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Abstract: Reactive oxygen species (ROS) can be both beneficial and deleterious. Under 

normal physiological conditions, ROS production is tightly regulated, and ROS participate 

in both pathogen defense and cellular signaling. However, insufficient ROS detoxification 

or ROS overproduction generates oxidative stress, resulting in cellular damage. Oxidative 

stress has been linked to various inflammatory diseases. Inflammation is an essential 

response in the protection against injurious insults and thus important at the onset of wound 

healing. However, hampered resolution of inflammation can result in a chronic, 

exaggerated response with additional tissue damage. In the pathogenesis of several 

inflammatory skin conditions, e.g., sunburn and psoriasis, inflammatory-mediated tissue 

damage is central. The prolonged release of excess ROS in the skin can aggravate 

inflammatory injury and promote chronic inflammation. The cellular redox balance is 

therefore tightly regulated by several (enzymatic) antioxidants and pro-oxidants; however, 

in case of chronic inflammation, the antioxidant system may be depleted, and prolonged 

oxidative stress occurs. Due to the central role of ROS in inflammatory pathologies, 

restoring the redox balance forms an innovative therapeutic target in the development of 

new strategies for treating inflammatory skin conditions. Nevertheless, the clinical use of 

antioxidant-related therapies is still in its infancy.  
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Abbreviations: APE/Ref-1, apurinic/apyrimidinic endonuclease/redox effector factor-1; ARE, 

antioxidant responsive element; CO, carbon monoxide; CoQ10, coenzyme Q10; ERK, extracellular 

signal-regulated protein kinases; G6PD, glucose-6-phosphate dehydrogenase; GPx, glutathione 

peroxidase; GSH; reduced glutathione; H2O2, hydrogen peroxide; HO•, hydroxyl radical; HIF-1, 

hypoxia inducible factor-1; HO, heme oxygenase; HRE, hypoxia response element; JNK, c-Jun  

N-terminal kinases; KO, knockout; LDL, low density lipoprotein; MAPK, mitogen-activated protein 

kinase; Mn, manganese; NAC, N-acetyl cysteine; NF-κB, nuclear factor-κB; Nox, NADPH oxidase; 

Nrf2, NF-E2-related factor 2; O2
−•, superoxide anion; Prdx, peroxiredoxin; PTP, protein tyrosine 

phosphatase; ROS, reactive oxygen species; SOD, superoxide dismutase. 

1. Introduction 

The primary function of healthy skin is to form a physical and chemical barrier between the external 

environment and the organism’s internal milieu to defend against injurious insults. Harmful stimuli 

such as trauma, pathogens or irritants evoke a complex response known as inflammation (1). 

Inflammation protects organisms against pathogenic invaders and cleans up damaged cells after injury 

to prevent further tissue damage. Hereto the injurious agents are identified and eliminated and wound 

healing is initiated for re-establishment of tissue homeostasis. The strength and duration of the 

inflammatory response depends on stimulus and context, however, and the initial steps are stereotyped 

as part of the innate immune response [1]. The five classical signs of acute inflammation are: pain, 

heat, redness, swelling, and functional loss. These signs can be explained by the different phases that 

the inflammatory response generally follows: (1) dilation of capillaries to increase blood flow;  

(2) vasopermeabilization; (3) leukocyte recruitment; (4) elimination of pathogens or injurious stimuli; 

and 5) resolution of inflammation. Unfortunately, inflammation can also become chronic and 

destructive, and accumulating evidence demonstrate a contribution of chronic inflammation to the 

development of diseases like Alzheimer’s disease, atherosclerosis, and type 2 diabetes [2]. 

In most cases, inflammation of skin represents a beneficial and protective process after injury or 

infection [3]. However, the skin can also be subjected to excessive inflammatory responses resulting in 

chronic inflammation, auto-inflammation and auto-immunity [4]. The epidermal layer of the skin is 

composed of predominantly keratinocytes, a few Langerhans cells—which are specialized dendritic 

cells—and some pigment-producing melanocytes [3,4]. Keratinocytes produce different keratins that 

generate the toughness of the epidermis [5]. Embedded in the connective tissue of the underlying 

dermis different types of immune cells can be found, such as macrophages, T cells and mast cells [4]. 

The connective tissue is composed of an extracellular matrix produced and secreted by fibroblasts, the 

principal cell type of the dermis [6]. 

Under homeostatic conditions, the skin surface is colonized by a diversity of microorganisms. 

However, a dynamic, healthy equilibrium between the epidermis and the microorganismal population 

is regulated by production of antibiotic and antifungal compounds by dermal sebocytes as well as the 

microorganisms themselves. Additionally, keratinocytes also produce antibacterial substances 

constitutively and after infection or injury [7]. Some of these keratinocyte-derived antimicrobics and 

cytokines influence the immunological properties of dendritic cells and T cells [3,4]. Thus, the skin 
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balances between ensuring an efficient pathogen defense and immunosurveillance and to reduce 

excessive immune responses that can lead to disease [1]. 

At the molecular level, inflammation is activated by the inflammasome that is a cytosolic multiprotein 

complex regulating caspase-1 activation. Caspase-1 subsequently activates the pro-inflammatory 

cytokines IL-1β and IL-18 by proteolytic cleavage. The inflammasome is composed of the danger 

sensor protein NALP and the caspase-1 recruiter protein ASC [8]. Dependent on the activation stimuli, 

different inflammasomes are formed as a response to danger signals as each inflammasome has unique 

roles in pathogen recognition [8]. 

Signal transduction by IL-1β and IL-18 results in a series of phosphorylation and ubiquitination events 

that ultimately leads to activation of nuclear factor (NF)-κB and p38 mitogen-activated protein kinase 

(MAPK) pathways, which cooperatively induce the expression of IL-1 target genes, including IL-6 [9]. 

Pathogen-mediated activation of the inflammasome also induces a specific form of caspase-1-dependent 

cell death, pyroptosis, that results in osmotic swelling and plasma membrane rupture [10,11]. This 

induces a strong inflammatory response via the release of pro-inflammatory cytokines and spreading of 

pro-inflammatory molecules [12]. 

In contrast to immune cells, human keratinocytes constitutively express inflammasome proteins and 

are a potent source of the pro-inflammatory cytokines pro-IL1α and pro-IL1β [13–15], which are 

activated and released upon UV exposure [13,16]. This implies important roles for keratinocytes as 

non-professional immune cells following sunburn, and in innate immune responses dependent on the 

inflammasome and IL1β. Keratinocytes are thus important in the inflammatory response under both 

physiological and pathological conditions [13,17]. 

Notably, it has been reported that the NLRP3 inflammasome assembly is stimulated in a ROS-sensitive 

manner by ROS generation [18,19]. The predominant source of ROS as response to danger stimuli are 

mitochondria, which also control inflammation via release of mitochondrial DNA [20,21]. Excessive 

release of ROS by mitochondria, activated leukocytes and endothelial cells in chronic inflammatory 

conditions can ultimately result in severe cell and tissue damage and can further promote and 

aggravate inflammatory injury. In many inflammatory diseases, currently available intervention 

strategies fail or are of limited success, warranting the need for novel strategies to treat chronic 

inflammatory conditions. The prolonged presence of oxidative stress is postulated to promote and fuel 

these deleterious inflammatory processes and may form a novel target for treatment of chronic 

inflammatory conditions. 

