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With the availability of newer and cheaper sequencing methods, genomic data are being generated at an
increasingly fast pace. In spite of the high degree of complexity of currently available search routines, the
massive number of sequences available virtually prohibits quick and correct identification of large groups of
sequences sharing common traits. Hence, there is a need for clustering tools for automatic knowledge
extraction enabling the curation of large-scale databases. Current sophisticated approaches on sequence
clustering are based on pairwise similarity matrices. This is impractical for databases of hundreds of
thousands of sequences as such a similarity matrix alone would exceed the available memory. In this paper, a
new approach called MultiLevel Clustering (MLC) is proposed which avoids a majority of sequence
comparisons, and therefore, significantly reduces the total runtime for clustering. An implementation of the
algorithm allowed clustering of all 344,239 ITS (Internal Transcribed Spacer) fungal sequences from
GenBank utilizing only a normal desktop computer within 22 CPU-hours whereas the greedy clustering
method took up to 242 CPU-hours.

B
iomedical data is being generated at an increasingly fast pace which can most prominently be observed in
DNA sequence databases. At the CBS-KNAW Fungal Biodiversity Centre in the Netherlands alone, we
collect ,50,000 sequences every year for the classification and identification of fungal species. One routine

operation in computational biology is to search for clusters of similar (homologous) genomic sequences in such
databases. Despite the high degree of complexity of currently available search routines, the massive number of
available sequences makes the quick and correct identification of large groups of similar sequences practically
impossible. The problem is more evident for much larger databases like GenBank where approximately six
million fungal DNA sequences are currently available for download.

Our initial motivation for this work was the automatic re-annotation of databases of fungal species where many
of the sequences have not been edited or checked for years, which may cause data curation problems1. When using
sequence-based comparison techniques alone, errors can easily propagate through the database. Hence, we
nowadays use sophisticated clustering methods for identifying groups of homologous sequences; fungal DNA
sequences in our case. The bottleneck with these approaches is the necessity for pairwise-similarity matrix, which
assigns each pair of sequence entries in the database a similarity score (the BLAST similarity score2, for instance).
To give an example, computing such BLAST scores for all 344,239 ITS (Internal Transcribed Spacer) fungal
sequences from GenBank took approximately 16 days on a modern desktop computer. For the millions of
sequences that will be generated with the next generation of sequencing technology there is no hope of computing
such matrices efficiently.

In this work we present the following contributions: (1) We demonstrate that such complete similarity matrices
are not essential for detecting clusters of homologous sequences with high accuracy. (2) We quantify and use this
effect to show how we may benefit from incomplete similarity information. (3) We introduce a method called
Multi-Level Clustering (MLC), which avoids the computation of the majority of the sequence comparisons, and
therefore, significantly reduces the total run-time for clustering-based remote homology predicting. In our study,
we compared MLC with two sophisticated data-partitioning methods that have proven accurate for BLAST-based
sequence clustering: Transitivity Clustering (TransClust)3 and a connected component-based clustering (CCBC)
method4. We also compared MLC with the greedy clustering method used by UCLUST5 and CD-HIT6 which are
considered the most efficient tools to cluster large-scale datasets. For two small manually curated gold standard
datasets (medical fungal DNA sequences and protein families) we observe no or only a marginal drop in accuracy
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when compared MLC with TransClust (TC) and CCBC on complete
similarity- matrices. By applying MLC, we were able to cluster all of
the 344,239 ITS (Internal Transcribed Spacer) fungal sequences at
species level on a single modern desktop computer in 22 hours,
which is about 20 times faster than computing a complete similarity
matrix and 10 times faster than applying the greedy clustering
method. This is a major step forward for the fungal community, since
the ITS locus is the officially recommended fungal DNA barcode
sequence that underlies fungal biodiversity research worldwide7.
The availability of the newly curated datasets will significantly sup-
port addressing several typical ITS-based barcoding problems, such
as automatic taxonomy assignment, discovery of new species, or
subspecies. Even though MLC was developed especially for the auto-
matic re-annotation of our fungal database, it is a particularly useful
tool in all fields of data partitioning where we deal with similarity
functions, such as protein family detection.

