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Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease in which

motor neurons in spinal cord andmotor cortex are progressively lost. About 15%

cases of ALS also develop the frontotemporal dementia (FTD), in which the

frontotemporal lobar degeneration (FTLD) occurs in the frontal and temporal

lobes of the brain. Among the pathologic commonalities in ALS and FTD is

ubiquitin-positive cytoplasmic aggregation of TDP-43 that may reflect both its

loss-of-function and gain-of-toxicity from proteostasis impairment. Deep

understanding of how protein quality control mechanisms regulate TDP-43

proteinopathies still remains elusive. Recently, a growing body of evidence

indicates that ubiquitinating and deubiquitinating pathways are critically

engaged in the fate decision of aberrant or pathological TDP-43 proteins.

E3 ubiquitin ligases coupled with deubiquitinating enzymes may influence

the TDP-43-associated proteotoxicity through diverse events, such as

protein stability, translocation, and stress granule or inclusion formation. In

this article, we recapitulate our current understanding of how ubiquitinating and

deubiquitinating mechanisms can modulate TDP-43 protein quality and its

pathogenic nature, thus shedding light on developing targeted therapies for ALS

and FTD by harnessing protein degradation machinery.
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Introduction

Amyotrophic lateral sclerosis (ALS) is among the most prevalent and fatal

neurodegenerative diseases in which motor neurons in spinal cord and motor cortex

are progressively lost. Patients diagnosed with ALS suffer from the gradual respiratory

dysfunction, having the mean survival time of 3–5 years due to no effective therapeutic

treatment (Mejzini et al., 2019). Approximately 90–95% of patients show sporadic ALS,

while only less than 10% belong to familial cases (Ling et al., 2013). Frontotemporal lobar

degeneration (FTLD), the second-highest incidence rates of early-onset dementia after
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Alzheimer’s disease, is characterized by the cumulative neuronal

loss in the frontal and temporal lobes of the brain, manifesting

behavioral abnormalities, personality changes, and gradual

language inability (Van Mossevelde et al., 2018; Ferrari et al.,

FIGURE 1
Classification of TDP-43 proteinopathies, and its structural features and general functions. (A)Umbrella diagram of TDP-43 proteinopathies and
frontotemporal lobar degeneration (FTLD) that are classified by neuropathy types and causal genetic factors or pathological signature factors
(modified from Prasad et al., 2019 and Hofmann et al., 2019). Genes in red boxes highlight the UPS or autophagy components. Note that the genetic
factors under TDP-43 proteinopathies were primarily identified from ALS and FTLD-TDP. (B) Structural organization of TDP-43. TDP-43 is
composed of an N-terminal domain (NTD) with a nuclear localization signal (NLS), two RNA-recognition motifs (RRM1, RRM2) with a nuclear export
signal (NES) in RRM2, and a glycine-rich C-terminal domain (CTD) containing a glutamine/asparagine-rich region (Q/N). Approximately 50 missense
mutations were located in the glycine-rich region of CTD (Buratti, 2015; Harrison and Shorter, 2017). Under pathological conditions, the full length
TDP-43 can undergo truncation into the C-terminal fragments of 35 kDa or 25 kDa via caspase or calpain (Zhang et al., 2009; Xiao et al., 2015;
Berning and Walker, 2019). In addition, a number of ubiquitination sites in TDP-43 have been reported, including K79, K84, K95, K102, K114, K121,
K140, K145, K160, K176, K181, and K263, which are marked in red dash lines (Kim et al., 2011; Dammer et al., 2012; Kametani et al., 2016; Hans et al.,
2018). (C) TDP-43 is mainly localized in nucleus where it performs multiple functions relating to RNA metabolic pathways, including 1) mRNA
splicing, 2) transcription, 3) miRNA biogenesis, and lncRNA processing. Also, it shuttles between nucleus and cytoplasm, where it participates in 4) &
6) mRNA transport, stability, protein translation, and 5) stress granule assembly.
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2019). It was reported that about 15% cases of FTLD show ALS

