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Abstract
Early diagnosis of urological diseases is often difficult due to the lack of specific bio-
markers. More powerful and less invasive biomarkers that can be used simultane-
ously to identify urological diseases could improve patient outcomes. The aim of this 
study was to evaluate a urological disease-specific scoring system established with 
a machine learning (ML) approach using Ig N-glycan signatures. Immunoglobulin N-
glycan signatures were analyzed by capillary electrophoresis from 1312 serum sub-
jects with hormone-sensitive prostate cancer (n = 234), castration-resistant prostate 
cancer (n = 94), renal cell carcinoma (n = 100), upper urinary tract urothelial cancer 
(n = 105), bladder cancer (n = 176), germ cell tumors (n = 73), benign prostatic hy-
perplasia (n = 95), urosepsis (n = 145), and urinary tract infection (n = 21) as well as 
healthy volunteers (n = 269). Immunoglobulin N-glycan signature data were used in 
a supervised-ML model to establish a scoring system that gave the probability of the 
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1  |  INTRODUC TION

Early detection of urological diseases is challenging due to the lack of 
highly specific biomarkers. Screening of HSPC often leads to overdiag-
nosis and overtreatment due to the low specificity of PSA.1 Although 
early detection of RCC, BCa, and UTUC improves the prognosis, there 
are no specific biomarkers for discrimination of these diseases.2,3 
Human chorionic gonadotropin, α-fetoprotein, and lactate dehydro-
genase are useful for detecting and monitoring GCT; however, not all 
GCT cases are marker positive.4 Urosepsis is the most common severe 
disease resulting from UTI and it requires accurate and timely diagno-
sis to evaluate severity.5,6 Therefore, more powerful and less invasive 
biomarkers that can be used simultaneously are needed to identify 
urological diseases and improve patient outcomes.

Several techniques that use miRNAs and exosomes for early diag-
nosis of urological diseases have been reported.7–10 N-glycosylation 
is also a promising target for the detection.2,4,11–14 Previously, we 
focused on aberrant N-glycosylation of Ig, one of the major serum 
proteins, and found an aberrant N-glycan signature of Ig using cap-
illary electrophoresis-based N-glycomics, and suggested it might be 
useful for diagnosing BCa and UTUC.3,15 Statistical analyses to ex-
tract disease-specific N-glycan signatures from vast amounts of N-
glycomics data on complex N-glycan structures and their synthetic 
pathways are limited. Therefore, ML approaches could be an import-
ant tool for these analyses.16–19 We aimed to simultaneously detect 
nine urological diseases including five cancers (RCC, BCa, UTUC, PC, 
and GCT) and three benign diseases (BPH, US, and UTI) using a diag-
nostic modeling ML approach with Ig N-glycan signature data.

2  |  MATERIAL S AND METHODS

2.1  |  Participants

Serum samples were obtained from patients with HSPC (n = 234), 
castration-resistant PC (CRPC, n = 94), RCC (n = 100), BCa (n = 176), 
UTUC (n = 105), GCT (n = 73), UTI (n = 21), UTI with US (n = 145), 

or BPH (n  =  95). These patients were treated at Kyoto University 
Hospital, Akita University Hospital, Tohoku University Hospital, 
Yamagata University Hospital, Miyagi Cancer Center Hospital, and 
Hirosaki University Hospital between June 2007 and July 2022. 
Thirty-seven patients were excluded because the presence or ab-
sence of disease could not be determined from medical records. 
Urinary tract infection included cystitis or pyelonephritis without 
sepsis. Urinary tract infection with US was defined as the presence 
of UTI and systemic inflammatory response syndrome.20 All BPH 
and HSPC patients were selected for prostate biopsy-proven cases. 
For supervised-ML model training purposes, each serum collection 
was treated separately, even if the patient had multiple serum collec-
tions. All serum samples were collected prior to treatment, except for 
some HSPC patients who underwent ADT and CRPC patients; serum 
samples from HSPC patients with ADT and CRPC patients were col-
lected during treatment. All samples were stored at −80°C until use. 
Subjects from community-dwelling populations involved in the Iwaki 
Health Promotion Project were also recruited as HVs (n = 269).21,22