Methods
Computing of similarity measure. MLC is designed to improve accuracy and speed
for pairwise similarity measures from any type of data. However, here we focus on
sequence homology2,8–13. The pairwise alignment function used is our own
implementation of BLAST1 and can compute a pairwise similarity matrix of 10,000
DNA sequences within 20 minutes on a computer with a single core 64bit CPU and
8 GB RAM. We use Blast percent identity as a similarity measure, since it is wildly
used for identification of fungal species. The manual curation of the medial fungal
DNA gold standard dataset studied in this paper was done using this similarity
measure. In addition, using Blast percent identify, we could also improve the quality
of TransClust3 on the other gold standard dataset (the protein dataset). In3, the
authors used Blast E-value as a similarity measure to cluster the protein dataset with
TransClust. They could archive the best quality (F-measure) of 0.91, while we could

archive the best quality of 0.928 for TransClust using Blast percent identity (see
Table 1).

Connected components based clustering algorithm (CCBC). Several approaches
have been suggested for the clustering of sequences3,4,14–20. Especially when handling
large datasets, the method has to be able to find optimal solutions while being very
efficient in its use of memory and computational time. The algorithm to search for
connected components (CCBC) as equivalence classes in graph theory21,22 has shown
to be very efficient in protein-sequence clustering4. It can be computed in linear time
using either breadth-first search or depth-first search21 if a sequence similarity matrix
is given initially. However, when this matrix is not provided, the time complexity of
CCBC is the time complexity to compare all the sequences which is O(N2) with N the
number of the sequences.

Representative sequence. In practice, it is almost impossible to provide a sequence
similarity matrix when dealing with massive numbers of sequences due to memory
and time constraints. To overcome this issue, we aim to show that such similarity
matrices are not essential for detecting clusters of homologous sequences with high
accuracy. Our idea started from an observation: if two sequences are similar, then
there is a high chance that the neighbors of the two sequences are also similar. Thus, it
is not necessary to compare these sequences. We could avoid the majority of the
sequence comparisons by comparing only representative sequences of groups of
similar sequences. The representative sequence of a group can be any sequence of the
group. Ideally, it should be central within the distribution of the sequences belonging
to the group. It is shown in23 that the central sequence that maximizes the similarity
measures to the other sequences of the group is the most representative of the
distribution of the sequences in the group.

Greedy clustering algorithm (GC). The idea of using representative sequences in
clustering has been employed by the greedy algorithm which has shown to be very
efficient in time and memory for clustering large-scale datasets with UCLUST5 and
CD-HIT6. It is described as follows: (1) sort sequences in order of decreasing length;
(2) select the first sequence as the representative sequence of the first group; (3) for
each remaining sequence, search for a similar representative with respect to the
clustering similarity measure (or threshold). If a representative is found, the sequence

Table 1 | Results of clustering on Amidohydrolases protein sequences

Optimal threshold Best F-measure Number of comparisons Number of groups

CCBC 0.3661 0.9421 374545 95
TC 0.311 0.9281 374545 91
GC 0.3167 0.8882 21593 99
MLC1 0.3538 0.9338 34596 97
MLC (t1 5 0) 0.3387 0.9359 13056 91
MLC (t1 5 0.005) 0.3357 0.9402 16666 93

Figure 1 | Multilevel clustering with one level (MLC1).
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will be in the same group with the representative. Otherwise, the current sequence will
become a new representative; (4) repeat until every sequence has found a group. The
greedy algorithm is very fast as its complexity is O(Nm), where N is the number of the
sequences and m the number of the final groups. However, it does not guarantee a
high accuracy for clustering.

MultiLevel Clustering algorithm with one level (MLC1). In this section, the
MultiLevel Clustering algorithm with one level (MLC1) is proposed to avoid the
majority of sequence comparisons while retaining high accuracy. The principle of the
method is illustrated in Figure 1.