2. Reactive Species Mediate Cellular Signaling 

ROS are free radicals generated from molecular oxygen, such as superoxide anion (O2
•−), hydroxyl 

radical (HO•), and non-radical species including hydrogen peroxide (H2O2). Today, it is well accepted 

that ROS mediate and modulate signaling processes [22,23]. In moderate concentrations, ROS induce 

a cascade of cell signaling networks, triggering a ROS wave that propagates throughout tissues 

carrying signals across large distances [24]. They thereby act as important regulatory mediators  

in different signaling pathways and processes, including cell proliferation, differentiation, and  

apoptosis [25,26]. 
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Today H2O2 is recognized as a major ROS signaling molecule [27] that can mediate oxidation of 

protein thiols [28], and it is widely accepted that ROS can elicit cellular effects by covalently 

modifying amino acids and subsequently affecting protein activity. Redox-regulated proteins sense the 

changes in cellular redox state by different mechanisms. Several transcription factors, including 

nuclear factor κB (NF-κB), hypoxia inducible factor-1 (HIF-1), and p53, contain redox-sensitive 

cysteine residues in their DNA binding sites [29]. Oxidative modifications of these residues affect 

DNA binding and subsequently regulate gene transcription of redox sensitive genes [26,30,31]. 

Additionally, the DNA binding properties of these transcriptional regulators are further indirectly 

affected by redox-sensitive proteins, like apurinic/apyrimidinic endonuclease/redox effector factor-1 

(APE/Ref-1) protein and histone deacetylases [32,33]. 

Oxidative posttranslational modifications form a major redox-regulated mechanism of protein 

function [34], targeting multiple types of amino acids with various susceptibilities and subsequent 

structural and functional consequences [35]. For instance, reversible oxidation of cysteines and 

oxidative nitration of tyrosines regulate the activity of various kinases involved in signaling pathways, 

including c-Jun N-terminal kinases (JNK), mitogen-activated protein kinase (MAPK), and protein 

kinase C [26]. Altered kinase activities due to oxidative modifications affect downstream signaling 

pathways and consequently transcription factor activation and contribute to additional redox-regulated 

gene transcription [36]. Effects of some of these redox-mediated alterations of signaling are 

exemplified below. 

Based on the chemical characteristics, only a few amino acids can undergo oxidative modification, 

namely cysteine, methionine, and tyrosine [37]. Selective oxidation, reduction or chemical 

modification of these sensor thiols results in a change in protein activity and signal transduction in 

response to redox fluctuations [38]. However, the reactivity and modification of a particular cysteine 

residue is highly dependent on the microenvironment [28,39]. 

The side chain of a cysteine residue contains a terminal thiol (–SH) as a functional group allowing 

multiple oxidation states and is a common event in redox signaling [27,40–43]. Oxidation of these 

residues result in reactive sulfenic acid (–SOH) that can form disulfide bonds (RS–SR’) with nearby 

cysteines or undergo further oxidation to sulfinic acid (–SO2H) and sulfonic acid (–SO3H) [44]. Most 

of these modifications are generated by diffusible small molecules like H2O2 and are reversible by 

reducing systems like thioredoxin and peroxiredoxin with the exception of the sulfinic and sulfonic 

states [27]. For instance, reversible inhibition of protein tyrosine phosphatase (PTP) activity and 

subsequently regulation of cellular tyrosine phosphorylation and downstream signaling is mediated by 

H2O2-mediated oxidation of the catalytic cysteine to the sulfenic form [45,46]. 

Disulfide bond formation is important for protein structure and function [47], and recently its  

role as signaling event has been demonstrated [48,49]. Some cysteine-containing proteins also form  

intra- and intermolecular disulfide bonds, resulting in conformational changes and altered function due 

to ROS-mediated oxidation. For instance, ROS-mediated cysteine oxidation of PTPs is accompanied 

by intramolecular disulfide bond formation to protect against further oxidation [50–53]. Moreover, the 

accompanying conformational change might ease access for reducing enzymes and subsequent 

reactivation of the enzyme [54]. Cysteine redox switches in enzymes have been extensively discussed 

elsewhere [55]. 
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S-glutathionylation is one of the most common S-thionylation reactions inside the cell and is 

generated from the reaction between cysteine sulfenic acid and a reduced thiol like GSH. This forms a 

mixed glutathione disulfide (GSSG) that prevents further irreversible oxidation [56]. Hereby, cells can 

effectively and reversibly respond to redox input, and glutathionylation indeed regulates most cellular 

pathways [30]. For instance, activation of the master regulator of several antioxidant genes, NF-E2-related 

factor 2 (Nrf2), is physically confined to binding partner Keap1 in the cytosol [57]. Keap1 

glutathionylation leads to dissociation of the Nrf2-Keap1 complex, allowing Nrf2 to translocate to the 

nucleus and activate expression of target genes [58]. S-glutathionylation has also been found to control 

NF-κB pathway activation on different levels [30]. Several members of this pathway are inhibited by 

S-glutathionylation [59], and NF-κB itself is subjected to redox-regulation [36,60]. Oxidative 

modifications may also modulate protein–protein interactions and thereby affect the stability of protein 

complexes and activity of the protein partners involved [61]. For instance, NF-κB is sequestered by 

IκB in the cytosol. ROS activate IκB kinases that phosphorylate IκB, leading to its degradation by the 

proteasome and exposure of the nuclear localization sequence of NF-κB. Next, NF-κB translocates to 

the nucleus, and activates transcription of various target genes [62]. Moderate ROS levels promote NF-κB 

activation and cell survival, whereas high levels of ROS inactivate NF-κB, leading to cell death [26,36]. 

S-nitrosylation is the nonenzymatic adduction of NO to a thiol group (-SNO), and is reversible 

through the action of the protein denitrosylation system mediated by reduced glutathione (GSH) or the 

thioredoxin system [63,64]. Redox effects of NO are mediated by S-nitrosylation [65] that is thought to 

exert its regulatory effects through direct modification of protein function via conformational changes 

or through the protection of thiol groups against further oxidation [66]. However, the exact mechanisms 

underlying S-nitrosylation-mediated regulation is still not fully explored. S-nitrosylation plays a dual 

role as it can act as a protective modification and as an intermediate to further oxidation [67] as well as 

intermediate for formation of secondary posttranslational modifications such as ubiquitination [68]. 

Also, S-nitrosylation mediates the anti-inflammatory effects of NO in the cardiovascular system, as  

S-nitrosylation of N-ethylmaleimide factor suppresses vascular inflammation as well as inhibits  

NF-κB-dependent expression of pro-inflammatory cytokines and adhesion molecules [65]. 

Mitochondrial ROS production is also a participant in redox signaling networks [69,70]. The 

respiratory chain generates O2
•− that is converted to H2O2, and both species can act as redox signals, 

but with different properties and interactions [27,71]. Membrane-impermeable O2
•− is restricted to the 

mitochondrial matrix where it is thought to act as a redox signal within the mitochondria [72,73]. O2
•− 

itself is not particularly reactive with most biomolecules except for iron–sulfur proteins, NO, and 

quinones [74–76]. Mitochondrial aconitase is an Fe-S cluster containing protein that reacts with O2
•− to 

release H2O2 and ferrous iron [77]. ROS-mediated damage to the Fe–S cluster leads to aconitase 

inactivation and a cellular metabolic shift from ATP production to fat storage due to coenzyme A 

buildup [78]. This feedback loop has been suggested to be an antioxidant defense mechanism by 

reducing respiration and subsequently mitochondrial ROS formation [72,78]. Indeed, mitochondrial 

oxidative stress has been suspected to contribute to metabolic syndrome [78]. 