2.2  |  N-glycomics of Ig

N-glycomics of Ig was undertaken as described previously.3 A flow-
chart is presented in Figure 1. Briefly, 100 μl serum was desalted 
with a Zeba Spin desalting resin plate (Thermo Fisher Scientific) 
and then 100 μl desalted serum was applied to a Melon Gel Spin 
resin plate (Thermo Fisher Scientific). After 5 min of incubation, 
the flow-through was collected as the purified Ig fraction. Peptide 
N-glycanase treatment and InstantQ fluorescent dye labeling of Ig 
N-glycans and a cleanup process was undertaken with an Agilent 
AdvanceBio Gly-X and InstantQ kit (Agilent Technologies). The 
InstantQ-labeled Ig N-glycan was then separated with the capil-
lary electrophoresis light emitting diode-induced fluorescence 
N-glycan analysis system (Gly-Q; Agilent Technologies). The elec-
tropherogram for each sample was automatically analyzed with 
Gly-Q Manager (hIgG processing method) to define the structures 
of the N-glycans (Figure S1).

presence of a urological disease. Diagnostic performance was evaluated using the 
area under the receiver operating characteristic curve (AUC). The supervised-ML uro-
logic disease-specific scores clearly discriminated the urological diseases (AUC 0.78–
1.00) and found a distinct N-glycan pattern that contributed to detect each disease. 
Limitations included the retrospective and limited pathological information regard-
ing urological diseases. The supervised-ML urological disease-specific scoring system 
based on Ig N-glycan signatures showed excellent diagnostic ability for nine urological 
diseases using a one-time serum collection and could be a promising approach for the 
diagnosis of urological diseases.

K E Y W O R D S
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2.3  |  Supervised-ML urological disease-specific 
diagnostic modeling and statistical analysis

Model building was undertaken using DataRobot version 7.2 
(DataRobot, Inc.). To create the urological disease-specific diag-
nostic model, the target outcome of the supervised-ML was set as 
disease classification data (HSPC, CRPC, RCC, BCa, UTUC, GCT, 
BPH, US, UTI, and HV). Prior to training, 20% of the Ig N-glycan 
signature dataset (Figures  1 and 2) was randomly selected as a 
holdout dataset. The remaining 80% of the dataset was randomly 
divided into five mutually exclusive partitions, four of which were 
used as training and the last used for validation (Figure 3A). Each 
algorithm was evaluated four additional times by selecting a differ-
ent partition as the validation data.23 The AUC was used to evaluate 
the cross-validation data (the average of each of the five possible 
validation partitions) and the TensorFlow Deep Learning Classifier 
algorithm with the highest AUC (0.9697) was selected as diagnostic 
model (Figure  3A). The prediction results outputted as the prob-
ability scores for the presence of the nine urological diseases. The 

diagnostic performance such as true and false positive/negative 
frequencies and AUC of the urological disease-specific scoring sys-
tem was validated with the holdout dataset and the whole dataset 
(Figure 3B) by GraphPad Prism version 9.3.1 (GraphPad Software). 
The Kruskal–Wallis test was used to analyze differences among 
multiple groups.

3  |  RESULTS

3.1  |  Immunoglobulin N-glycan signature of each 
disease

The characteristics of the participants are summarized in Table  1. 
Figures 1 and 2 show the concentrations of 26 different Ig N-glycans 
aligned according to the N-glycan synthesis pathway for each dis-
ease group (Ig N-glycan signature) and this dataset was used in 
DataRobot to create the urological disease-specific diagnostic scor-
ing system (Figure 3).

F I G U R E  1  Schematic flow of N-glycomics of Ig and relative peak area heatmap of 26 different Ig N-glycans in each disease. (A) A total 
of 1312 serum samples were subjected to N-glycomics of Ig. (B) N-glycan signatures of Ig data. Relative peak area heatmap of 26 different 
Ig N-glycans in each disease. Ig N-glycan concentrations were clustered according to the distinct N-glycan synthetic pathways and disease 
groups. BCa, bladder cancer; BPH, benign prostatic hyperplasia; CRPC, castration-resistant prostate cancer; GCT, germ cell tumor; HSPC, 
hormone-sensitive prostate cancer; HV, healthy volunteer; RCC, renal cell carcinoma; US, urosepsis; UTI, urinary tract infection; UTUC, 
upper urinary tract urothelial cancer
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3.2  |  True and false positive/negative 
frequencies of scores validated in the holdout dataset