symptoms, meanwhile as much as 15% of ALS patients also

develop classic features of FTLD such as cognitive impairment

(Ringholz et al., 2005; Wheaton et al., 2007). Such shared

modality can be explained by the fact that there is a

distinctively broad but also overlapping spectrum of ALS and

FTLD in terms of clinical aspects, neuropathological

mechanisms, and genetic mutations (Figure 1A) (Ling et al.,

2013; Ferrari et al., 2019). In fact, TAR DNA-binding protein-43

(TDP-43) was found to account for the connecting pathology of

more than 90% of ALS and about 50% of FTD (i.e., FTLD-TDP)

cases (Ling et al., 2013). Strikingly, ubiquitinated and hyper-

phosphorylated TDP-43 was identified as a primary constituent

of the mislocalized and insoluble cytoplasmic inclusions in the

patient brain samples (Arai et al., 2006; Neumann et al., 2006).

This observation may support the idea that the proteolytic

control of TDP-43 is intimately connected to the

pathomechanisms in ALS and FTD (Gao et al., 2018).

However, it still remains as questions of how the TDP-43

pathogenesis upends this quality controlling protein clearance

system. In this review, we briefly summarize the recent progress

of ubiquitination and deubiquitination mechanisms that can

modulate TDP-43 protein stability, localization and stress

response, which may provide the mechanistic insights into

developing proteolysis-based treatment for TDP-43

proteinopathies. Detailed physiology and pathology of TDP-43

have been extensively discussed recently (Prasad et al., 2019;

Keating et al., 2022).

Structure and function of TDP-43

A 414-amino acid TDP-43 protein contains an N-terminal

domain with a nuclear localization signal (NLS), two RNA

recognition motifs (RRM1 and RRM2) with a nuclear export

signal (NES), mitochondria localization signals (M1-M5), and a

glycine-rich C-terminal domain where multiple ALS-associated

mutations were reported (Figure 1B) (Guerrero et al., 2016;

Prasad et al., 2019). This feature defines the predominant

localization of TDP-43 in the nucleus where it regulates RNA

metabolism, including transcription, splicing, translation as well

as stability (Pinarbasi et al., 2018; Weskamp and Barmada, 2018;

Bjork et al., 2022), while being also capable of translocation to the

cytoplasm tomediate mRNA transport (Chu et al., 2019) or stress

granule formation (Khalfallah et al., 2018) (Figure 1C). Indeed,

deletion or A90V mutation in the NLS promotes the insoluble

cytoplasmic TDP-43 mislocalization and aggregation (Winton

et al., 2008a; Winton et al., 2008b; Barmada et al., 2010). Two

RRM domains and possibly their dimerization are necessary for

the proper binding of TDP-43 to DNA/RNAmolecules with high

specificity towards TG/UG-rich sequences. Several studies

indicated that mutations in these regions impair TDP-43’s

RNA binding and splicing activities (Lukavsky et al., 2013;

Kuo et al., 2014; Furukawa et al., 2016), confirming its critical

role in RNAmetabolism. Notably, most of ubiquitination sites on

TDP-43 so far have been identified within or near these RRM

domains (Figure 1B) (Kim et al., 2011; Dammer et al., 2012;

Kametani et al., 2016; Hans et al., 2018). The C-terminal domain

(CTD) represents a highly disordered and low-complexity

domain (LCD) which consists of a glycine-rich region

separated by a glutamine and asparagine (Q/N)-enriched

segment (Figure 1B). The CTD has been of great interest due

to its intrinsic aggregation-prone property like the prion-like

domain (King et al., 2012) which apparently contributes to TDP-

43-induced pathological inclusions and neurotoxicity in ALS or

FTLD-TDP (Afroz et al., 2017; Santamaria et al., 2017).

