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We have previously isolated a lactic acid bacterium (LAB), Pediococcus pentosaceus LP28, from the longan
fruit Euphoria longana. Since the plant-derived LAB strain produces an extracellular polysaccharide (EPS),
in this study, we analyzed the chemical structure and the biosynthesizing genes for the EPS.

The EPS, which was purified from the LP28 culture broth, was classified into acidic and neutral EPSs
with a molecular mass of about 50 kDa and 40 kDa, respectively. The acidic EPS consisted of glucose,
galactose, mannose, and N-acetylglucosamine moieties. Interestingly, since pyruvate residue was de-
tected in the hydrolyzed acidic EPS, one of the four sugars may be modified with pyruvate. On the other
hand, the neutral EPS consisted of glucose, mannose, and N-acetylglucosamine; pyruvate was scarcely
detected in the polysaccharide molecule.

As a first step to deduce the probiotic function of the EPS together with the biosynthesis, we de-
termined the whole genome sequence of the LP28 strain, demonstrating that the genome is a circular
DNA, which is composed of 1,774,865 bp (1683 ORFs) with a GC content of 37.1%. We also found that the
LP28 strain harbors a plasmid carrying 6 ORFs composed of 5366 bp with a GC content of 36.5%. By
comparing all of the genome sequences among the LP28 strain and four strains of P. pentosaceus reported
previously, we found that 53 proteins in the LP28 strain display a similarity of less than 50% with those in
the four P. pentosaceus strains. Significantly, 4 of the 53 proteins, which may be enzymes necessary for
the EPS production on the LP28 strain, were absent in the other four P. pentosaceus strains and displayed
less than 50% similarity with other LAB species. The EPS-biosynthetic gene cluster detected only in the
LP28 genome consisted of 12 ORFs containing a priming enzyme, five glycosyltransferases, and a putative
polysaccharide pyruvyltransferase.
& 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

LABs, which are used for various fermented foods, affect human
health. The bacteria are major representatives of probiotics, which
have been defined by the World Health Organization (WHO) as
live microorganisms. In fact, various physiological functions of
LABs, such as intestinal-regulation [1–3], blood-pressure-lowering
[4,5], anti-bacterial [6–8], anti-tumor [9–11], anti-allergic [12–14],
and blood-cholesterol-reducing [15–17] functions, have been re-
ported. These beneficial effects on human health caused by the
cell-body material of the LAB itself and/or the second metabolic
B.V. This is an open access article u

ma).
compound produced by LAB involve the interaction of commensal
organisms living in the digestive tract.

Pediococcus pentosaceus has often been isolated from fer-
mented foods and silage. Several strains of P. pentosaceus produce
anti-bacterial substances [18] and reduce acute liver injury in-
duced by D-galactosamine in rats [19] and encephalitis [20]. We
have recently shown that when a plant-derived lactic acid bac-
terium (LAB), P. pentosaceus LP28, was orally administrated to mice
with high-fat-diet-induced obesity, the obesity and fatty liver of
the mice were improved [21]. These results indicate that the strain
is effective against obesity as a risk factor of human metabolic
syndrome.

EPSs, produced by several LABs, have recently attracted atten-
tion for their physiological functions, such as immune-stimulating
abilities [22,23]. We have found that P. pentosaceus LP28 produces
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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an EPS. In this study, we characterized the LP28-derived EPS and
analyzed its chemical components.

On the other hand, whole-genome sequencing is expected to
utilize the genetic basis behind the metabolic functioning of LAB
for the development of a probiotic application. In this study, we
determined the whole genome sequence of P. pentosaceus LP28
and compared it with those of four strains (ATCC25745 [24], LI05
[25], SL4 [26], and IE-3 [27]) of P. pentosaceus, which have been
previously analyzed. The genome sequence information will be
useful to understand and utilize the specific probiotic ability of P.
pentosaceus LP28.
2. Materials and methods

2.1. Strain used

P. pentosaceus LP28 is a lactic acid bacterium that has been
isolated from the longan fruit Euphoria longana [21]. The strain,
which was inoculated into a flask containing de Man, Rogosa and
Sharpe (MRS) medium (Becton, Dickinson, and Company), was
incubated at 28 °C for 24 h. Glycerol stocks of the strain were
prepared by mixing the culture broth with an equivalent 33%
glycerol solution and then stored at �80 °C until use.