True and false positive/negative frequencies of supervised-ML 
disease-specific scores validated in the holdout dataset are shown 
as a confusion matrix in Figure 4. The scores for RCC detection, BCa 
detection, and US with UTI detection had significantly higher true 
positive/negative frequencies (95.0%, 95.5%, and 100%, respec-
tively) in the holdout dataset. Figure 5 shows the impact of specific 
N-glycans for the detection of each disease-specific score. The ML 
approach suggested that A2F(2,3) mainly contributed to the specific 
detection of RCC. G2FB mainly contributed to the specific detection 
of US with UTI. A combination of G4S2(2,3) and G0FB mainly con-
tributed to the specific detection of BCa.

Healthy volunteer scores had a higher true positive/negative fre-
quency (75.4%), and 11.5% or 9.8% of the HV cases were predicted 
as UTUC or GCT, respectively. G1[6] and G0FB had a high impact on 
HV detection.

Although the disease-specific scores for HSPC detection, CRPC 
detection, and BPH detection had higher true positive/negative fre-
quencies (77.1%, 66.7%, and 61.1%, respectively) and could be used 
to discriminate between PC and non-PC diseases, 6.2% or 10.4% of 
HSPC cases were predicted as CRPC or BPH, 27.8% of CRPC cases 
were predicted as HSPC, and 22.2% of BPH cases were predicted as 
HSPC. The combination of G4S2(2,3), G1[6], and G0FB were import-
ant for HSPC detection, and a combination of A1FB, G1FB, G1[6], and 
G0FB were important for BPH detection. N-glycans [A3(2,6), A2(2,6), 
and A1(2,6)] contributed to CRPC detection.

Disease-specific scores for UTUC detection, GCT detection, and 
UTI detection had lower true positive/negative frequencies (38.5%, 
57.1%, and 40.0%, respectively). A total of 46.2% of UTUC cases 
were predicted as HV. A total of 14.3% or 21.4% of GCT cases were 
predicted as HSPC or HV. Sixty percent of UTI cases were predicted 
as BCa. The number of high-impact N-glycans required for the de-
tection of UTUC, GCT, or UTI was 10, 5, and 6 types, respectively. 
Among the N-glycans that were required for the detection of UTUC 

F I G U R E  2  N-glycan signature of Ig. (A) Twenty-six different Ig N-glycans were aligned according to the N-glycan synthetic pathway. 
N-glycan structures are indicated by monosaccharide symbols: yellow circles, galactose (Gal); green circles, mannose (Man); blue squares, 
N-acetylglucosamine (GlcNAc); red triangles, fucose (Fuc); and magenta diamonds, N-acetylneuraminic acid (Neu5Ac). BCa, bladder cancer; 
BPH, benign prostatic hyperplasia; CRPC, castration-resistant prostate cancer; GCT, germ cell tumor; HSPC, hormone-sensitive prostate 
cancer; HV, healthy volunteer; RCC, renal cell carcinoma; US, urosepsis; UTI, urinary tract infection; UTUC, upper urinary tract urothelial 
cancer
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and GCT, G1[6] and G0FB were also important N-glycans for the 
detection of HV and HSPC. Among the N-glycans required for de-
tection of UTI, G4S2(2,3) was also an important N-glycan for the 
detection of BCa.

3.3  |  Diagnostic accuracy of scores for the 
detection of each disease in the whole dataset

The diagnostic accuracy of scores for the detection of each disease 
in the whole dataset is shown in Figure 6 and Table S1. The AUC 
and specificity at 90% sensitivity of the RCC score versus each 
disease had a higher value (0.99, 99%, respectively) and could also 
detect RCC at any pathological stage (pT) (Figure 7). The AUC and 
specificity at 90% sensitivity of the BCa score versus each disease, 
except for UTI, had a higher value (0.99% and 98%, respectively) 
and UTI had a slightly lower value (0.88% and 64.8%, respectively). 
The BCa score could also indicate BCa at any pT of BCa or at any 
urine cytology status (Figure 7). The AUC and specificity at 90% 
sensitivity of UTUC scores versus each disease, except for HV, 
were greater than 0.93% and 77.1%, respectively, and HV had 
slightly lower values (0.88% and 58.1%, respectively). The UTUC 
score also indicated UTUC at any pT or at any urine cytology status 
(Figure 7).