Also, mitochondrial ROS production is thought to play a role in oxygen sensing via HIF-1 [79,80] 

under both hypoxic [81] and non-hypoxic conditions [82]. Additionally, NADPH oxidases contribute 

for ROS formation and redox-dependent HIF-1 stabilization [83]. HIF-1 is a heterodimeric 

transcription factor that activates numerous genes involved in hypoxic adaptation via its binding to a 
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hypoxia response element (HRE) in gene promoter regions [84]. Under normoxic conditions, the 

HIF1α subunit is tagged at the oxygen-dependent degradation domain for ubiquitination and 

subsequent proteasomal degradation by oxygen- and iron-dependent prolyl hydroxylases. Under 

hypoxia, the hydroxylation of HIF-1α subunit is inhibited, thereby enabling the formation of the active 

HIF transcription factor and subsequent induction of target gene transcription [79]. This is achieved 

through ROS-mediated oxidation of ferrous iron that is a co-activator of a prolyl hydroxylase  

function [85]. Moreover, a recent study describes perinuclear accumulation of mitochondria due to an 

altered microtubule-dependent transport under hypoxia [86]. As a result, increased levels of ROS in 

the nucleus caused oxidative modifications of DNA bases in the HRE of the VEGF promoter that is 

important for facilitated assembly of the HIF-1 transcriptional complex and thus increased VEGF gene 

expression [80,86]. 

Together, these examples illustrate that ROS-mediated posttranslational modifications act as key 

regulatory mediators in different signaling pathways and processes, including cell proliferation, 

differentiation, and apoptosis [25,26]. Paradoxically, ROS-signaling also promotes pathways 

protecting against oxidative stress to restore an imbalanced ratio between cellular oxidants and 

antioxidants [87]. Also, from these examples it becomes clear that the redox system affects protein 

function and biological activity either indirectly at the level of protein expression or stability or 

directly through posttranslational modifications [26]. An exhaustive collection of literature further 

points towards the importance of well-regulated ROS-mediated signaling as ROS has been linked to 

diverse groups of diseases, ranging from cardiovascular problems to neurodegeneration, see e.g., [88]. 

However, despite the ever-increasing number of studies, it is evident that ROS-mediated signaling and 

importantly, the regulation and specificity hereof, is still poorly defined and warrants for more  

investigation [27]. 

3. ROS and (Chronic) Inflammation of the Skin 

Excess levels of ROS due to overproduction or because of insufficient scavenging generate 

oxidative stress, leading to injurious effects via: (1) oxidative modification and damage of 

biomolecules, altering lipid/protein/DNA structure and function; (2) further irreversible oxidation of 

reactive protein thiol groups which is hallmark of oxidative stress [89]; and (3) dysregulation of cell 

signaling pathways [90], triggering downstream signaling cascades leading to altered cytokine release 

and exacerbation of inflammation [91]. Combined, excess ROS lead to pathological changes in cells 

and tissues, as exemplified by inflammatory skin conditions like psoriasis. 

Inflammatory skin diseases range from acute rashes with itching and redness to chronic conditions 

like dermatitis (eczema) and psoriasis. Acute skin inflammation may develop following exposure to, 

e.g., UV radiation (sunburns), allergens, physical wounding, or contact with chemical irritants, and is 

resolved within two weeks with only minor tissue destruction. In contrast, chronic skin inflammation 

results from a sustained, exaggerated inflammatory response, negatively affecting skin health. 
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3.1. Sunburn 

Acute dermal overexposure to UV radiation causes sunburn and is an inflammatory response with 

increased prostaglandin and pro-inflammatory cytokine production, causing erythema, vasodilation, 

and leukocyte infiltration as predominant features [92,93]. 

Oxidative stress is thought to play a central role in the cellular response following UV exposure. 

Solar UV radiation is classified as UV-A (320–400 nm), UV-B (290–320 nm) and UV-C  

(100–290 nm) [94]. However, skin will only be exposed to UV-A and UV-B, as UV-C and partly UV-B 

radiation is absorbed by the ozone layer. UV-A photons are absorbed by endogenous UV-absorbing 

chromophores (e.g., riboflavin, quinines, tryptophan, and porphyrins) that subsequently transfer this 

energy to molecular oxygen, resulting in the formation of O2
−•. Superoxide anions are then converted 

to H2O2 which in the presence of redox-active transition metals can be converted into HO• [95]. UV-B 

radiation is mainly absorbed by the epidermis and is primarily responsible for sun burn, whereas UV-A 

penetrates deeply into the skin. UV-A and UV-B radiation have different targets and outcomes. DNA 

is a prominent target of UV-B radiation, resulting in the formation pyrimidine and purine 

photoproducts and DNA strand breaks [96]. Additionally, UV-B-derived HO• can also damage the 

DNA, inhibiting normal cell function [97]. 

The effects of UV-A radiation exposure are a result of both direct and indirect damage to 

biomolecules and the subsequent physiological consequences hereof. Firstly, UV radiation damages skin 

lipids [98] and lipid peroxidation leads to increased production of prostaglandins, promoting 

inflammation in the skin [99]. Additionally, after UV exposure, keratinocytes and other skin-related cells 

upregulate pro-inflammatory cytokine production, e.g., IL-1, IL-6 and TNFα, and induce the expression of 

vascular adhesion molecules. TNFα is considered central to mediating UV-induced inflammation [100]. 

Furthermore, UV radiation of sunlight has been demonstrated to generate ROS leading to oxidative 

stress in skin due to depletion of endogenous antioxidant enzymes [101–103]. Chronically sun-exposed 

skin demonstrated no difference to sun-protected skin with respect to expression levels of  

Cu/Zn-dependent superoxide dehydrogenase (SOD)1, Mn-dependent SOD2, and catalase; however, 

sun exposure induced a marked increase in heme oxygenase expression [98]. ROS generated by UV 

radiation primarily cause damage to DNA through oxidative modifications and mutations, but also by 

inducing expression of different genes, such as matrix metalloproteinases and collagenases, thereby 

affecting collagen integrity and skin aging [104,105]. Additionally, UV-mediated ROS generation also 

indirectly affects cellular function and survival via its effect on cell signaling pathways [106]. For 

instance, activation of MAPK proteins occurs after UV exposure, suggesting that it may be responsible 

for executing the effects of UV-induced oxidative stress [93,98]. 

Thus, UV-induced oxidative damage is due to either immediate damage from UV radiation or 

indirectly from activated immune cells and dysregulated cellular signaling. An important aspect of UV 

damage is the depletion of the antioxidant defenses, which leaves the skin vulnerable to additional 

ROS damage [107]. This redox imbalance may also have systemic effects due to the wide-ranging 

effects of ROS, thereby rendering the body more prone to other ROS-mediated pathologies. This is 

further supported by several studies demonstrating an association between psoriasis and the prevalence 

and incidence of diabetes [108–110], a condition with ROS-mediated pathology due to increased ROS 

production and impaired antioxidant defense [111]. 
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3.2. Psoriasis 

Psoriasis is a chronic inflammatory skin disease manifested by red, thickened skin and skin scales 

due to keratinocyte hyperproliferation and is caused by a multitude of factors, including genetic, 

immunological, and environmental factors [112]. The pathogenesis of psoriasis includes complex 

interactions between skin and immune cells in concert with growth factors and pro-inflammatory 

chemo- and cytokines [113,114]; however, the exact underlying mechanisms still remain to be elucidated. 