2.2. Fermentation

The seed culture was done in a flask containing MRS medium at
28 °C for 18 h. The cells, which were harvested by centrifugation at
8000� g for 20 min, were washed twice with the sterile phos-
phate-buffer saline. The washed cells were inoculated in a semi-
defined medium (SDM) [28,29] in a fermenter (Iwashiya Bio-Sci-
ence, 3 L Mini Jar Fermenter). The yeast nitrogen source in SDM
[28] was substituted for a vitamin solution and trace elements
solution [29]. The fermentation was carried out with a constant pH
6.5 by automatically adding NaOH solution (25% w/v) under the
condition of 200 rpm agitation and 200 ml/min flow of N2 gas at
30 °C for 48 h. The content of EPS in the culture broth was ana-
lyzed by the phenol-sulfuric acid method.

2.3. Purification of the EPS

Trichloroacetic acid (TCA) was mixed with the LP28 culture broth
(final 4% v/v). After being stirred for 30 min at 4 °C, the mixture was
centrifuged at 12,500� g for 10 min. An equal volume of acetone
was added to the supernatant fluid. After standing overnight at 4 °C,
the resulting precipitate, which was collected by centrifugation at
12,500� g for 10 min, was dissolved in 50 mM Tris–HCl (pH 8.0) and
centrifuged at 27,000� g for 30 min. A DNase and RNase solution
were added to the supernatant fluid (each final concentration is
10 μg/ml). After incubation for 6 h at 37 °C, a proteinase K solution
was added (final 20 μg/ml) and followed by incubation for 16 h at
37 °C. TCA was added to the incubation mixture to 10% (v/v) at a
final concentration in the ice-cooled condition. After 1 h standing,
the supernatant fluid was obtained by centrifugation at 27,000� g
for 30 min. After three volumes of 100% ethanol were added to the
supernatant fluid, the resulting precipitate was collected by cen-
trifugation at 17,300� g for 5 min and washed with 70% ethanol. The
air-dried precipitate was dissolved in purified water and dialyzed by
dialysis membrane (MWCO 8000) for 48 h, changing the purified
water four times, and recovered by freeze drying. The crude EPS was
resuspended in 50 mM Tris–HCl (pH 8.0) and purified by a Toyopearl
DEAE-650M column (Toso, 2.5 cm�22 cm). The neutral EPS was
eluted with 50 mM Tris–HCl (pH 8.0), whereas the acidic EPS was
obtained by eluting with a NaCl gradient (0-0.5 M) in 50 mM Tris–
HCl (pH 8.0) at a flow rate of 1.0 ml/min. The eluted samples were
analyzed for carbohydrate content by the phenol-sulfuric acid re-
action, and the fractions containing EPS were dialyzed against pur-
ified water and freeze-dried.

2.4. Calculation of molecular mass of the EPS

The molecular mass of the EPS, which was produced by the
LP28 strain, was estimated by gel-filtration chromatography using
a Sephacryl S-500 HR (GE Healthcare) equipped in an HPLC sys-
tem. A solution of 0.1 M NaNO3 was used as a mobile phase at a
flow rate of 0.8 ml/min. The elution profile of the EPS was mon-
itored by the RI detector (RI-2031Plus, Jasco). The molecular mass
was calculated using dextran (Sigma) as an internal standard.

2.5. Analysis of monosaccharide consisting of EPS

Neutral and acidic EPSs (each 5 mg), which were separately
dissolved in 1 ml of 2 M trifluoroacetic acid (TFA), were hydrolyzed
for 2 h at 120 °C. Each hydrolyzed EPS solution was dried in vacuo
and dissolved in purified water. Each hydrolysate, which was fil-
trated with a 0.2 μm pore-sized membrane filter, was applied on
an HPLC column chromatography (Thermo Scientific ICS-5000;
column: CarboPac PA1, 2�250 mm; guard column: CarboPac PA1,
2�50 mm; elute solution: 16 mM NaOH; flow rate: 0.25 ml/min;
detection: pulsed amperometric electrochemical detector).

2.6. Analysis of pyruvic acid and acetic acid

Neutral and acidic EPSs (2 mg), which were separately dissolved
in 1 ml of 2 M TFA, were hydrolyzed for 2 h at 120 °C. The hydro-
lysates were dried in vacuo and dissolved in 3.8 mM H2SO4. The
existence of pyruvic acid in each hydrolyzed EPS was analyzed by
the HPLC method (column: Aminex HPX-87H (Bio-Rad); solvent:
3.8 mM H2SO4; detection: UV (210 nm); flow rate: 0.6 ml/min). To
confirm the existence of the N-acetyl residue bound covalently to
the glucosamine molecule, the presence of acetic acid in each hy-
drolysate of neutral and acidic EPSs was analyzed by using the HPLC
method (column: Shodex RS pak, KC-811; solvent: 1.0 mM per-
chloric acid; detection: Conductivity Detector; flow rate: 1 ml/min).