The AUC and specificity at 90% sensitivity of the HSPC score 
versus each disease, except for prostate diseases, were greater than 
0.93% and 83.3%, respectively, and had a slightly lower value versus 
BPH (0.85% and 55.1%, respectively) and versus CRPC (0.78% and 
39.3%, respectively). The AUC and specificity at 90% sensitivity of the 
CRPC score versus each disease, except for HSPC, were greater than 
0.97% and 92.6%, respectively, and there was a slightly lower value 
versus HSPC (0.88% and 61.7%, respectively). The AUC of HSPC 
score (0.85) also superior to that of total PSA (0.73), and there was 
no strong correlation between total PSA and HSPC score (Figure 7).

The AUC and specificity at 90% sensitivity of the GCT score ver-
sus each disease, except for HV, were greater than 0.93% and 78.1%, 
respectively, and there was a slightly lower value versus HV (0.87% 
and 57.5%, respectively). The GCT score also could detect both sem-
inoma (SGCT) and nonseminoma (NSGCT) (Figure 7).

The AUC and specificity at 90% sensitivity of the BPH score versus 
each disease, except for HSPC, were greater than 0.95% and 84.2%, 
respectively, and there was a slightly lower value versus HSPC (0.91% 
and 68.4%, respectively). The AUC and specificity at 90% sensitivity 
of the US score versus each disease were significantly higher (1.00% 
and 100%, respectively). The AUC and specificity at 90% sensitivity of 
the UTI score versus each disease, except for BCa, were greater than 
0.98% and 95.2%, respectively, and there was a slightly lower value 
versus BCa (0.95% and 81.0%, respectively). The AUC and specificity 

F I G U R E  3  Supervised machine learning (ML) diagnostic modeling and evaluation of urological disease-specific score. (A) ML-supervised 
diagnostic modeling by DataRobot. Eighty percent of the dataset (n = 1049) was divided into five mutually exclusive partitions, four of which 
were used as training and the last used for validation used for modeling of urological disease-specific scores with the TensorFlow Deep 
Learning Classifier algorithm. (B) Validation of urological disease-specific scores by true negative/positive frequencies and receiver operating 
characteristic curve (ROC) analysis using holdout dataset (20% of whole data, n = 262) and ROC analysis of urological disease-specific scores 
using the whole dataset (n = 1312). AUC, area under the ROC curve



    |  2439IWAMURA et al.

TA
B

LE
 1

 
C

ha
ra

ct
er

is
tic

s 
of

 p
at

ie
nt

s 
fo

r a
na

ly
si

s 
of

 Ig
 N

-g
ly

ca
n 

si
gn

at
ur

es

To
ta

l
H

SP
C

CR
PC

RC
C

BC
a

U
TU

C
G

C
T

BP
H

U
S

U
TI

H
V

p Va
lu

e

n 
=

 1
31

2
23

4
94

10
0

17
6

10
5

73
95

14
5

21
26

9
–

A
ge

, y
ea

rs
(IQ

R)
74

 (6
7,

78
)

74
 (6

4,
78

)
67

 (5
9,

77
)

70
 (6

2,
75

)
72

 (6
3,

76
)

38
 (2

5,
45

)
67

 (6
1,

71
)

79
 (6

9,
87

)
76

 (6
3,

90
)

29
 (2

3,
65

)
*

G
en

de
r

n,
 m

/f
23

4/
0

94
/0

64
/3

6
14

7/
29

69
/3

6
73

/0
95

/0
60

/8
5

12
/9

17
3/

96
*

U
rin

e 
cy

to
lo

gy
C

la
ss

<
IV

/≥
IV

/N
A

–
–

–
10

0/
64

/1
2

46
/4

4 
/1

2
–

–
–

–
–

–

tP
SA

, n
g/

m
l

(m
ed

ia
n,

 IQ
R)

1.
00

 (0
.0

4–
6.

21
)

–
–

–
–

–
5.