Furthermore, most of ALS-causing mutations, cytotoxic

truncated forms, and phosphorylation sites have been

associated with the CTD of TDP-43 (Figure 1B) (Hasegawa

et al., 2008; Pesiridis et al., 2009; Zhang et al., 2009; Xiao

et al., 2015; Berning and Walker, 2019). The N-terminal

domain (NTD) also exhibits its own oligomerization or

aggregation propensity (Tsoi et al., 2017), and intriguingly, the

part of NTD adopts a novel ubiquitin-like fold that can bind to

ssDNA (Qin et al., 2014). It should be further investigated

whether this structural element can also provide extra avidity

for forming aggregates or association with ubiquitin binding

proteins under pathological conditions. Overall, these structural

features endow multi-dimensional regulation of TDP-43 protein,

in which ubiquitin signaling may also serve as a critical

surveillance system for its proper functioning through

proteostasis networks.

Pathological mechanisms of TDP-43

Failure of TDP-43 regulation culminates in the fatal outcome

of neuronal defect obviously because its pleiotropic nature may

represent the sum from any of proteostasis, RNA homeostasis,

liquid condensate homeostasis (as in stress granule), and

organelle homeostasis (as in mitochondria) (Keating et al.,

2022). Under physiological conditions, TDP-43 predominantly

exerts nuclear functions in RNA-related processes but also

shuttles between nucleus and cytoplasm to participate in stress

granule formation and mRNA translation (Figure 1C). By

contrast, under pathological mutations or stressors, nuclear

depletion of TDP-43 seems to precede, and then entails its

cytoplasmic mislocalization, aggregation, and inclusion

formation (Tomé et al., 2020). Also, the pathological hallmark

of TDP-43 proteinopathies highlights the aberrant deposition of

ubiquitinated and hyper-phosphorylated TDP-43 in the

cytoplasmic inclusions, which indicates that the proteolytic

control of TDP-43 must have been severely compromised

(Klaips et al., 2018). Therefore, for TDP-43-induced

neurotoxicity, TDP-43 loss-of-function likely occurs due to its

nuclear depletion accompanying cytoplasmic accumulation,

Frontiers in Cell and Developmental Biology frontiersin.org03

Tran and Lee 10.3389/fcell.2022.931968

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2022.931968


which in turn progressively drives the pathogenic aggregation

and deposition of insoluble TDP-43 inclusions (Lee et al., 2012).

Probably, such dramatic changes of the molecular signature

inevitably drive the progression of TDP-43 pathogenesis by

altering or disturbing its bona fide protein (and also RNA)

interaction networks. Above certain threshold that can be held

by protein quality control mechanisms–such as ubiquitin-

proteasome system (UPS), heat shock response, or autophagy-

lysosomal degradation pathway, TDP-43 proteopathies can

become runaway or even aggravated by faulty proteostasis

pathways. Moreover, aberrant accumulation of pathological

TDP-43 species sequesters the critical UPS components,

directly impairs the proteasome activity, induces the

accumulation of insoluble polyubiquitinated proteins, and also

depletes free ubiquitin pool, thereby leading to perturbed protein

and ubiquitin homeostasis (Cicardi et al., 2018; Lee et al., 2020b;

Farrawell et al., 2020; Riemenschneider et al., 2022). In consistent

with this view, dysregulation of TDP-43 in ALS and FTLD-TDP

disrupts multiple physiological events and manifests a complex

set of pathomechanisms–for example, 1) the loss-of-TDP-

43 function impairs a range of its nuclear functions in RNA

metabolism such as alternative or exon splicing, RNA biogenesis

or stability, and polyadenylation (Yang et al., 2014; Mitra et al.,

2019; Ni et al., 2021); 2) the gain-of-toxicity of TDP-43 may

further exacerbate the pathogenesis by sequestering other

important biomolecules and organelles through undesirable

interactions (Igaz et al., 2011; Zuo et al., 2021). Accumulation

of cytoplasmic TDP-43 also represses the global protein synthesis

in neuroblastoma models and FTD brain samples (Russo et al.,

2017; Charif et al., 2020). In addition, a growing list of evidences

indicate that TDP-43-induced neuroinflammation and innate

immune responses are critically associated with the TDP-43

pathogenesis via NF-κβ/p65, cGAS-STING,

NLRP3 inflammasome and PTP1B pathways (Zhao et al.,

2015; Lee et al., 2020a; Dutta et al., 2020; Yu et al., 2020;

Bright et al., 2021).