Oxidative stress is believed to be a key factor in the pathogenesis of psoriasis [115], as studies have 

suggested the involvement of increased ROS levels in psoriasis pathogenesis [101,116]. Increased 

ROS generation by infiltrated leukocytes into psoriatic lesions [117] is accompanied by substantial 

biomolecular damage, like psoriatic skin lesions containing oxidized LDL [118,119]. Indeed, a 

relationship between psoriasis severity, lipoprotein levels and oxidative damage has been  

proposed [120]. Notably, decreased antioxidant levels have been found together with increased levels 

of lipid peroxidation markers in blood of psoriasis patients [121,122]. Also, serum levels of catalase 

were elevated in psoriatic patients [123] and increased activity of superoxide dismutase (SOD) [124], 

and expression levels of peroxiredoxin (Prdx)2 and glutathione peroxidase (GPx)6 have been found in 

psoriatic skin lesions [125,126]. It is tempting to speculate that increased compensatory antioxidant 

levels counteract the skewed redox balance. 

Besides direct damaging effects of unregulated ROS production, dysregulation of several  

pro-inflammatory pathways, like MAPK, NF-κB, and JAK-STAT, has been considered to contribute to 

psoriasis etiology [127]. Several members of the MAPK signaling pathways, like ERK1/2, JNK, and 

MAPK, were activated in psoriatic skin, further supporting this notion [128–130]. 

NF-κB, another redox-sensitive transcription involved in cellular processes like inflammation, cell 

proliferation and survival, has recently been demonstrated to be upregulated and active in psoriatic 

skin [129,131,132]. Dysregulation of NF-κB-mediated signaling may further exaggerate disease 

severity, as NF-κB-mediated upregulation of pro-inflammatory cytokines activates NF-κB via a 

positive feedback loop [133]. Importantly, inhibition of NF-κB nuclear translocation and DNA binding 

activity dampens the inflammatory component of psoriasis [134–136]. Many of the cytokines involved 

in psoriasis pathology induce keratinocyte proliferation and these signals are via ROS-mediated action 

transmitted to transcription factors and associated proliferation pathways [137,138]. Together, these 

observations strongly support a misbalanced oxidant/antioxidant balance as the major culprit in 

sustaining the inflammatory component in the pathology of psoriasis. 

3.3. Burn Injury 

A skin burn is a posttraumatic inflammatory condition accompanied by local as well as distant 

effects, leading to exaggerated inflammation, tissue damage, and infection. After skin burn, molecular 

signals, including inflammatory mediators and oxidants, are released at the injury site, further 

contributing to tissue damage and ischemic tissue necrosis [139,140]. Liquid from burn injury blisters 

contains a substantial amount of keratinocyte-derived pro-inflammatory cytokine IL-1β [141]. 

Moreover, induction of the inflammatory phase and attraction of immune cells leads to ROS 

production, exacerbating tissue damage [142]. Also, burns are often accompanied by secondary tissue 
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damage distant to the site of injury [143–145] that is thought to be mediated by ROS and activated 

immune cells/neutrophils [146,147]. Besides local effects, burns also initiate systemic inflammatory 

reactions via ROS production, leading to distant oxidative damage to lipids and proteins [144,148]. 

Additionally, this systemic inflammatory response contributes to secondary damage as neutrophils 

have been demonstrated in various organs distant from the burn site within hours after injury and may 

lead to exaggerated oxidative stress and damage [145]. Notably, the intensity of the systemic 

inflammatory response and subsequently ROS generation correlates with the severity of the burn  

injury [149,150]. This pathological ROS production may affect cell signaling networks at the site of 

injury, thereby damaging cells and biomolecules. Also, ROS-mediated lipid peroxidation in skin is  

an important cause of cellular membrane dysfunction and subsequently cell death after burn  

injury [151,152]. A correlation has been described between the lipid peroxidation load and the degree 

of complications [153–156]. 

Importantly, these pathological effects seem to be caused by an overwhelming of the antioxidant 

systems, as decreased antioxidant scavenging capacity and reduced levels of SOD, GSH, and bilirubin 

have been reported after burns [148,156–159], likely due to massive consumption of these antioxidants 

as an attempt to counteract the oxidative stress. Thus, a tight control of the cellular redox balance is 

crucial, as excessive ROS production or decreased activity of ROS detoxifying enzymes results in 

aberrant wound healing [160] caused by exacerbated tissue damage due to macromolecular damage or 

by responses via stress-induced pathways. 

4. Maintaining the Redox Balance in the Skin 

Free radicals are formed in the skin following exposure to environmental stimuli and immune 

reactions. In addition, ROS generation in skin occurs naturally as part of normal cellular metabolism, 

like mitochondrial respiration. These ROS are normally rapidly neutralized by non-enzymatic and 

enzymatic antioxidants, thereby maintaining the oxidant/antioxidant balance and thus tissue 

homeostasis [101] (Figure 1). 

Figure 1. Redox balance maintenance in skin. ROS in the skin originate from normal 

cellular metabolism, e.g., mitochondrial respiration, and enzymatic activity. Besides, 

exogenous ROS are generated following physical insults, like UV light or persistent presence 

of leukocytes, facilitating chronic inflammatory skin conditions. To regulate ROS levels, 

the skin is rich in enzymatic and non-enzymatic antioxidant defense systems, thereby 

maintaining physiological homeostasis. In addition to the classical antioxidant defense, the 

cytoprotective enzyme heme oxygenase exhibits antioxidant properties via its degradation 

of pro-oxidant heme and generation of its antioxidant effector molecule bilirubin. 
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However, if the cytoprotective antioxidant factors get overwhelmed or are depleted, as may occur in 

hyperglycemic patients, the redox balance gets skewed towards oxidative stress, and may aggravate 

inflammatory injury. 

4.1. Enzymatic Sources of Oxidants in the Skin 

A major ROS source is the mitochondrial electron transport chain, leaking electrons during 

respiration. These electrons contribute to O2
•− generation that is released into both the mitochondrial 

intermembranal space and matrix [69]. Matrix O2
•− is converted to H2O2 by mitochondrial  

Mn-dependent SOD2 and can easily reach the cytosol by diffusion, whereas O2
•− from the 

intermembranal space exits the mitochondria via voltage-dependent anion channels and is converted to 

H2O2 by Cu/Zn-dependent SOD1 in the cytosol [161]. 

Various enzyme systems produce ROS secondary to their main enzymatic function, including 

xanthine oxidoreductase [162], lipid peroxidases [163], cytochrome P450 enzymes [164], and nitric 

oxide synthase [165]. Nitric oxide (NO) synthase produces the free radical NO, which, under normal 

conditions acts protective, but which under oxidative circumstances gets converted into peroxynitrite, 

which is highly damaging [166]. Moreover, under certain conditions, like loss of cofactor 

tetrahydrobiopterine, NO synthase uncouples and produces O2
•− instead of NO [167] leading to 

oxidative stress affecting cardiovascular performance [168]. 

The most important enzyme responsible for ROS production is the membrane–bound enzyme 

complex NAPDH oxidase (Nox). The Nox family consists of 7 members, Nox1-5 and Duox1-2, 

bearing a catalytic Nox or Duox domain, respectively. Furthermore, Nox isoforms contain a stabilizing 

domain (p22phox) and several regulatory subunits [169]. They display differential expression, 

regulation, and subcellular localization, and produce different ROS products [170]. Nox1, 2 and 5 are 

the key sources of O2
−•, whereas Nox4 mainly produces H2O2 from molecular oxygen using NADPH 

as electron donor [171]. Nox-dependent ROS generation is activated by a wide range of chemical, 

physical, environmental, and biological factors [172]. The functions of the different Nox isoforms 

depend on their cellular localization and mode of activation [173] and have been thoroughly  

reviewed [174]. In keratinocytes, Nox1 is the only Nox expressed despite the detection of mRNAs 

encoding Nox1, Nox2, and Nox4 [175]. Keratinocyte Nox activity has been suggested to induce VEGF 

expression [176], MAPK activation [177], and cell growth [178]. Upon inflammation, infiltration of 

activated macrophages and neutrophils and their Nox2 and myeloperoxidase activities will exacerbate 

oxidative stress and prolong the inflammatory state [179]. 