8 
(4

.7
4–

7.
18

)
–

–
–

*

w
A

D
T/

w
oA

D
T,

 n
10

7/
12

7
–

–
–

–
–

–
–

–
–

–

SG
C

T
/N

SG
C

T,
 n

–
–

–
–

–
36

/3
7

–
–

–
–

–

Pa
th

ol
og

ic
al

 T
 s

ta
ge

, n
 (%

)

Ta
,T

is
–

–
0 

(0
)

0 
(0

)
6 

(6
)

–
–

–
–

–
–

T1
–

–
66

 (6
6)

10
8(

61
)

21
 (2

0)
–

–
–

–
–

–

T2
–

–
10

 (1
0)

27
 (1

5)
14

 (1
3)

–
–

–
–

–
–

T3
–

–
17

 (1
7)

30
 (1

7)
44

 (4
2)

–
–

–
–

–
–

T4
–

–
3 

(3
)

11
 (6

)
3 

(3
)

–
–

–
–

–
–

N
A

–
–

4 
(4

)
0 

(0
)

16
 (1

5)
–

–
–

–
–

–

A
bb

re
vi

at
io

ns
: B

C
a,

 b
la

dd
er

 c
an

ce
r; 

BP
H

, b
en

ig
n 

pr
os

ta
tic

 h
yp

er
pl

as
ia

; C
RP

C
, c

as
tr

at
io

n 
re

si
st

an
t p

ro
st

at
e 

ca
nc

er
; f

, f
em

al
e 

G
C

T,
 g

er
m

 c
el

l t
um

or
; H

SP
C

, h
or

m
on

e 
se

ns
iti

ve
 p

ro
st

at
e 

ca
nc

er
; H

V,
 h

ea
lth

y 
vo

lu
nt

ee
r; 

IQ
R,

 in
te

rq
ua

rt
ile

 ra
ng

e;
 m

, m
al

e/
; N

A
, n

ot
 a

va
ila

bl
e;

 N
SG

C
T,

 n
on

se
m

in
om

a 
G

C
T;

 R
CC

, r
en

al
 c

el
l c

ar
ci

no
m

a;
 S

G
C

T,
 s

em
in

om
a 

G
C

T;
 tP

SA
, t

ot
al

 p
ro

st
at

e-
sp

ec
ifi

c 
an

tig
en

; U
S,

 u
rin

ar
y 

tr
ac

t 
in

fe
ct

io
n 

w
ith

 s
ep

si
s;

 U
TI

, u
rin

ar
y 

tr
ac

t i
nf

ec
tio

n;
 U

TU
C

, u
pp

er
 u

rin
ar

y 
tr

ac
t u

ro
th

el
ia

l c
an

ce
r; 

w
A

D
T,

 H
SP

C 
w

ith
 a

nd
ro

ge
n 

de
pr

iv
at

io
n 

th
er

ap
y;

 w
oA

D
T,

 H
SP

C 
w

ith
ou

t a
nd

ro
ge

n 
de

pr
iv

at
io

n 
th

er
ap

y.
*p

 <
 0

.0
00

1.



2440  |    IWAMURA et al.

at 90% sensitivity of the HV score versus each disease, except for GCT 
and UTUC, were greater than 0.96% and 90.0%, respectively, and 
there was a slightly lower value versus GCT (0.82% and 48.7%, re-
spectively) and versus UTUC (0.84% and 52.4%, respectively).

3.4  |  Diagnostic accuracy of scores for the 
detection of each disease in the holdout dataset

The diagnostic accuracy of scores for the detection of each disease in 
the whole dataset is shown in Figure S2 and Table S2. The AUC and 
specificity at 90% sensitivity of the RCC score versus each disease 
had a higher value (1.00, 100%, respectively). The AUC and specific-
ity at 90% sensitivity of the BCa score versus each disease, except for 
UTI, had a higher value (0.99% and 98%, respectively) and UTI had 
a slightly lower value (0.90% and 77.0%, respectively). The AUC and 
specificity at 90% sensitivity of UTUC scores versus each disease, 
except for HV, were greater than 0.90% and 61.5%, respectively, and 
HV had slightly lower values (0.86% and 38.5%, respectively).