Suppose that at the beginning the set of sequences is partitioned into three small
blocks B1, B2 and B3. Then sequences in each block are clustered as equivalent classes
into small groups (Step 1). The representative sequences (in red color) of the obtained
small groups are then collected and re-clustered (Step 2). In the end, all equivalent
sequences of a representative sequence will be grouped to the same cluster (Step 3).
Thus, instead of comparing all sequences with each other, only a reduced number of
comparisons have to be computed. Having described the principles on which MLC1 is
based, the algorithm is formulated as follows:

Input: a set of N sequences, a similarity threshold t, and the number K of blocks or
groups to be partitioned.

Step 1:

1. Partition sequences into small blocks {B1, . . . , BK};
2. For each block Bi with 1 # i # K:

a. Cluster sequences in Bi with threshold t;
b. Compute the representative sequences for the obtained groups;

Step 2: Cluster the representative sequences with threshold t;
Step 3: Group all equivalent sequences to the cluster of their representative

sequence.
Depending on the purpose, one can use different clustering tools such as3,4,16,18–20 to

cluster sequences in Steps 1.2.a and 2. To archive our aim, we use GC for fast
clustering in Step 1.2.a, and CCBC for highly accurate clustering in Step 2.

Unlike GC, the representative sequence of a group in Step 1.2.b of MLC1 is ideally
chosen as the central sequence of the group. However, when the number of sequences
of a group is big, finding this central sequence can be computationally expensive. To
avoid this problem, we heuristically determine the representative of a group as the
almost-central sequence which is the central sequence of a subset of the group con-
taining k sequences, where k is a very small number such that the time to compute a
similarity matrix of k sequences is insignificant. To build this subset, we order the
sequences of the group respecting the similarity measure to their representative
sequence obtained by Step 1.2.a using GC. Let s1,...,sn be the sequences after the

Figure 2 | Multilevel clustering (MLC).

Figure 3 | The cost (f-value) of MLC1 on Amidohydrolases protein sequences. Here the number of sequences in each block is increased by 10.
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ordering, then sn1 ,…,snk is the subset of k sequences where n151, ni11 5 niz
n
k

h i
for 1

# i , k. It is shown with our experiments that the accuracy of MLC1 depends on the
choice of the representative sequence in a group when the number of the sequences in
a block is big. The experiments were done on the two reference gold standard datasets
when the representative sequence of a group was chosen as the first sequence; the
central sequence and the almost-central sequence of the group. Supplementary Fig.
1–2 shows that the best quality (F-measure) produced by MLC1drops in the case that
the representative sequences were chosen as the first ones of the groups.

The complexity of MLC1 is O(m(N 1 m)), where m is the number of the obtained
representative sequences. MLC1 is fast when m is small. The number m can be
reduced to minimal if similar sequences are put into the same block initially. This can
be archived by pre-clustering the sequences based on prior knowledge of current
classification, or using GC with a lower threshold.

MultiLevel Clustering algorithm (MLC). As can be seen in the previous sections, it is
time and memory-consuming to cluster a large-scale dataset with a high threshold as
the number of expected groups is big. In this section, we propose the MultiLevel
Clustering algorithm (MLC) to solve this problem. Our idea starts from the
observation given in the previous section: it is very fast to cluster a dataset of
homologous sequences. Thus, instead of clustering a dataset with the given threshold,
it is more efficient to cluster the dataset with a lower threshold. The obtained groups
will then be clustered with a slightly higher threshold, and so on till we reach to the
given threshold. To guarantee a high accuracy for clustering, MLC1 is used to cluster
the obtained groups in each iteration of MLC. MLC is illustrated in Figure 2 and
described formally as follows:

Input: a set (or group) of N sequences and a similarity threshold t. Let t1,...,tn be a
set of thresholds, where t1=t, ti , ti11 for 1 # i , n-1, and tn 5 tInitially, i51.

