, the designed electrode exhibited a remarkably
improved electrochemical performance in contrast with flat
and rough Si thin film anodes; the charge capacity was around

67 mAh cm@2 (1675 mAh g@1) over 100 cycles with 98.4 % cou-
lombic efficiency. We believe that the prepared porous thin Cu

foil helped to successfully release the emerging stress and pre-
vented the delamination of the Si thin film from the substrate;

whereas, the porous structure was able to accommodate Si

volume changes and provided a fast pathway for Li-ion diffu-
sion. Thus, the concept employed in this work represents a

step towards the design of lightweight Si thin film anodes
with stable capacity retention.

Experimental Section

Anode Preparation

A porous substrate was prepared from commercially available Cu
foil (9 mm, 99.9 %, MTI) by using a procedure based on etching
with ammonia solution. This method was utilized for the growth of
Cu nanowires on a 25 mm thick Cu surface.[41] To obtain the desira-
ble porous structure, a series of modifications were made to the
procedure. Firstly, the time of etching was decreased to 18 h, as
the Cu foil used in our work was thinner and tended to be de-
stroyed at the longer etching times. Secondly, the annealing tem-
perature was lowered to 300 8C with prolongation of the Cu(OH)2

reduction step to 14 h, owing to the same reasons as for etching.
Finally, reduced Cu nanowires were easily removed from the sur-

face and pores after ultrasonication for 10 s followed by washing
in deionized water and drying. The mass of the etched Cu foil con-
stituted 5.7 mg cm@2 with a loss of one third of its initial mass. The
9 mm current collector is thinnest one of all the substrates reported
for Si thin films. The conditions presented above for Cu foil etching
resulted from the optimization and allowed us to prepare a thin
porous Cu substrate, which is mechanically stable during handling.

The N-type doped 400 nm a-Si film was deposited on a Cu sub-
strate (9 mm, MTI) with different surface conditions by using a
radio frequency magnetron sputtering system (Kurt J. Lesker Com-
pany) and a 0.5 cm thick n-doped Si target (Kurt J. Lesker Compa-
ny) that measured 5 cm in diameter. The magnetron sputtering
was performed in a vacuum chamber under a pressure of 0.67 Pa
in an inert atmosphere of Ar for 1 h at a power of 80 W. The sub-
strate was rotated at 5 min@1 to evenly distribute the Si deposition,
the tilt angle was around 308. The mass of sputtered Si was deter-
mined by using a microbalance MSE2.7S-000-DM (Sartorius) before
and after sputtering, and was measured to be around 0.04:
0.002 mg cm@2, being equal for all three sample types.

Before battery assembly, the anodes went through an annealing
process inside the high-temperature tube furnace STF 1200 (Across
International) at 150 8C for 60 min to remove condensed water par-
ticles from the surface of the anode. The temperature of annealing
was further increased to 300 8C to remove oxides, which have ad-
verse effect on the performance of batteries. The annealing step at
300 8C lasted for another 60 min. The annealing in both cases was
performed under the constant flow of 150 cm3 min@1 Ar + (5 %) H2.
Owing to the inter-diffusion of Si and Cu at the interface between
the two layers, annealing strengthens the adhesion between the Si
film and the substrate. This is known to positively affect the per-
formance of batteries.[42]

Characterization

The obtained thin films were characterized on a LabRAM HR Evolu-
tion Raman spectroscope (HORIBA) at a laser wavelength of
532 nm. Scanning electron microscopy (SEM) images were taken
by using a Crossbeam 540 (ZEISS). The thin film thickness measure-
ment was performed by using atomic force microscopy (AFM) on a
C3M SmartSPMQ-1000 (AIST-HT) in tapping mode with an Al re-
flective side cantilever (NSG30 SS by TipsNano) measuring 125 mm
in length and with a resonant frequency of 200–440 kHz. The sam-
ples for AFM were prepared on polished glass with the marker line
drawn on its surface prior to sputtering, which was then easily re-
moved with ethanol.

Electrochemical Testing

Electrochemical experiments were performed by using CR2032
coin cells (MTI corp.) assembled in an Ar-filled glovebox LABmaster
Pro (MBRAUN, Glovebox, <0.1 ppm H2O and O2). A lithium metal
chip (99.9 %, MTI corp.) served as the counter and reference elec-
trode. 1 m LiPF6 in a mixture of ethylene carbonate, diethyl carbon-
ate, and ethyl methyl carbonate (1:1:1 v/v) was used as the electro-
lyte (5 drops), and porous polypropylene (CelgardS 2400) was em-
ployed as a separator. Galvanostatic charge/discharge tests were
carried out on an Arbin BT-2000 battery tester between 1.5 and
0.1 V at approximately 30 mA cm@2 at ambient temperature. All po-
tentials given in the paper are referenced to Li+/Li. The capacity is
presented in mAh cm@2, using an electrode with a surface of
15.5 mm in diameter; the specific capacity is provided in brackets.
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