The AUC and specificity at 90% sensitivity of the HSPC score 
versus each disease, except for prostate diseases, were greater than 
0.92% and 72.9%, respectively, and had a slightly lower value versus 
BPH (0.87% and 68.7%, respectively) and versus CRPC (0.84% and 
50.0%, respectively). The AUC and specificity at 90% sensitivity of 

the CRPC score versus each disease, except for HSPC, were greater 
than 0.96% and 72.2%, respectively, and there was a slightly lower 
value versus HSPC (0.93% and 72.2%, respectively).

The AUC and specificity at 90% sensitivity of the GCT score ver-
sus each disease, except for HV, were greater than 0.94% and 85.7%, 
respectively, and there was a slightly lower value versus HV (0.84% 
and 51.0%, respectively). The AUC and specificity at 90% sensitiv-
ity of the BPH score versus each disease, except for HSPC, were 
greater than 0.98% and 94%, respectively, and there was a slightly 
lower value versus HSPC (0.92% and 61.1%, respectively). The AUC 
and specificity at 90% sensitivity of the US score versus each disease 
were significantly higher (1.00% and 100%, respectively). The AUC 
and specificity at 90% sensitivity of the UTI score versus each disease 
were greater than 0.97% and 100%, respectively. The AUC and spec-
ificity at 90% sensitivity of the HV score versus each disease, except 
for GCT and UTUC, were greater than 0.96% and 86.7%, respectively, 
and there was a slightly lower value versus GCT (0.84% and 54.1%, 
respectively) and versus UTUC (0.77% and 42.6%, respectively).

4  |  DISCUSSION

Early detection of urological diseases is challenging due to the scar-
city of highly specific biomarkers. Biomarkers that can precisely 

F I G U R E  4  True and false positive/
negative frequency in confusion matrix 
of supervised machine learning urological 
disease-specific score evaluated in 
holdout dataset. The left column shows 
each disease-specific scoring system 
and the upper row shows the predicted 
results. True positive/negative and 
false positive/positive rates for cases 
determined to have each disease using 
each disease-specific scoring system 
are shown. The size of the green circle 
represents the true positive/negative 
frequency. The size of the magenta circle 
represents the false positive/negative 
frequency. BCa, bladder cancer; BPH, 
benign prostatic hyperplasia; CRPC, 
castration-resistant prostate cancer; GCT, 
germ cell tumor; HSPC, hormone-sensitive 
prostate cancer; HV, healthy volunteer; 
RCC, renal cell carcinoma; US, urosepsis; 
UTI, urinary tract infection; UTUC, upper 
urinary tract urothelial cancer
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detect multiple urological diseases simultaneously in a single meas-
urement would be of great benefit. Although several promising 
biomarkers have been reported for early detection of urological dis-
eases using miRNAs and exosomes.7–10 there is only one report on 
diagnostic Ig N-glycan signatures of urological diseases.3 Glycomics 
is a new subspecialty in omics science and holds great promise as 
a next-generation biomarker for precision medicine. Although 
several researchers have reported aberrantly sialylated, agalacto-
sylated, and fucosylated N-glycans on Ig due to disease-associated 
immunoreactions,24–30 there have been no studies that have ex-
amined changes in the entire N-glycan synthesis pathway for Ig. 
Previously, we showed that discriminant analysis based diagnostic 
scoring systems using Ig N-glycan signatures for detection of BCa 
and UTUC were superior to urine cytology.3,15 This suggests that 
a comprehensive analysis of the N-glycan synthesis pathway of Ig 
might be promising and disease-specific. Several N-glycan signa-
tures, such as sialylation, fucosylation, bisecting GlcNAcylation, and 
branching, are regulated by various glycosyltransferase activities, 

and their synthetic pathways could influence each other. Although 
discriminating three or more diseases by discriminant analysis using 
N-glycan signatures has been limited, an ML approach combined 
with omics data has been used for early detection of diseases, in-
cluding cancer16–19 and seems to be suitable for extraction of 
disease-specific N-glycan features and precise discrimination be-
tween benign and malignant conditions.