2.7. Genome DNA extraction

P. pentosaceus LP28 was grown in an MRS medium. The bac-
terial cells were collected by centrifuging the culture broth. The
total DNA from the cells was extracted by using a DNeasy Plant
Mini Kit (Qiagen).

2.8. Plasmid DNA extraction

After cultivation in MRS medium, the LP28 cells were collected
by centrifugation. Plasmid DNA derived from the cells was extracted
by the Genopure Plasmid Maxi Kit (Roche). The bacterial cells,
which were suspended in a buffer containing lysozyme (Wako) and
achromopeptidase (Wako) (each final concentration is 4 mg/ml),
were incubated for 3 h at room temperature to make the cell lysate.

2.9. Genome sequencing and assembly

The paired end library, which was prepared by fragmentizing the
genomic DNA, was used for the next-generation sequencing plat-
form Illumina HiSeq 2500 (read length 2�75 bp). The mate pair
library, which was prepared by fragmentizing the same genomic
DNA, was used for the next-generation sequencing platform Ro-
che454FLX Titanium (1/2 run). The read sequence obtained by
genomic sequencing was assembled with Newbler v2.8 (the analysis
software with Roche454FLX Titanium). The genomic DNA solution
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was added on MapCard, digested with a restriction enzyme, and
stained with fluorescence. The restriction enzyme map of the whole
genome was prepared by measuring the length of each DNA frag-
ment. Contig sequences obtained from the genome assembly were
aligned on the restriction enzyme map of the whole genome.

2.10. Genome annotation and comparison

Amino acid sequences of the deduced ORFs were annotated by
BLAST searching at the NCBI genome database and compared with
the sequences of P. pentosaceus ATCC25745 [24], P. pentosaceus
LI05 [25], P. pentosaceus SL4 [26], and P. pentosaceus IE-3 [27]. The
sequence of low identities that possesses less than 50% similarity
with the four P. pentosaceus strains was assessed according to si-
milarity with other organisms by BLAST searching.
3. Results

3.1. Purification and characterization of EPS

P. pentosaceus LP28, which was grown in SDM medium
(2000 ml) under the control of pH 6.0, produced 234 mg/l of EPS.
When the EPS sample was applied on the chromatography using an
Fig. 1. Fractionation of EPS produced by Pediococcus pentosaceus LP28 strain by ion-
exchange chromatography. The elute fractions were analyzed for carbohydrate
content by the phenol-sulfuric acid reaction.

Fig. 2. HPLC chromatogram of monosaccharide from hydrolyzed EPS. The hydrolyzed
hydrolyzed EPS was analyzed by HPLC. Chromatographic peaks were identified by monos
Glucosamine, Man: Mannose.
ion-exchange column (Toyopearl DEAE-650M) and eluted with the
NaCl gradient method, two separate peaks were observed, sug-
gesting that the sample contains neutral and acidic EPSs (Fig. 1). The
molecular mass of the neutral EPS, which was estimated by gel-
filtration column, was approximately 40 kDa, whereas that of the
acidic EPS was estimated to be approximately 50 kDa.

Analysis of the monosaccharide contained in the hydrolyzed
neutral EPS shows the existence of glucose, glucosamine, and
mannose. On the other hand, in the hydrolyzed acidic EPS, ga-
lactose was detected together with glucose, glucosamine, and
mannose (Fig. 2 and Table 1). In addition, acetic acid was con-
firmed to be present in both hydrolyzed solutions of neutral and
acidic EPSs (data not shown).

3.2. Detection of pyruvic acid in the acidic EPS

It was suggested by the genomic analysis that an ORF encoding
an enzyme catalyzing the addition of pyruvate residue to EPS is
located on a polysaccharide biosynthesis gene cluster in the LP28
strain. By HPLC analysis of the hydrolyzed acidic EPS, in fact, we
observed a peak taking the same retention time as that of pyruvic
acid, suggesting that the pyruvic acid is a component residue
consisting of the acidic EPS (Fig. 3). The organic acid was scarcely
detected in the hydrolysate of the neutral EPS.

3.3. Genome sequence analysis

We determined the whole genome sequence analysis of the
LP28 strain, demonstrating that the genome is a circular DNA
acidic and neutral EPSs were dissolved in purified water. After the filtration, each
accharide standard solutions (Thermo Scientific). Glc: Glucose, Gal: Galactose, GlcN:

Table 1
Relative molar compositions of monosaccharide from acidic and neutral EPSs.