Step 1: For each group of the current iteration i-th, cluster the sequences of the
group using MLC1 with threshold t if the number of the sequences is small enough
(less than a given number s); otherwise cluster the sequences with threshold ti and the
obtained groups will be reconsidered for the next iteration.

Step 2: i5i 1 1;
Step 3: Go to Step 1 until i.n.

Recursive MultiLevel Clustering algorithm (rMLC). It is shown by experiments that
MLC is as accurate as CCBC, and is faster than GC. Thus, to speed up the whole
process of clustering, the recursive Multilevel Clustering (rMLC) algorithm is

proposed. The principle of rMLC is the same as of MLC. However, instead of using
GC in Step 1 and CCBC in Step 2 of MLC1, rMLC is applied recursively if the number
of the sequences in these steps is bigger than a given number M; otherwise MLC is
applied.

Run-time performance of clustering. In order to evaluate the run-time performance
of a clustering algorithm, let f be a value computed as the fraction of the number of
sequence comparisons needed for that clustering algorithm divided with the number
of sequence comparisons needed to compute a pairwise-similarity matrix. The
smaller the value of f, the smaller the cost of the clustering algorithm is. For CCBC and
other clustering algorithms that require a similarity matrix, this f-value is 1.

Quality of clustering. A common way to evaluate the quality of a clustering is to
compare the clustering result against some reference standard dataset. A reference
standard dataset consists of pre-clustered sequences containing well-known and
curated information, created, updated and checked by experts. The F-measure
function introduced in18 and used in3 will be applied to evaluate the clustering
algorithms presented in this paper.

Given a set V of sequences, let C 5 (C1, . . . , Cl) be the reference standard partition of
V, and K 5 (K1 , . . . , Km) the partition obtained by clustering homologous sequences
on V . The F-measure function F (K,C) is defined as follows:

F K,Cð Þ~ 1
n

Xi

j~1

nj| max
1ƒivm

2nj
i

niznj

 !

where n is the number of sequences in V, ni is the number of sequences in Ki, nj is the
number of sequences in Cj, and nj

i is the number of sequences in Ki\Cj for 1 # i # m
and 1 # j # l.

The value of F (K, C) is between 0 and 1. When F-measure is equal to 1, the
clustering method reproduces the gold standard perfectly, whereas is does not work at
all when F equals 0.

Optimal threshold. The optimal threshold to cluster a reference standard dataset is
the one that gives the highest F-measure value for clustering. Different clustering
algorithms can have different optimal thresholds on the same reference dataset. The
clustering tools CCBC, TC and GC always produce a fixed value for the optimal
threshold on a given dataset. For MLC1 and MLC, this optimal threshold can be

Figure 4 | Quality (F-measure) of MLC1 clustering on Amidohydrolases protein sequences.
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changed depending on their input such as the number of sequences in each block of
MLC1, the input set of thresholds for MLC, and the initial ordering of the sequences.

Implementation and evaluation
MLC1, MLC and rMLC are simple to implement and it can also easily
be cloud enabled in order to deal with large-scale datasets. The tested
version of MLC together with the pairwise alignment and clustering
algorithms were implemented in C11 and Visual Basic.Net. To
evaluate the efficiency of MLC1 and MLC, CCBC, GC and TC3,4 were
also implemented and installed. Two reference standard datasets were
used and analyzed on a single computer with 64bit CPU and 8 GB
RAM. In the following sections, results obtained by the CCBC, GC,
MLC1, MLC and TC tools on these reference datasets are compared
and discussed. It is noted that since the sizes of the two reference
datasets are small, rMLC were not applied.

Datasets. The first reference dataset consists of 866 protein se-
quences belonging to 91 families of the Amidohydrolases super-
family which was published by Brown et al. in24 and has been used
as a reference dataset to evaluate approaches on sequence clustering
including TC3.