Here, we showed excellent diagnostic performance of the su-
pervised-ML disease-specific scoring system (Figures 4, 6, 7, and 
S2) in both holdout and whole datasets, and distinct N-glycan pat-
terns were found that contributed to detection of each disease 
(Figure  5). Although an imaging technique for RCC detection is 
widely used, it was difficult to detect until the tumor grows to a de-
tectable size, and 30% of cases are metastatic RCC at diagnosis.2,31 
We found that a α2,3 sialyl biantennary core fucosyl N-glycan 
[A2F(2,3)] on Ig contributes significantly to the specific detection 
of RCC, and the RCC score could even identify a small RCC, such 
as pT1a (Figure 7), as well as discriminate between RCC and UTUC. 

F I G U R E  5  Impact of specific N-glycans for detection of each disease by urological disease-specific score. The upper graphs represent 
the impact of N-glycan structures for the detection of each disease. Relative impact >0.5 is represented as a red bar. A dotted square in 
the lower Ig N-glycan synthetic pathway shows the N-glycan structure with relative impact >0.5 for each disease. N-glycan structures are 
indicated by monosaccharide symbols: yellow circles, galactose (Gal); green circles, mannose (Man); blue squares, N-acetylglucosamine 
(GlcNAc); red triangles, fucose (Fuc); and magenta diamonds, N-acetylneuraminic acid (Neu5Ac). BCa, bladder cancer; BPH, benign prostatic 
hyperplasia; CRPC, castration-resistant prostate cancer; GCT, germ cell tumor; HSPC, hormone-sensitive prostate cancer; HV, healthy 
volunteer; RCC, renal cell carcinoma; US, urosepsis; UTI, urinary tract infection; UTUC, upper urinary tract urothelial cancer
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Thus, RCC score will be a highly promising biomarker for early diag-
nosis of RCC and for differentiation between invasive renal pelvis 
cancer and RCC in the future.

A combination of α2,3 sialyl tetraantennary N-glycan 
[G4S2(2,3)] and agalactosyl bisecting GlcNAc core fucosyl N-
glycan (G0FB) allowed specific detection of BCa. G4S2(2,3) also 
had a significant impact on UTI detection, leading to false posi-
tive/negative results for BCa detection, suggesting the need to 
combine urine culture test results and other factors to discrim-
inate between BCa and UTI. In addition, two N-glycans, that is, 
monogalactosyl biantennary N-glycan (G1[6]) and agalactosyl bi-
secting GlcNAc core fucosyl N-glycan (G0FB), had a high impact 
on the detection of UTUC. They also had a high impact on the de-
tection of HV and GCT, leading to false positive/negative results 
for UTUC detection. Imaging or urine cytology for BCa and UTUC 
detection was useful for detection of these diseases, but patients 
often have invasive disease at diagnosis due to a lack of spe-
cific biomarkers for early detection.3 The BCa and UTUC scores 

showed distinct N-glycan patterns that contributed to detection 
of BCa and UTUC, and both scores showed excellent diagnostic 
accuracy at any pathological stage or at any urine cytology status 
of both urothelial cancers (Figure 7). Thus, BCa and UTUC scores 
will be promising biomarkers for early detection and also discrimi-
nate between BCa and UTUC, suggesting that there is a benefit to 
selection of disease-specific treatment.

The same two N-glycans that were useful for HV, UTUC, and GCT 
detection, that is, G1[6] and G0FB, were also useful for the detec-
tion of HSPC or BPH. However, a combination of G4S2(2,3), G1[6], 
and G0FB was important for HSPC detection, and a combination 
of A1FB, G1FB, G1[6], and G0FB was important for BPH detection. 
These results suggested that G1[6] and G0FB were highly important 
for the detection of several diseases (HV, UTUC, GCT, HSPC, and 
BPH), and that more combinations of N-glycans in addition to G1[6] 
and G0FB are needed to differentiate these diseases. Meanwhile, 
sialyl triantennary and biantennary N-glycan [A3(2,6), A2(2,6), and 
A1(2,6)] pathways strongly contributed to the detection of CRPC, 