4.2. Non-Enzymatic Sources of Oxidants in the Skin 

Heme is crucial as the functional group of various hemoproteins, such as hemoglobin, cytochromes, 

peroxidases, and catalases [180]. In addition, heme can act as signaling molecule [181]. However, 

large amounts of free heme may be injurious to cells since heme is an iron chelate with the potential to 

catalyze iron-dependent reactions leading to ROS generation and membrane peroxidation [182]. Heme 

has indeed been demonstrated to catalyze ROS formation via the Fenton reaction [183] through its 

iron-dependent reaction with H2O2 [184,185]. 
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After injury, large amounts of free heme are released from hemoproteins and aggravate tissue 

damage [182,186]. High local accumulation of heme can overwhelm the cellular ROS detoxification 

systems and prolongs oxidative and inflammatory stress [186–188]. Additionally, several studies have 

indicated that free heme also possesses pro-inflammatory properties [189–192], whereas low 

concentrations of free heme contribute to resolution of inflammation by downregulating inflammatory 

mediators, probably via induction of heme oxygenase (HO) activity [193–195]. Heme has therefore 

been suggested to act as a molecular switch due to its opposite, concentration-dependent effects [196]. 

Furthermore, free redox active metals, e.g., copper, zinc, and iron provide catalytic function to 

diverse (anti)oxidant enzymes [197], and redox cycling between Cu+/Cu2+ and Fe2+/Fe3+ is an integral 

part of the mitochondrial electron transport chain and ATP generation [198]. Transition metal 

homeostasis is regulated on both cellular and systemic levels and metal overload due to defective metal 

transporters is a central feature of several human diseases, like neurodegeneration [199]. Moreover, 

unregulated interaction of these metals with molecular oxygen also facilitates excessive ROS 

generation, predominantly via Fenton chemistry [200]. 

4.3. Antioxidant Systems in the Skin 

Normally, the skin is constantly exposed to free radicals from the internal and external 

environment, challenging the functionality of the skin. Is our skin well enough prepared to withstand 

exogenous and endogenous ROS, and could targeting the redox status of the skin be a strategy to 

combat inflammatory skin conditions? 

Under physiological conditions, ROS buildup in the skin is limited by numerous antioxidant 

defense systems, including both non-enzymatic and enzymatic mechanisms that either scavenge 

generated ROS before it can cause damage or prevent its formation (Figure 1, Table 1). In contrast to 

non-enzymatic antioxidants the enzymatic counterparts are not consumed and have a high affinity and 

reaction rate when scavenging ROS. Furthermore, the efficiency of the dietary non-enzymatic 

antioxidants depends on bioavailability as well as conversion into the active form upon ingestion [201] 

and antioxidant enzymes may therefore confer more efficient protection against acute oxidative and 

inflammatory stress [201]. 

Table 1. Enzymes and factors involved in antioxidant defense in the skin. 

Antioxidants Examples Target 

Enzymatic 

Superoxide dismutase 
Catalase 

Glutathione peroxidase 
Peroxiredoxin 

Heme oxygenase 

Superoxide 
Hydrogen peroxide 

Hydrogen peroxide, lipid peroxides 
Hydrogen peroxide 

Heme 

Non-enzymatic 

Bilirubin 
Vitamin C 

 
Vitamin E 

Lipid peroxides 
Superoxide, hydroxyl radical, reactive 

nitrogen species, trace metals 
Lipid peroxides 

Metal-binding proteins Ferritin Free iron 
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The antioxidant defense system in skin is mainly comprised of the abundantly expressed antioxidant 

enzymes catalase, SOD, GPx, and Prdx [202]. 

SOD exists as three isoforms: cytosolic Cu/Zn-dependent SOD1, mitochondrial Mn-dependent 

SOD2, and extracellular SOD3 and catalyzes the conversion of O2
−• radicals into H2O2 using NAPDH 

as cofactor [203]. Excessive amounts of H2O2 are harmful to cells and rapid scavenging hereof is thus 

important [204]. This task is performed by either catalase, Prdx, or by GPx and the glutathione system 

that reduces the H2O2 to oxygen and water. 

Mammalian cells may express 5 GPx isoforms [205], with GPx1 being the most prominent isoform 

in skin cells, reducing H2O2 and a range of organic peroxides [206]. GPx1 expression and activity is 

upregulated by ROS [207], and GPx1 and SOD display similar expression patterns [208], thereby 

securing an effective detoxification of H2O2 generated by SODs and avoiding the generation of HO• 

radicals. Moreover, GPx1 has been linked to the regulation of acute oxidative stress [209], as GPx1 

knockout (KO) mice are highly susceptible to oxidative injury induced by paraquat and H2O2 [207] 

and GPx1 KO fibroblasts show increased sensitivity to oxidant-induced apoptosis [209]. 

Besides catalase and GPx, the six members of the Prdx family all catalyze the reduction of H2O2 

and a wide spectrum of organic peroxides and peroxynitrite using GSH together with thioredoxin 

(Prdx1-5) or ascorbate (Prdx6), respectively [210]. Prdx6 is important in the cellular stress response, as 

Prdx6 overexpressing cells are protected from ROS-induced toxicity [211,212] and Prdx6 

overexpressing keratinocytes are less sensitive towards photo-damage by UV radiation [213]. On the 

contrary, Prdx6 knockdown increases sensitivity towards oxidative stress [214–216]. 

Additionally, the NADPH/NADP+ ratio is an important index reflecting the cellular redox status. 

NADPH, the principal intracellular reductant, is generated from NADP+ by different groups of 

enzymes: (1) cytosolic glucose-6-phosphate dehydrogenase (G6PD) and 6-gluconate phosphate 

dehydrogenase; (2) cytosolic and mitochondrial isocitrate dehydrogenases; (3) cytosolic and 

mitochondrial malic enzymes; and (4) mitochondrial transhydrogenase [217]. NADPH is a central 

component in the cellular antioxidant system, as NADPH is required by glutathione reductase to 

reduce glutathione disulfide to GSH, an obligate co-substrate for GPxs [218]. Also, NAPDH is 

required by several pro-oxidant and antioxidant enzymes, including Nox and catalase [219]. G6PD is a 

major contributor to NADPH generation that despite its status as housekeeping enzyme is subjected to 

tissue-specific regulation by various factors, including oxidative stress, nutrients and hormones [220]. 

Notably, studies have shown that abrogation of G6PD activity dramatically increases cellular 

sensitivity to oxidative stress in vitro [221,222]. However, G6PD plays a dual role in the 

(anti)oxidative system as G6PD activity also provides Nox with NADPH. Obese and hyperglycemic 

rats demonstrated significantly higher Nox-derived O2
−• production due to increased G6PD activity 

and subsequently elevated NADPH levels to fuel this overproduction [223]. The resulting oxidative 

stress induced pathological changes of the heart and aorta and reduced cardiovascular function [223]. 

Together, this places G6PD and NAPDH centrally in the maintenance of a balanced ratio between  

pro- and antioxidants. 