The second standard dataset consists of 2800 reference ITS
(Internal Transcribed Spacer) sequences of 421 species from the
ISHAM-ITS reference database (http://its.mycologylab.org). This
dataset was built for the identification of medical fungal species
which were manually curated and analyzed by experts.

The sequences of these two datasets were sorted in order of
decreasing lengths initially.

Run-time performance and quality of MLC1. In this section, we
study the best input setting for MLC1. The comparison of MLC1 with
other tools will be given in the next section. The run-time

performance (f-value) and quality (F-measure) of MLC1 with a
given threshold on two reference datasets were studied with and
without pre-clustering step, and with the number of sequences in
each block of Step 1 increasing. When the number of sequences in
each block is 0, MLC1 behaves the same as CCBC, and therefore, f51.
It is noted that the cost of the pre-clustering step was also taken into
account when computing these f-values in our experiments. To
compute the almost-central sequence for a group in Step 1.2.b of
MLC1, k510 was fixed.

The thresholds used in this study should reflect the curated clas-
sification. Thus, for the Amidohydrolases protein dataset, the thresh-
old 0.3379 was chosen as it was the optimal threshold of MLC1 on
this dataset when the sequences were ordered by GC using the
threshold 0.05, and the number of sequences in each block was given
as 50. For the medical fungal ITS reference sequences, the threshold
0.9811 was used. It was the optimal threshold of MLC1 when the
sequences were order by GC using the threshold 0.5 and the number
of the sequences in each block was 100.

Figures 3–6 show the run-time performance and the quality of
MLC1 on the two reference datasets. The lines of Figure 4 and
Figure 6 are distinguished by zooming in on a portion of the axis
scale in Supplementary Fig. 3–4. For the Amidohydrolases protein
dataset, MLC1 was performed with the number of the sequences in
each block increased by 10, and with and without pre-clustering. The
best quality (F-measure) of MLC1 using this threshold 0.3379 was
0.941 when the dataset was first preordered by GC with the threshold
0.05 and the number of sequences in each block was 20. The f-value
was then 0.089. The cost of MLC1 was reduced 91.1%, compared to
CCBC.

For the medical fungal ITS reference sequences, MLC1 was per-
formed with the number of the sequences in each block increased by

Figure 5 | The cost (f-value) of MLC1 on the medical ITS reference sequences. Here the number of sequences in each block is increased by 100.
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100, and with and without pre-clustering. The best quality (F-mea-
sure) of MLC1 using this threshold was 0.886. The dataset was first
preordered by GC using the threshold 0.6. The next step was to
cluster the dataset with MLC1 when the number of the sequences
in each block was 200. The f-value was then 0.092. The cost of MLC1
was reduced 90.8%, compared to CCBC.

It can be seen in Figures 3–6 that the cost of MLC1 was reduced
significantly, compared with CCBC whose f-value is 1. Furthermore,
the cost and the quality of MLC1 changed slightly when the
sequences were with or without pre-clustering for both datasets,
and when the number of the sequences in each block was increased
for the medical fungal ITS dataset. For the low-density protein data-
set, the F-measure drops when the number of the sequences in each
block was big. This is because the GC algorithm, which is shown to be
very fast but not accurate with our experiments (see Table 1), was
applied to group sequences in each block of MLC1. To overcome this
issue, when using MLC1 to cluster low-density datasets, one could set
a small number for the number of sequences in each block, or pre-
cluster the sequences with a very low threshold (for example, the
threshold of 0.05 for the protein dataset) to retain high accuracy.
One could also apply another sophisticated algorithm such CCBC
to cluster sequences in each block of MLC1 to retain high accuracy
for clustering. However, the cost of MLC1 would also increase in this
case.