So far, over 50 missense mutations in TARDBP gene

(encoding TDP-43) have been associated with ALS and

FTLD-TDP (Buratti, 2015; Harrison and Shorter, 2017), most

of which being clustered within the aggregation-prone CTD

region (Figure 1B). Remarkably, although TARDBP mutations

account for only 5–10% of familial ALS and the remaining over

90% are attributable to other genes such asC9ORF72, SOD1, FUS,

and UBQLN2 (Kim et al., 2020), the majority of ALS cases (about

97%) also exhibit TDP-43-induced pathology (Ling et al., 2013).

TDP-43 mutations were proposed to alter the protein stability or

increase the propensity of mislocalization or aggregation. The

reported half-lives of TDP-43 wild-type and mutants have been

somewhat inconsistent among the literatures: while some studies

observed the more prolonged turnover rate of TDP-43 mutants

(Ling et al., 2010; Watanabe et al., 2013; Austin et al., 2014),

others reported the faster degradation of the mutants and the

C-terminal truncated forms (Araki et al., 2014; Scotter et al.,

2014). Disease-associated TDP-43 mutants (e.g., G376D, G335D,

G343R, A315T, and M337V) were also reported to increase the

cytoplasmic TDP-43 mislocalization and stress granule or

inclusion formation, which may become deleterious to

neuronal cells (Jiang et al., 2016; Mitsuzawa et al., 2018; Ding

et al., 2021).

Ubiquitination and deubiquitination
events in the quality control and fate
decision of TDP-43

Ubiquitination and TDP-43

Ubiquitination is a cascade of ATP-dependent conjugation

reaction that attaches the ubiquitin tag on the target substrate by

the sequential cooperation of E1 (ubiquitin activating enzyme),

E2 (ubiquitin conjugating enzyme), and E3 (ubiquitin ligase)

enzymes (Hershko and Ciechanover, 1998). By generating

diverse configurations and linkage types of chains, the

ubiquitination pathways are critically involved in both

proteolytic (as in UPS and autophagy-lysosomal degradation)

and non-proteolytic processes (as in signal transduction and

membrane trafficking) (Yau and Rape, 2016; Pohl and Dikic,

2019). Strikingly, ubiquitin-positive inclusion represents one of

the pathological hallmarks of many types of neurodegenerative

diseases (Schmidt et al., 2021), suggesting that the protein quality

control mechanisms must have been dysfunctional in general.

Likewise, ubiquitinated TDP-43 has been also enriched in the

ALS and FTD brain inclusions (Arai et al., 2006; Neumann et al.,

2006).

Indeed, the maintenance of TDP-43 proteostasis seems to be

critical for its proper functioning because either upregulation or

downregulation of TDP-43 can drive the neurotoxicity in various

model systems (Ash et al., 2010; Li et al., 2010; Miguel et al., 2011;

Zhang et al., 2012; Ling et al., 2013). TDP-43 level is also tightly

regulated through autoregulation for which TDP-43 protein

represses its own mRNA translation by binding to the 3’

untranslated region (Figure 2) (Ayala et al., 2011). The

coordinated operation of UPS, chaperones, and autophagy

likely influences the balanced turnover of TDP-43 protein.

Thus, it is not surprising that a number of ALS- and FTLD-

TDP-associated mutations have been identified in the UPS or

autophagic components, such as UBQLN, VCP, p62, and OPTN

(Figure 1A) (Medinas et al., 2017; Keating et al., 2022). It was

suggested that the soluble TDP-43 (either wild-type or the

pathologic forms) may undergo efficient degradation by the

UPS, but once the cytotoxic oligomers or aggregates being

formed, they are preferentially cleared by autophagy-lysosomal

degradation pathway (Scotter et al., 2014).