Besides the classical ROS-detoxifying enzymes discussed earlier, the HO system also exhibits 

potent antioxidant functions [224]. HO enzymes comprise the inducible HO-1 and the predominantly 

constitutively expressed HO-2 isoforms [225] and catalyze the degradation of heme into carbon 

monoxide (CO), iron, and biliverdin. Biliverdin is rapidly converted to bilirubin by biliverdin 
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reductase [226,227]. Because heme is a redox active molecule that is cytotoxic in high  

concentrations [228], a direct beneficial effect of HO activity on the cellular redox balance can be 

ascribed to its active heme detoxification. 

Numerous studies have linked the HO system to the regulation of various (patho)physiological 

processes, including cellular adaptation to oxidative stress and promotion of inflammatory  

resolution [229]. The expression of HO-1 is induced by various ROS-producing stresses [230], 

including heme and heavy metals [231], UV light [98,232], and H2O2 [233]. Also, oxidative  

stress-mediated induction of HIF-1 stimulates HO-1 activity in many tissues [234]. Actually, HO-1 

induction is considered a marker of cellular oxidative stress and is involved in the protective response 

against oxidative damage [235]. 

Moreover, HO-1 overexpression counteracts the cytotoxic effects caused by high concentrations of 

free heme [181,190,236,237], whereas inhibition of HO activity intensifies oxidative cellular and 

tissue damage [238–241]. Preclinical and epidemiological evidence indicate that the cytoprotective and 

oxidative effects of the HO system are mediated via the generated effector molecules CO, 

bilirubin/biliverdin and by co-induced ferritin [For a recent review, see 230]. 

Both biliverdin and bilirubin generated from HO-mediated heme degradation are strong 

antioxidants [242,243], and bilirubin ameliorates oxidative stress in different diseases, including 

atherosclerosis, diabetes mellitus, and inflammatory and autoimmune diseases (Recently reviewed  

in [244]). For instance, bilirubin protects cells against high H2O2 concentrations [242,245,246] and 

nanomolar concentrations of bilirubin suppress Nox activity in vitro, thereby reducing ROS levels and 

subsequent tissue damage [247–249]. Thus, the involvement of biliverdin and bilirubin in antioxidant 

defense is evident [250]. 

Ferrous iron (Fe2+) is released during heme degradation by HO enzymes and can participate  

in ROS-generating Fenton chemistry, leading to cellular damage [251]. Ferritin is a ubiquitous  

iron-binding protein that can accommodate up to 4,500 iron atoms per molecule [252,253]. Notably, 

ferritin expression is not only regulated by cellular iron levels but also by oxidative stress via Nrf2 

binding to an antioxidant responsive element (ARE) in the ferritin promoter [254], leading to  

co-induction with HO-1 [196]. Thus, the HO system contributes significantly to the cellular 

antioxidant defense by degrading redox active heme, thereby generating ROS-targeting effector 

molecules that further contributing to counteracting oxidative stress. 

Numerous studies using cellular and animal models have demonstrated protective effects of  

vitamin C, a water-soluble compound, and vitamin E, a fat-soluble compound, against cytoplasmic 

oxidative damage and lipid peroxidation, respectively, in the etiology of atherosclerosis. 

Disappointingly, clinical studies have turned out less promising [255]. 

Together, under normal physiological conditions, ROS-mediated reactions in the skin are well 

balanced and protect the cells against oxidative stress. However, under pathological conditions like 

inflammation excessive damaging ROS formation may occur due to overwhelming of the antioxidant 

systems, contributing to a worsened clinical outcome. 
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5. Oxidative Stress as Therapeutic Target in Inflammatory Skin Conditions 

The skin is constantly subjected to ROS formation via UV irradiation, environmental exposure, and 

cellular metabolism and is rich in enzymatic and non-enzymatic antioxidant systems keeping the ROS 

levels at homeostatic levels. However, inflammatory conditions in combination with an overwhelmed 

antioxidant system leads to pathological levels of ROS and oxidative stress, further exacerbating 

disease state. Attenuation of ROS levels and restoring the redox balance could then normalize the 

inflammatory response. 

A potential therapeutic approach to restore antioxidant levels in the skin could therefore be achieved 

through (1) reducing the ROS production; (2) increasing endogenous antioxidant enzymatic defenses; 

or (3) enhancing the non-enzymatic antioxidant defenses via dietary or pharmacological approaches. 

5.1. Reduction of ROS Production 

5.1.1. Nox Inhibition 

Increased ROS production and oxidative stress contribute to cellular and tissue injury during  

the progress to chronic inflammatory skin diseases. Recent studies suggest that Nox-generated  

ROS contribute to cellular and tissue damage by fuelling the acute inflammatory  

response [174,256–259]. For instance, studies indicate that Nox-generated ROS contribute to  

TNFα-mediated activation of NF-κB and vascular adhesion molecule expression [256,260–262]. 

Indeed, the central role of Nox in a multitude of diseases suggests it to be a putative therapeutic target, 

and several Nox-targeting inhibitors have been developed [263,264] with the main focus on the 

macrophage-specific Nox2 due to its involvement in several inflammatory conditions [173]. However, 

a recent study demonstrated that genetic Nox deficiency enhanced inflammatory responses after LPS 

challenge in vivo, suggesting that Nox-generated ROS in certain settings also have anti-inflammatory 

functions [265,266]. These contradictive and highly condition-specific outcomes of Nox-generated 

ROS may in the future challenge the use of Nox as therapeutic target to counteract redox imbalances. 

5.1.2. Metal Scavenging Proteins 

Redox active metals obstruct cellular signaling pathways by ROS-dependent and independent 

mechanisms. Both enzymatic and non-enzymatic antioxidants protect against metal-mediated ROS 

generation by (i) chelating redox-active metals; (ii) maintaining the metal redox state and preventing 

Fenton chemistry; and (iii) scavenging of metal-mediated ROS [200]. 

Excess free iron released after insults can catalyze ROS formation via Fenton reaction and cause 

tissue damage [228]. Furthermore, under in vivo stress conditions, an excess of superoxide releases 

iron from iron-binding molecules, including ferritin [267], contributing to further iron overload that 

can have deleterious effects [268,269]. Thus, the application of suitable metal chelators may contribute 

to a reduction in metal-induced ROS formation. 

Chelation therapy is medical treatment for heavy metal poisoning and scavenging of redox  

active metals. Normally, labile cellular iron not contained by ferroproteins is scavenged by ferritin, 

thereby neutralizing the pro-inflammatory and pro-oxidative potential of free iron and preventing  
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immune-mediated inflammatory conditions [270]. The bacterial siderophore Deferoxamine is an  

iron chelator frequently used to treat acute iron overload and related complications [271]. Also,  

plant-derived polyphenolic compounds (so-called botanicals) can be effective metal chelators [272]. 

For instance, the antioxidative effect of the plant-derived flavanoid quercetin is predominantly due to 

its chelating of redox-active iron [273]. 

5.2. Increasing Enzymatic Antioxidant Defenses 

5.2.1. Antioxidant Upregulation 

As mentioned earlier, superoxide scavenging is performed by the three mammalian SOD enzymes. 

The primary location of SOD3 is the extracellular matrix and on cell surfaces, whereas SOD1 and 

SOD2 are intracellularly located [274]. SOD3 is expressed in the epidermis and dermis of skin [275], 

but the role of SOD3 in this tissue is less clear. SODs have been suggested to be involved in the 

defense against UV-mediated ROS, as SOD enzyme expression and activity are affected by UV 

exposure [276–278]; however, SOD3 needs significantly higher UV doses before being activated than 

SOD1 and SOD2. 