Run-time performance and quality of MLC. In this section, the
performance of MLC is studied and compared with CCBC, TC,
GC, and MLC1. To be able to produce a fixed optimal threshold
for MLC1 and MLC, the number of sequences in each block of

MLC1 was set as 1/10 the number of the sequences. Sequences
were sorted were sorted in order of decreasing lengths initially, and
no pre-clustering was applied. Furthermore, for each iteration of

MLC, we set tiz1~tiz
t{ti

2
for 1 # i , n-1 and t{tn{1w

1
t

. In

addition, s5300 with s the given number in Step 1 of MLC. MLC was
executed with different starting thresholds on the two reference
datasets.

Figures 7–8 show the quality values of CCBC, TC, GC, MLC1 and
MLC on the two reference datasets when the threshold used for
clustering is increased by steps of 0.01 ranging from 0 to 1 for the
Amidohydrolases protein dataset, from 0.97 to 1 for the yeasts, and
from 0.97 to 1 for the medical fungal ITS dataset. As can be seen in
these figures, except for GC, the quality of these clustering algorithms
is more or less the same tools on the two reference datasets. Tables 1–
2 show the best qualities (F-measure values) together with their
corresponding optimal thresholds and the number of sequence com-
parisons as well as the number of the groups produced by the algo-
rithms on the reference datasets. The number of comparisons
computed for CCBC and TC is the number of comparisons needed
to compute a half pair-wise similarity matrix. We note that with a
right setting, MLC1 could archive a better quality for clustering. For
instance, MLC1 could produce the F-measure of 0.9423 for the
Amidohydrolases protein dataset when the number of sequences
in each block was set to 20 and the sequences were pre-clustered
by GC with the threshold of 0.05. For the medical fungal ITS dataset,
MLC1 could produce the F-measure of 0.8865 when the number of
sequences in each block was set to 200 and the sequences were pre-
clustered by GC with the threshold of 0.6. It can be seen from the

Figure 6 | Quality (F-measure) of MLC1 clustering on the medical ITS reference sequences.
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Figure 7 | F-measure produced by CCBC, TC, GC, MLC1 and MLC on Amidohydrolases protein sequences. The threshold used for clustering is

increased by steps of 0.01 ranging from 0 to 1.

Figure 8 | F-measure produced by CCBC, TC, GC, MLC1 and MLC on the medical fungal ITS reference sequences. The threshold used for clustering is

increased by steps of 0.01 ranging from 0 to 1.

www.nature.com/scientificreports
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results in Tables 1–2 that MLC1 and MLC give a similar quality when
clustering these datasets, compared with CCBC and TC. The number
of sequence comparisons needed for MLC1 is about the same as the
one of GC. However, MLC could avoid the most sequence compar-
isons while retaining high accuracy for clustering.

Real-life application
Our purpose was to re-annotate all fungal ITS sequences from public
databases as the ITS locus with its ease of amplification is the most
widely sequenced DNA locus in fungi25. Furthermore, it has proven
useful for identifying fungal species26–30. Recently, the ITS region has
been recommended as the official fungal barcode7 (see also http://
connect.barcodeoflife.net/group/fungi).

All 344,239 fungal ITS sequences were downloaded with the query
txid4751
[porgn] AND 5.8S [TITLE] from GenBank (http://www.ncbi.nlm.
nih.gov) and imported into the fungal barcode database (http://www.
fungalbarcoding.org) in February, 2014. Among 344,239 sequences
from GenBank, there were 175,410 unidentified sequences consisting
of 115,141 uncultured sequences (with names containing ‘‘uncul-
tured’’ word) and 60,269 sequences with invalid names (containing
a number such as ‘‘fungal sp. APA-2013’’). The remaining 168,829
identified sequences were from 22,343 fungal species.