Saccharide RT (min) Relative molar composition

Neutral EPS Acidic EPS

Glucosamine 11.17 3.5 1.8
Galactose 12.92 – 0.3
Glucose 13.68 4.6 6.6
Mannose 14.72 1.0 1.0

Concentration of each monosaccharide in hydrolyzed EPS solutions were calculated
with monosaccharide standard solutions (Thermo Scientific).



Fig. 3. HPLC analysis of pyruvic acid in the hydrolyzed EPSs from LP28 strain.
Hydrolyzed neutral EPS (B), acidic EPS (C) and 1 mM of authentic pyruvic acid
(A) were dissolved in 3.8 mM H2SO4 and analyzed by the HPLC.

Table 2
Nucleotide content and gene counts of genome and plasmid of P. pentosaceus LP28.

Scaffold 1 (genome) Scaffold 2 (plasmid)

Number of bases 1,774,865 5366
Number of gaps 25 0
Total length of gaps 22,491 0
Contig GC% 37.1% 36.5%
Number of genes 1740 6
Number of CDS 1683 6
Number of tRNA 51 0
Number of rRNA 6 0
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composed of 1,774,865 bp (1683 ORFs) with a GC content of 37.1%.
In addition, the strain harbors a plasmid that carries 6 ORFs
composed of 5366 bp with a GC content of 36.5% (Table 2). The
LP28 whole genome harbors 51 tRNA genes. In addition, the
genome contains genes encoding the cholylglycine hydrolase re-
sponsible for bile salt resistance, six universal stress proteins
(UspA), and the arsenate reductase necessary for some
environmental stress resistances. The sequences of ORFs encoding
these resistance genes exhibit high similarities to those of four
strains of P. pentosaceus, such as ATCC25745 [24], LI05 [25], SL4
[26], and IE-3 [27]. The genomic DNA of the LP28 strain also
contains the ORFs necessary for the colicin V-producing family
protein, which functions as an antibacterial substance.

Comparing proteins deduced from the genome sequence of the
LP28 strain and those of the four P. pentosaceus strains, 71 ORFs
displayed less than 50% similarity. The protein function of 53 of 71
ORFs was assigned through the NCBI database. The function of the
remaining 18 proteins cannot be presumed at this time. It should
be noted that four ORFs necessary for EPS production, which en-
code polysaccharide polymerase, sugar phosphotransferase, N-
acetylglucosaminyl transferase and polysaccharide pyruvyl-
transferase displayed less than 50% similarity with the four P.
pentosaceus strains and other LAB species.

Forty-five of 53 protein sequences in the LP28 chromosome,
which were assigned for the function, displayed more than 50%
similarity with those in several LAB species. The coding sequence
for the cellulase catalyzing the digestion of vegetable fiber, which
is found on the LP28 genome, exhibits a 71% similarity with that of
Pediococcus lolii isolated from ryegrass silage [30].

The EPS-biosynthetic genes, which were found in the LP28
genome, are designated ppeA-L, and the proteins encoded by them
are listed in Table 3. The amino acid sequences of four ORFs (two
EPS-biosynthetic proteins, a capsular EPS-biosynthetic protein,
and a sugar transferase; PpeA-D) in the LP28 strain displayed high
similarity to those deduced in the four P. pentosaceus genomes, but
another eight ORFs (PpeE-L) did not. One of the eight ORFs was
annotated to polysaccharide pyruvyltransferase, which displays a
35% similarity with Streptococcus constellatus subsp. constellatus
SK53 and displays a 31% similarity with Bifidobacterium longum
44B [31] and GT15 [32]. A sugar transferase (PpeD) displayed 64%
similarity with priming glycosyltransferase of Lactobacillus plan-
tarum AY01. Two sugar phosphotransferase (PpeH and PpeI) dis-
played 51% and 38% similarity with glycosyltransferase of P. pen-
tosaceus IE-3, respectively.

In addition, we confirmed by an agarose gel electrophoretic
profile of the total DNA that the LP28 strain harbors a plasmid
(data not shown). The plasmid size (5.4 kb) corresponds with the
DNA length obtained by genome sequence analysis. According to
the genome sequence information, the plasmid in the LP28 strain
encodes six ORFs. Two of the ORFs are proteins needed for re-
plication and DNA segregation, such as the ATPase FtsK/SpoIIIE–
related protein. However, we cannot identify the protein function
of the other four ORFs at this time.
4. Discussion

The health functionality of EPSs produced by several LABs is
attracting attention. We are interested in whether the obesity and
fatty liver of mice induced by a high-fat diet are improved by the
oral administration of the EPS from P. pentosaceus LP28. It is also
significant to evaluate whether the acidic EPS can activate natural
killer cells in vitro. The property of the EPS can also be known from
the existence of some ORFs deduced by the whole genome
analysis.