Numerous studies have investigated the antioxidative effects of elevated SOD levels in tissues by 

different means. For instance, intramuscular injections of SOD1 were successfully applied as  

anti-fibrotic therapy in treating cutaneous radiation-induced fibrosis in humans [279] and similar 

promising results were obtained with SOD2 in a porcine model of radiation-induced fibrosis [280]. 

Additionally, cutaneous SOD2 gene therapy reduced superoxide levels and normalized wound 

healing in mice with chemically-induced diabetes [281]. Similarly, diabetic transgenic SOD2 mice also 

demonstrated reduced superoxide levels and improved wound healing after ischemic stress compared 

to wild type controls [282]. 

Notably, chemically-induced contact dermatitis was alleviated in transgenic mice overexpressing 

SOD3 under the control of the keratin14 promoter, including a reduction in the levels of ROS and  

pro-inflammatory cytokines as well a reduced immune cell infiltration [283,284]. By contrast, SOD3 

KO mice display exaggerated IL23-mediated psoriasis-like skin inflammation, including increased 

immune cell infiltration and higher levels of pro-inflammatory cytokines compared to WT  

controls [285,286], suggesting a role for SOD3 in cutaneous inflammation. Also, SOD3 expression is 

reduced in psoriasis patients compared to healthy subjects [284], further supporting this. 

Moreover, SOD3 is suggested to play a role in pulmonary, arthritic, and neurological conditions [287]. 

Importantly, increasing SOD3 levels in various experimental disease models, e.g., chemically induced 

diabetes, hypertension, and inflammatory arthritis, reduced oxidative stress and improved disease  

state [288], thereby placing SOD3 as a central therapeutic target. Many studies have focused on SOD3 

therapy in targeting ROS-mediated cardiovascular effects; however, the outcome has been  

variable [288]. Importantly, this discrepancy may relate to the use of predominantly rats in these 

studies despite that fact that rat SOD3 differs structurally and chemically from other mammalian 

SOD3 forms, resulting in a lower SOD3 concentration in rat vascular tissues [289], probably creating a 

therapeutic window that would not be present in other mammals, e.g., dogs, that did not show a 

therapeutic benefit from SOD3 gene therapy [290]. 
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Thus, it is clear that increasing the enzymatic antioxidant defense by exogenous applications like 

injection or gene transfer may be a future therapeutic approach for multiple disorders with an 

inflammatory component; however, more research in terms of tissue- and condition-specific effects is 

warranted about the role of the SOD enzymes in skin inflammation. 

5.2.2. Synthetic Antioxidants 

Low-molecular mass synthetic compounds exhibiting catalytic activity, thus operating as enzyme 

mimics, have been developed as putative antioxidant therapy. The first mimetics were SOD-like 

because SOD is the first line of antioxidant defense, and today different classes of SOD mimetics 

based on metalloporphyrins, manganese (Mn) cyclic polyamines, and salen Mn derivatives have been 

developed [291]. Fortunately, their chemical and biophysical properties not only make them potent 

SOD mimics but also allow them to neutralize other types of ROS, including peroxynitrite and H2O2, 

and can thus also be considered catalase/peroxidase mimetics [292] . This broad specificity allows for 

modulation of the cellular redox environment and thus confers advantages over non-enzymatic 

antioxidants [293]. 

Moreover, these compounds have been shown to be effective in reducing oxidative stress in 

different in vitro cytotoxicity models involving ROS production [293,294] as well as in numerous  

in vivo models [292]. Notably, many of these compounds are not only functionally protective but also 

reduce oxidative damage to biomolecules [295–300] and the salen Mn compounds confer protection 

against mitochondrial damage [299]. 

Importantly, these mimetics display anti-inflammatory potential as H2O2 mediates activation of 

inflammatory genes as mentioned earlier, and therefore conditions with an inflammatory component 

may be the main target for such strategy. Also, reduced levels of activated macrophages were reported 

following treatment with mimetics in a radiation-induced lung injury model, however, no effects on 

pro-inflammatory cytokine levels were detected [300]. Also, a recent study demonstrated beneficial 

effects of systemic mimetic treatment on wound healing after skin irradiation by reducing oxidative 

damage [301]. 

Thus, these compounds do show promising prospects for therapeutic strategies in treating  

ROS-mediated complications in a wide range of conditions. Unfortunately, comparative studies on the 

different synthetic antioxidant classes in in vitro and in vivo settings are still very sparse and so far 

none of the antioxidant mimetics has been approved for clinical use. 

5.2.3. Induction of the HO System 

HO-1 is a stress-responsive enzyme with both antioxidant and cytoprotective effects mediated by 

the generated effector molecules biliverdin/bilirubin and CO, placing HO-1 as a central player in 

protection and homeostatic re-establishment after a wide range of pathological insults [302]. Numerous 

studies have demonstrated significant therapeutic effects of upregulation of HO-1 expression and/or 

activity as well as effector molecule administration in multiple pathological inflammatory  

conditions [230,302]. Also, ferritin is co-induced with HO-1 induction, which may provide a beneficial 

side effect, as ferritin scavenges free iron and thereby contributes to a restoration of the redox balance. 
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Recently, strategies to employ HO-1 as therapeutic target have been considered. This is further 

substantiated by HO-1 gene deficiency cases [303,304] and by the fact that promoter polymorphisms 

of the HMOX1 gene affect HO-1 protein expression levels and, subsequently, the severity of 

pathological human conditions [305]. Being an inducible enzyme, several synthetic molecules, 

including porphyrins [306] and heme arginate [307] have been developed and identified as possible 

HO-1 inducers. Heme arginate has for years been used as a clinical approach to treat porphyria, a 

disorder caused by non-functional heme metabolism [308]. Lately, a focus has been shed on the 

expanding number of plant-derived dietary compounds, so-called phytochemicals, with HO-1 inducing 

effects [309], like curcumin [310–312] or quercetin [313,314]. However, the effects of these 

pharmacological non-toxic, low-cost compounds still need to be studied in more detail before  

clinical use. 

5.3. Increasing Non-Enzymatic Antioxidant Defenses 

5.3.1. Oral and Topical Administration 

Epidemiological studies have suggested that consumption of antioxidant-rich food is associated 

with lower disease rates and preventive protection of cardiovascular disease [315]. Thus, the 

supplementation of non-enzymatic, dietary antioxidants could be a feasible way of restoring redox 

homeostasis and reduce ROS-associated diseases. 

However, clinical studies employing antioxidant supplement therapy have been inconclusive. For 

instance, the antioxidant compound N-acetyl cysteine (NAC) has been successfully used in the 

treatment of idiopathic pulmonary fibrosis [316–319], an inflammatory condition with etiology linked 

to Nox4-mediated ROS generation [320]; however, this therapeutic effect may not purely be ascribed 

to direct antioxidant effects of NAC itself but to its link to cellular glutathione replenishment [321]. 

Also, the combined use of NAC together with other commonly used treatment protocols should be 

carefully dissected and considered for each patient situation, as a recent study demonstrated increased 

mortality and severe treatment-related adverse effects when employing NAC in a three-drug  

regimen [322]. 