We aimed to cluster all the sequences with the optimal threshold of
0.9861 studied for the medical fungal ITS sequences on the same
computer where the experiments on the two reference datasets were
performed. The rMLC tool was then applied with M51000. To avoid
memory constraints, maximum 1,000,000 sequence comparisons
could be computed at once. The dataset was first clustered with the
starting threshold of 0.95. To do this, the sequences of the dataset
were first preordered based on taxon names, and then partitioned
into 10 small blocks of around 30,000 sequences as given in
Supplementary Table 1. Each block was clustered with the threshold
0.95 using rMLC with a starting threshold of 0.9. The number of the
sequences in each block and the thresholds in each iteration of rMLC
and MLC were computed as in Section Runtime-performance and
quality of MLC. The number of the obtained clusters was 58,714. The
run-time of this process was 7 hours and 33 minutes. All the repres-
entative sequences of the obtained cluster were then clustered into
42,219 groups in 11 hours and 5 minutes. Thus, it took 18 hours and
38 minutes to cluster the dataset with the threshold 0.95. Next, all the
42,219 groups were clustered with the optimal threshold 0.9861 in
3 hours and 5 minutes using rMLC with the starting threshold of
0.968. In total, it took 21 hours and 43 minutes to cluster all 344,239
ITS fungal sequences from GenBank with the optimal threshold
0.9861 into 89,707 groups.

To see how fast rMLC is, we also run GC on this dataset with same
condition provided for rMLC. It took 242 hours and 36 minutes
including the loading time to cluster the dataset into 93,249 groups
by GC. It is noted that the computation of a complete similarity
measure matrix alone for this dataset would take approximately
395 hours, with the assumption that there are unlimited resources.

Next, the grouping of the sequences by rMLC is studied. The
number of groups of sequences before and after clustering the dataset
is given in Supplementary Fig. 5. Here an unidentified sequence was

considered to have its own group before clustering, while an iden-
tified sequence belonged to a group labeled with its species name.
After clustering, there were 32,292 groups of identified sequences
and 57,415 groups of unidentified sequences. Based on the result
obtained by rMLC, there were 5272 uncultured and 13,874 sequences
with invalid names being identified. In particular, these sequences
were partitioned into 2649 groups labeled with a species name. The
remaining unidentified sequences were clustered into the 57,415
groups mentioned above. Furthermore, there were 2389 species
being merged into groups of other species. This means that these
species could not be distinguished by ITS region with the threshold
0.9861. Finally, there were 5067 species being split into 16,868 groups
since the minimum similarity measure in these species was lower
than 0.9861.

We cannot guarantee that the clusters created by rMLC with the
threshold 0.9861 indeed are consistent with the sequence family as
the distribution of the species is not equal in nature. However, with
our approach, we hope to speed up the validation of the sequences
and help to find out quickly considerable portion of potentially
undescribed diversity.

Conclusions and future work
In this paper, the multilevel clustering algorithms MLC1, MLC and
rMLC were proposed to avoid a major number of sequence compar-
isons while retaining high accuracy for sequence clustering. MLC1
was created based on the connected components based clustering
(CCBC) and the greedy clustering (GC) algorithms, while MLC was
developed based on MLC1 to cluster large-scale datasets with num-
ber of the obtained group expected to be big. The rMLC tool was
developed based on MLC to further improve the speed and accuracy
of clustering.

The advantage of these algorithms is that they can benefit the
accuracy of current sophisticated data-partitioning methods such
as CCBC and TC as well as the efficiency of the most efficient tool
in clustering such as GC. With MLC and rMLC, we could also avoid
memory problems when dealing with large-scale datasets. We have
shown by experiments that while the speed of MLC1 and MLC is
comparable with GC, there is no or only a marginal drop in accuracy
when compared them with CCBC and TC. By applying rMLC, we
were able to cluster 344,239 ITS sequences from Genbank at species
level within 22 hours while and it took 242 hours and 36 minutes for
the greedy clustering method on the same computer. In addition, it
would take 395 hours only to compute a matrix of similarity mea-
sures alone for traditional clustering methods (with the assumption
that there is no memory-constraint).

It is not straightforward for the users to provide a right input
setting for MLC algorithms to cluster a dataset in order to archive
the best quality of clustering while being effective. MLC1 is simple to
use. But, it is not applicable to cluster large-scale datasets with a big
number of expected groups. MLC and rMLC require knowledge
about the dataset such as the density of the sequences to give a right
input set of increasing thresholds for clustering. However, this input
set can be learnt by studying a portion of the dataset.