In the present study, the EPSs were dissolved in trifluoroacetic
acid, hydrolyzed for 2 h at 120 °C, and then dissolved in 3.8 mM
H2SO4. By using this method, the acetyl group bound to glucosa-
mine is easily removed. The glucosamine detected in the acidic
and neutral EPSs must be N-acetylglucosamine. We detected the
acetic acid from the hydrolyzed solutions of EPSs. Thus, we con-
clude that the acidic EPS components are glucose, galactose,
mannose, N-acetylglucosamine, and pyruvic acid.



Table 3
Sequence comparison of EPS production gene cluster of P. pentosaceus LP28.

Protein Length (aa) P. pentosaceus BLASTp hit

IE-3 SL4 ATCC25745 LI05 Functional description Organism Query　cov-
er (%)

Identity (%) Accession number

PpeA 261 98 94 97 97 EPS biosynthesis protein Pediococcus pentosaceus ATCC
25745

100 97 WP 011673151.1

PpeB 243 98 99 99 100 EPS biosynthesis protein Pediococcus pentosaceus 100 100 WP 029257819.1
PpeC 262 98 98 98 97 Capsular EPS biosynthesis protein Pediococcus pentosaceus ATCC

25745
100 98 ABJ 67655.1

PpeD 221 96 99 97 40 Sugar transferase Pediococcus pentosaceus IE3 100 96 WP 002833952.1
PpeE 330 23 62 28 25 Glycosyltransferase family 1 Pediococcus pentosaceus SL4 97 62 AHA 04799.1
PpeF 335 27 51 39 27 Glycosyltransferase family 2 Pediococcus pentosaceus SL4 96 51 WP 023440188.1
PpeG 385 ND ND ND ND Polysaccharide polymerase Lactobacillus casei M36 99 35 WP 003588324.1
PpeH 181 51 68 44 48 Sugar phosphotransferase Pediococcus pentosaceus SL4 97 68 WP 023440189.1
PpeI 96 38 49 25 34 Sugar phosphotransferase Pediococcus pentosaceus SL4 94 49 WP 023440189.1
PpeJ 326 27 27 31 27 N-acetylglucosaminyltransferase Lactobacillus salivarius str. Ren 62 35 WP 047034941.1
PpeK 300 ND ND ND ND Polysaccharide pyruvyltransferase Streptococcus constellatus

subsp. constellatus SK53
70 35 WP 006270484.1

Bifidobacterium longum 44B 80 31 EIJ28766.1
Bifidobacterium longum GT-15 80 31 WP 038426319.1

PpeL 458 ND ND 23 23 Exopolysacharide protein Wzx Lactobacillus pentosus IG1 100 63 CCC 16059.1
Flippase Wzx Lactobacillus buchneri CD034 95 42 WP 014940887.1

ND: Not detected the sequence which possess more than 30% query cover and more than 50% similarity simultaneously.
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The pyruvic acid bound to EPS can be found in a gram-negative
bacterial EPS [33]. It is known as a configuration of pyruvic acid
linked to glycosyl residue as a cyclic acetal. Production of the
pyruvic acid-bound EPS has been reported in Lactobacillus rham-
nosus RW-9595M [34] and B. longum JBL05 [35] but not in P.
pentosaceus. The pyruvic acid-bound EPS possesses cytokine-acti-
vating ability [36]. It is significant to know whether the acidic EPS
produced by the LP28 strain possesses cytokine-activating ability.

It has been widely recognized that both of probiotics and gut
microbiota play a role on human gut homeostasis. In addition,
extracellular molecules such as bacteriocin, lactic acid, and EPS,
which are produced by the probiotic bacteria, also exhibit bene-
ficial effects to the host. It is important to know that whether the
anti-obesity effect of P. pentosaceus LP28 is brought by EPS which
is produced by the LAB strain. The confirmation by an experiment
using the obese mice is in progress.

The complete genome sequence and plasmid sequence of P.
pentosaceus LP28 has been deposited in GenBank under accession
number DF970691 and LC075345, respectively.
Appendix A. Transparency document

Transparency document associated with this article can be
found in the online version at http://dx.doi.org/10.1016/j.bbrep.
2016.01.004.
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