UBE2E3 was identified to be an E2 ubiquitin-conjugating

enzyme that is involved in the ubiquitination process of TDP-43.

This E2 enzyme physically interacts with TDP-43 and promotes
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its ubiquitination and insolubility (Figure 2) (Hans et al., 2014). A

few of E3 ubiquitin ligase enzymes have been also reported to

participate in the regulation of TDP-43 proteinopathies

(Figure 2). Hebron et al. have reported that the E3 ligase

Parkin and TDP-43 form a multi-protein complex with

HDAC6, and this interaction facilitates the cytoplasmic

accumulation of TDP-43 and also mediates its K48- and K63-

linked polyubiquitination. Interestingly, this Parkin-induced

TDP-43 ubiquitination only promotes its cytoplasmic

mislocalization and inclusion formation without any

indication of the proteolytic clearance (Hebron et al., 2013).

In 2016, Uchida et al. revealed that VHL/CUL2 E3 ligase

ubiquitinates and enhances the degradation of C-terminal

TDP-43 fragments of 35 and 25 kDa by favorably recognizing

misfolded form of TDP-43 at E246 site in RRM2 domain.

Unexpectedly, excess VHL instead stabilizes TDP-43 and

enhances its inclusion formation, suggesting the importance of

balanced proteolytic control by VHL/CUL2 complex in ALS

(Uchida et al., 2016). Another RING E3 ubiquitin ligase,

Znf179 was identified to interact with and polyubiquitinate

TDP-43 in vitro and in vivo. The Znf179-mediated

ubiquitination enhances TDP-43 protein degradation and also

antagonizes its cytoplasmic mislocalization and insoluble

aggregation. Conversely, Znf179-knockout in mouse brain

accumulates insoluble and cytoplasmic TDP-43 inclusions in

neuronal tissues (Lee et al., 2018). Recently, one study also

reported that the Praja 1 E3 ligase exerts remarkably

suppressive effects on phosphorylation and aggregation of

pathological cytoplasmic TDP-43 C-terminal fragment (CTF)

both in vitro and in vivo, although it was not determined

whether Praja 1 is able to ubiquitinate TDP-43 (Watabe et al.,

2020). Furthermore, Praja 1 was also found to interact with

E2 ubiquitin-conjugating enzyme UBE2E3, implying that the

pair of Praja1/UBE2E3 may induce the ubiquitination of TDP-43

against the pathogenic process, contrary to the outcome from

only UBE2E3-mediated ubiquitination (Hans et al., 2014;

Watabe et al., 2020). Overall, aberrant ubiquitination and

defective degradation of TDP-43 may underly the pathological

mechanisms in TDP-43 proteopathies, in which reduced

proteasomal and autophagic activities along with augmented

FIGURE 2
Ubiquitination and deubiquitination mechanisms in TDP-43 regulation. TDP-43 protein level can be tight regulated by multi-dimensional
proteostasis surveillance systems. In the normal conditions, the TDP-43 amount in the cell is maintained via a negative feedback loopmechanism in
which TDP-43 autoregulates and suppresses its own mRNA expression. Under the pathological conditions, TDP-43 translocates from nucleus to
cytoplasm to be accumulated, and can be turned into various pathological species, such asmisfolded, oligomeric, or truncated toxic C-terminal
TDP-43 fragment. Under the prolonged stress conditions, TDP-43 also can be recruited into aberrant stress granules, forming toxic aggregates or
insoluble inclusions. TDP-43 can be refolded by chaperones or recognized and eliminated by ubiquitin-proteasome system and autophagy pathway.
E2 (UBE2E) and E3 (Parkin, Znf179, CUL2, and Praja 1) enzymes, which have been reported to regulate the quality control or fate decision of TDP-43,
are indicated. Note that depending on the ubiquitination events by given enzymes, the ubiquitin conjugates are doomed to be degraded by
proteasome or autophagy, or rather to form the pathological aggregates or inclusions. This ubiquitination process can be reversed by
deubiquitinating enzymes (DUBs) (USP8, USP14, USP7, and CYLD), thereby regulating TDP-43 stability, editing ubiquitin architecture, and
maintaining free ubiquitin pool. DUBs that are involved in stress granule dynamics (USP5, USP10, and USP13) were also indicated.
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proteolysis demand by TDP-43 accumulation render the vicious

cycle into progressively aggravating the pathogenesis (Figure 2).