Frequently studied dietary and naturally occurring antioxidants such as carotenoids, flavonoids, and 

several vitamins have been implicated as promoters of skin health and rejuvenation [323]. External 

factors like chronic sun exposure, smoking, and pollution are significant contributors to skin aging, and 

both vitamins C and E have been demonstrated to have differential UVB photoprotective effects when 

applied both topically and orally [324,325]. Moreover, oral combination therapies of vitamins C and E 

resulted in a dramatically increased photoprotective effect compared to monotherapies [326]. Also oral 

intake of β-carotene or provitamin A reduces UV-induced erythema formation in different clinical 

studies; however, this effect is highly dose- and time-dependent [327–329]. Notably, β-carotene has 

been demonstrated in vitro to quench UV-induced radical formation and lipid peroxidation [330,331] 

and to reduce mitochondrial mutagenesis after UV exposure of skin fibroblasts [332]. 

Polyphenols are plant-derived micronutrients such as green tea polyphenols and curcumin that also 

have gained more attention in skin research during the last decade due to their antioxidant properties 

and their potential beneficial effects on cancer, neurodegenerative and cardiovascular diseases that all 
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have been linked to oxidative stress [333]. Various polyphenols have been reported to be 

photoprotectors [334]. Oral as well as topical application of green tea polyphenols to mice protected in 

a time-dependent manner against UV-induced cutaneous edema, depletion of the epidermal antioxidant 

defense, and cyclooxygenase induction [335,336]. Studies using animal models have also 

demonstrated anti-inflammatory activities of administration of green tea polyphenols, predominantly 

mediated by the major green tea component epigallocatechin-3-gallate [337,338]. Also in humans 

topical application of green tea polyphenols dose-dependently reduced erythema formation and 

sunburn cells [337]. Sunburn cells are keratinocytes undergoing apoptosis due to irreversible DNA 

damage [339]. However, the underlying mechanism of these compounds is still not well understood 

but has been suggested to be mediated via effects on signal transduction pathways [340]. 

Another powerful antioxidant involved in skin antioxidant defense is coenzyme Q10 (CoQ10) [341]. 

However, being part of the respiratory chain, CoQ10 also contributes to ROS formation, as discussed 

earlier. In skin, the CoQ10 level is 10 times higher in the epidermis compared to the dermis [341]. 

Being the outermost skin layer, the epidermis is directly exposed to UV irradiation and it is known that 

UV irradiation depletes antioxidants in the skin [107]. The epidermis may thus be an optimal target for 

CoQ10 administration. Dietary CoQ10 supplementation to rats increased the levels of CoQ10 and its 

homologs in tissues and mitochondria therein [342]. This was accompanied by a reductive shift in 

plasma aminothiol status and decreased oxidative damage to mitochondrial proteins in skeletal  

muscle [342]. In contrast, mice on CoQ10 enriched diets did not show any effect on the systemic redox 

balance, nor the lifespan, despite a buildup of CoQ10 in tissues [343]. Notably, human epidermal 

keratinocytes isolated from topically CoQ10-treated skin demonstrated improved mitochondrial 

function and protection against UV-induced mitochondrial damage compared to non-treated  

controls [344]. Other studies demonstrated that CoQ10 stabilizes mitochondrial function, improves cell 

viability, and attenuates oxidative effects in human skin [345,346]. 

In summary, despite their great availability and use, the effects of dietary supplements on skin and 

general health still remain controversial. However, several things that could be crucial for treatment 

outcome must be considered. Firstly, these bioactive compounds have to be prepared and taken up by 

the target organ. The stability of these compounds will ultimately determine efficiency, and the use of 

vitamin C in creams has proven difficult due to a low stability in the presence of oxygen [347]. To 

account for this and to facilitate uptake, more stable derivates are often used though several of these 

compounds are not efficiently converted into the active form of the antioxidant [348]. Another issue is 

the bioavailability of the oral supplements. Dietary supplements have to pass through the 

gastrointestinal tract, enter circulation, and reach the target tissue and selected cell types and/or cellular 

compartments, which may be important for the effective dose to be given. Also, toxic effects due to 

e.g., cross-reactions and organ-specific reactions to certain compounds should be taken into account [349]. 

Additionally, route of administration is important, as e.g., curcumin is effective to skin when applied 

topically, but only to the colon when applied orally [340]. Importantly, antioxidant supplementation 

may interfere with the endogenous antioxidant response normally initiated after exercise and 

subsequently interferes with ROS signaling [350]. Other clinical studies on vitamins A, C and E, 

coenzyme Q10, carotene, and plant-derived flavanoids have turned out rather disappointing, as no 

significant effects these dietary supplements on general health have been detected [351,352]. More 
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importantly, the long-term effects of many of these supplements are yet to be assessed, but one study 

linked increased mortality to long-term intake of antioxidant supplements [353].  

Interestingly, the oxidated targeted site may determine the success of antioxidant therapy. Although 

both GSH and bilirubin are potent endogenous antioxidants, they protect against distinct targets. GSH 

mainly protects against hydrophilic proteins, whereas bilirubin protects against lipid peroxidation [354]. 

Recently, we demonstrated that iatrogenic induction of mild hyperbilirubinemia ameliorated the serum 

antioxidant status and vascular function in diabetic patients [355]. Thus, more in-depth studies are still 

needed to gain more knowledge about in vivo and in vitro obtained data on the diverse group of 

potential beneficial antioxidants. Knowledge concerning dose-response, optimal administration, cellular 

and compartmental targeting and translational studies are still urgently needed. 

5.3.2. Targeted Antioxidant Delivery 

Mitochondria are central organelles in cell survival and function [356] and increasing attention has 

been paid to the role of mitochondrial dysfunction in aging, apoptosis, neurodegeneration, and  

cancer [357]. Despite already being equipped with antioxidant systems, great interest has been paid to 

developing supplementary approaches to further protect the mitochondria from ROS-mediated 

damage. For instance, CoQ10 and related ubiquinones have been used as therapy to decrease 

mitochondrial damage in Parkinson’s disease patients [358,359]. However, delivery issues limited  

the therapeutic effect as oral administration only resulted in a limited mitochondrial uptake of 

ubiquinones [360–362]. Conjugation of a lipophilic triphenylphosphonium cation to ubiquinones led to 

the development of MitoQ, which selectively is taken up by and accumulated within mitochondria [363]. 

Moreover, MitoQ efficiently prevented oxidative stress in isolated mitochondria, as well as in the 

ischemic heart [364–366]. Later, other effective compounds such as SkQ1 and Trolex were developed 

and characterized [367–369]. Lately, nanotechnology has been employed in targeted mitochondrial 

delivery. Different drugs employed in cancer, Alzheimer’s disease, and obesity demonstrated 

improvement in the drug therapeutic index after nanoparticle-mediated delivery compared to a  

non-targeted carrier or to the free form of the therapeutics [370]. 

Notably, a recent report described induction and subsequently mitochondrial translocation of HO-1 

following gastric mucosal injury, resulting in prevention of mitochondrial oxidative stress and 

pathology [371], suggesting that HO-1 induction may represent another mitochondrial targeting 

strategy. Together, this targeted approach thus holds big potential for future treatment strategies. 

4. Concluding Remarks 

ROS are crucial for cellular functions and provide essential protective mechanisms. However, ROS 

and oxidative stress have also been linked to various disease states, including inflammation, diabetes 

mellitus, cardiovascular diseases, and aging [88]. A well-balanced redox homeostasis is important, as 

oxidative stress either by increased levels of ROS and/or by depleted antioxidant systems may 

dysregulate protein function due to oxidative modifications and further aggravate inflammatory 

conditions. Targeting oxidative stress in inflammatory skin conditions may ameliorate disease outcome 

by dampening inflammation and improving recovery. However, although promising, efficacy and 

clinical studies employing antioxidant therapy are still in its infancy. 
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