F I G U R E  6  Diagnostic accuracy of supervised machine learning urological disease-specific score for detection of each disease in whole 
data. (A) Violin plot of urological disease-specific scores for detecting each disease in the whole dataset. The red line in the violin plots 
indicates the interquartile range (IQR) and median value. *p < 0.05, **p < 0.005, ***p < 0.001, ****p < 0.0001. ns, not significant. (B) Receiver 
operating characteristic (ROC) analysis of urological disease-specific scores for detecting each disease. AUC, area under the ROC curve; 
BCa, bladder cancer; BPH, benign prostatic hyperplasia; CRPC, castration-resistant prostate cancer; GCT, germ cell tumor; HSPC, hormone-
sensitive prostate cancer; HV, healthy volunteer; RCC, renal cell carcinoma; US, urosepsis; UTI, urinary tract infection; UTUC, upper urinary 
tract urothelial cancer
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suggesting that this sialyl branching N-glycan pathway might be spe-
cific for the detection of castration resistance. Further basic study 
on the relevance between sialyl branching N-glycan on Ig and the 
acquisition of castration resistance should clarify the mechanism. 
Although PSA is a well-known gold standard biomarker in PC diag-
nosis and monitoring of disease progression, it often leads to overdi-
agnosis and overtreatment.1,14 Although further follow-up studies 
are needed, the disease-specific score developed in this study was 
shown to identify not only HSPC, BPH, and HV, but also CRPC with 
high accuracy; in particular, the HSPC score was much superior to 
the total PSA test, suggesting its potential as a biomarker to reduce 
overdiagnosis in PC in the future.

For discrimination between mild UTI and severe urosepsis with 
UTI, the impact of the N-glycan pattern was completely different, 
suggesting that severe sepsis caused by UTI can be clearly distin-
guished from mild UTI. In US with UTI-specific detection, galacto-
syl bisecting GlcNAc core fucosyl N-glycan (G2FB) on Ig was found 
to be the main contributor. Although procalcitonin and the platelet 
count are useful for evaluating the severity of US, more precise di-
agnostic biomarkers are required for evaluation of the severity of 
disease.5,6 The US score could be a promising biomarker of severe 
US detection.

Furthermore, although the GCT score showed slightly false pos-
itive results versus HV, the GCT score showed excellent diagnostic 
accuracy versus non-GCT diseases and would be a promising bio-
marker for early detection of GCT. The GCT score could also de-
tect both SGCT and NSGCT, suggesting that the GCT score will be a 
promising biomarker for marker-negative NSGCT (Figure 7).

These results suggested that the N-glycan signature reflects 
the systemic immune status, and that urological diseases associ-
ated with inflammation, such as US associated with UTI, RCC, and 
BCa, are easily discriminated because of the significant changes in 
the N-glycan signature, while urological diseases with low or mild 
inflammation are difficult to discriminate according to the N-glycan 
signature. Menni et al reported N-glycan profiling of IgG involved in 
the humoral immune response to identify the risk of cardiovascular 
disease.32 Distinct N-glycosylation profiles have been linked to di-
verse effector functions of IgG.30,33,34 Although we investigated the 
mixture of Ig (including IgG, IgM, and IgA), the overall results of this 
study hypothesized that Ig N-glycosylation traits could identify dis-
ease risk by reflecting varying states of systemic inflammation and 
immune activation. Further basic studies on whether the N-glycan 
signature is altered by disease onset should clarify the mechanism.

F I G U R E  7  Each urological disease-specific score classified as clinical or pathological parameter in the whole dataset. (A) Violin plot 
and receiver operating characteristic (ROC) analysis of renal cell carcinoma (RCC) score classified as a pathological stage in whole dataset. 
(B, C) Violin plots and ROC analyses of bladder cancer (BCa) score and upper urinary tract urothelial cancer (UTUC) score classified as a 
pathological stage or urine cytology class <IV/≥IV in whole dataset. (D) Violin plot, scatter plot, and ROC analysis of total prostate-specific 
antigen (PSA) and hormone-sensitive prostate cancer (HSPC) score between benign prostatic hyperplasia (BPH) and HSPC groups in the 
whole dataset. (E) Violin plot and ROC analysis of germ cell tumor (GCT) score classified as seminoma (SGCT) and nonseminoma (NSGCT) in 
the whole dataset. AUC, area under the ROC curve; NA, not available; ns, not significant
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The limitations of this study were the retrospective nature, lim-
ited pathological information, and changes over time with the treat-
ment course not considered, which could lead to selection bias.

The findings presented herein could enable the detection of nine 
urological diseases using a one-time serum collection. Further ex-
ternal validation trials are needed to validate the urological disease-
specific scoring system in routine clinical practice.
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