Deubiquitination and TDP-43

Deubiquitinating enzymes (DUBs) can exclusively reverse

the ubiquitination process and thus are capable of stabilizing the

target proteins. Besides, DUBs also play essential roles in

ubiquitin recycling and ubiquitin chain editing, which may

lead to altered subcellular localization of substrates and

various responses to cellular signaling (Komander et al., 2009;

Clague et al., 2019). Although DUBs may represent potential

drug targets for modulating TDP-43 protein turnover, only a few

have been implicated in TDP-43 regulation or stress granule

formation including USP5, USP7, USP8, USP10, USP13, USP14,

and CYLD (Figure 2) (Lee et al., 2010; Hans et al., 2014; Xie et al.,

2018; Dobson-Stone et al., 2020; Zhang et al., 2020).

USP14, one of the major DUBs on the proteasome, can

deubiquitinate and stabilize the protein substrates that are

ubiquitinated at multiple sites (Lee et al., 2010; Lee et al.,

2016). Given the remarkable nature of USP14–i.e., highly

activated only when bound to the proteasome and potent

suppression of substrate degradation, small-molecule

USP14 inhibitors (e.g., IU1 series) have been also developed

as drug-like molecules (Lee et al., 2010; Boselli et al., 2017). In

fact, overexpression of USP14 in MEF cells substantially

stabilized the protein level of TDP-43, whereas

USP14 inhibitor treatment remarkably enhanced the turnover

of neurotoxic substrates including TDP-43 (Lee et al., 2010;

Boselli et al., 2017). USP8/UBPY was identified to modulate

TDP-43-induced neurotoxicity (Hans et al., 2014). This DUBwas

previously known to regulate endocytosis via interactions with

ESCRT-associated protein components such as EGFRs or STAM

(Clague and Urbé, 2006). By employing yeast two-hybrid

screening and co-immunoprecipitation, Hans et al. revealed

that UBPY is a novel interacting partner of pathogenic TDP-

43. Deficiency of UBPY noticeably promotes TDP-43

ubiquitination but the resulting conjugates may serve as

unfavorable proteasomal substrates or just overburden the

proteasome. Consequently, UBPY-silenced TDP-43

ubiquitination accelerates insoluble TDP-43 accumulation and

aggregation as well as neurotoxicity in vivo fly model. Thus, in

this case, UBPY may serve as a protective factor against TDP-43-

induced neurotoxicity (Hans et al., 2014). DUBs may be also

involved in autophagy-lysosome pathway for TDP-43 regulation.

Recently, Dobson-Stone et al. reported that a missense mutation

in CYLD (CYLDM719V), which was genetically identified from

ALS and FTLD disease locus, exhibits significantly elevated K63-

linkage specific deubiquitinase activity and caused the

impairment in autophagosome-lysosome fusion pathway. This

CYLDM719V mutant also increased cytoplasmic mislocalization of

TDP-43 and reduced the axonal length (Dobson-Stone et al.,

2020). Similarly, USP7 was identified as a negative regulator of

autophagy via deubiquitination of NEDD4L, an E3 ubiquitin

ligase, and inactivation of TGFβ-SMAD pathway.

Pharmacological inhibition or genetic suppression of

USP7 significantly reduced the levels of misfolded SOD1 and

TDP-43 (wild-type and Q331K), leading to attenuation of

mutant SOD1 or TDP-43-induced neurotoxicity in fruit flies

(Zhang et al., 2020).