The MLC algorithms have been applied to automatically re-annot-
ate and curate the entire barcode reference database (currently ca.

Table 2 | Results of clustering on the medical fungal ITS sequences

Optimal threshold Best F-measure Number of comparisons Number of groups

CCBC 0.9871 0.8802 3918600 452
TC 0.9803 0.884 3918600 449
GC 0.9811 0.8628 492781 480
MLC1 0.9791 0.8772 359831 398
MLC (t1 5 0.3) 0.9861 0.8826 142531 463
MLC (t1 5 0.7) 0.9891 0.883 152224 509
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80k) at the CBS-KNAW fungal collection (http://www.cbs.knaw.nl).
This helps to find out a considerable portion of potentially unde-
scribed diversity, and to speed up the whole process of sequence
validation which is the most severe bottleneck in the barcoding pro-
ject at our institute31. A tool based on MLC has been developed and
implemented to support MycoBank (http://www.mycobank.org) for
online identification of fungal species. In the future, we will introduce
parallelism to MLC as it can easily be made cloud-enabled. This
could significantly speed up the whole process further and avoid
memory problems when dealing with large-scale datasets.

Although in this work, MLC and its variants have been developed
for taxonomic purposes, they are clearly applicable to the manage-
ment of the large amounts of data in other research fields. For
instance, it can be applied in the processing of gene expression data,
in protein identification, in spectrometric analysis, and in metabo-
lomics.
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31. Vu, T. D., Eberhardt, U., Szöke, S., Groenewald, M. & Robert, V. A laboratory
information management system for DNA barcoding workflows. Integrative
Biology 7, 744–755 (2012).

Author contributions
D.V. developed and implemented the algorithms, and wrote the manuscript. S.S. and V.R.
developed and implemented the DNA comparison function. C.W. compared MLC with
Transitivity Clustering using the protein dataset. G.C. proposed the method to calculate the
representative sequence of a group of MLC. R.R. contributed to the calculation of the
complexity of the algorithms, read and commented on the manuscript. V.R. and J.B.
contributed to the algorithms, supervised the research and revised the manuscript. All
authors reviewed the manuscript.

Additional information
Supplementary information accompanies this paper at http://www.nature.com/
scientificreports

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Vu, D. et al. Massive fungal biodiversity data re-annotation with
multi-level clustering. Sci. Rep. 4, 6837; DOI:10.1038/srep06837 (2014).

This work is licensed under a Creative Commons Attribution 4.0 International
License. The images or other third party material in this article are included in the
article’s Creative Commons license, unless indicated otherwise in the credit line; if
the material is not included under the Creative Commons license, users will need
to obtain permission from the license holder in order to reproduce the material. To
view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 4 : 6837 | DOI: 10.1038/srep06837 9

http://www.cbs.knaw.nl
http://www.mycobank.org
http://www.nature.com/scientificreports
http://www.nature.com/scientificreports
http://creativecommons.org/licenses/by/4.0/

	Title
	Table 1 Results of clustering on Amidohydrolases protein sequences
	Figure 1 Multilevel clustering with one level (MLC1).
	Figure 2 Multilevel clustering (MLC).
	Figure 3 The cost (f-value) of MLC1 on Amidohydrolases protein sequences.
	Figure 4 Quality (F-measure) of MLC1 clustering on Amidohydrolases protein sequences.
	Figure 5 The cost (f-value) of MLC1 on the medical ITS reference sequences.
	Figure 6 Quality (F-measure) of MLC1 clustering on the medical ITS reference sequences.
	Figure 7 F-measure produced by CCBC, TC, GC, MLC1 and MLC on Amidohydrolases protein sequences.
	Figure 8 F-measure produced by CCBC, TC, GC, MLC1 and MLC on the medical fungal ITS reference sequences.
	Table 2 Results of clustering on the medical fungal ITS sequences
	References