Aberrant stress granule dynamics represent another

pathological feature of TDP-43 proteinopathy (Hallegger

et al., 2021). Notably, a handful of DUBs have been involved

in stress granule formation or liquid-liquid phase separation

(LLPS). USP10 was found to be localized in stress granule and

also interacts with TDP-43 and G3BP1, a well-known stress

granule marker (Soncini et al., 2001; Freibaum et al., 2010).

USP10 can suppress the formation of aberrant cytoplasmic TDP-

43/TDP-35 aggregates by enhancing the clearance of stress

granules in neuronal cells (Takahashi et al., 2022). Two other

DUBs, USP5 and USP13, can be also recruited to heat-induced

stress granules and regulate their assembly or disassembly

(Figure 2) (Xie et al., 2018). Due to the apparent difference in

their mode of activities, USP5 regulates the stress granule

dynamics by preferentially cleaving unanchored ubiquitin

chains, whereas USP13 does so through deubiquitination of

protein-conjugated ubiquitin chains (Xie et al., 2018).

However, it should be further examined whether USP5 or

USP13 could also functionally regulate TDP-43-positive stress

granules in ALS and FTD models.

Conclusion

While ubiquitin-enriched cytoplasmic inclusion of TDP-43 is

considered to be the proteopathic signature of ALS and FTD, the

pathophysiological meaning of the ubiquitination has been a long-

standing question. Dramatic alteration of TDP-43 localization,

stability, and post-translational modifications under the

pathological conditions may disturb its genuine functional

interaction networks by losing nuclear functions or gaining

cytoplasmic toxicity. On top of TDP-43’s cytoplasmic

mislocalization and aggregation-prone property, the initial

pathogenic cue may trigger ‘butterfly effect’ and eventually the

TDP-43 proteinopathy would prevail. Reduced proteasomal or

autophagic activity and free ubiquitin pool depletion will badly

influence the quality control of TDP-43 protein, or rather aberrant

or undesirable ubiquitination of TDP-43 from proteostasis failure

may only further exacerbate the disease phenotype. In fact,

ubiquitination-rich pathogenic inclusions or liquid condensates,

if the modification is not cleared properly, may act as avid and

irreversible absorbent chambers to sequester many important

proteolysis components such as ubiquitin binding proteins and

proteasome. In this sense, pharmacological modulation of the

pathogenic TDP-43-specific ubiquitination or the protein
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turnover itself may provide promising therapeutic opportunities to

cope with TDP-43 proteinopathies. Remodeling or editing the

ubiquitin chains or fine control of TDP-43 half-life may favor its

proteolysis flux or antagonize the disease progression. It should be

also noted that the total depletion of TDP-43 is not a viable option

because of its essentiality. Indeed, pharmacological activation of

the UPS or lysosomal pathways have been shown to bear the

promise for TDP-43 clearance. For example, as noted above, a

small-molecule inhibitor targeting proteasome-bound USP14 was

reported to accelerate TDP-43 turnover by enhancing the

proteasome activity (Lee et al., 2010). Similarly, forskolin-

activated cAMP-PKA pathway increased proteasome function

and remarkably reduced the levels of TDP-43 WT and its

pathological mutants (Lokireddy et al., 2015). In addition,

rapamycin, which works as an autophagic activator, strongly

decreased the pathogenic TDP-43 species and attenuated TDP-

43-induced neurotoxicity in ALS and FTD models (Cheng et al.,

2015; Lattante et al., 2015). Of note, recently emerging targeted

protein degradation or proteolysis targeting chimera (PROTAC)

approaches have been showing great success in induced proteolysis

of the undruggable targets including neurotoxic proteins (Moon

and Lee, 2018). In fact, TDP-43 PROTACs were also recently

reported, and await further improvement and validation (Gao

et al., 2019; Hyun and Shin, 2021). In any cases, deep

understanding of ubiquitinating and deubiquitinating

mechanisms in TDP-43 pathology should provide the

fundamental basis to develop the proteolysis-controlling

therapeutic strategies for TDP-43-associated neurodegenerative

diseases.
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