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This study aimed to determine whether sulcal morphology differs between middle
age (MA) and older healthy individuals. Furthermore, we sought to determine whether
age-related differences in sulcal characteristics were more strongly associated with
differences in local or global cortical volumes. Participants (age 44–50, N = 403; age
64–70, N = 390) from the Personality and Total Health Through Life (PATH) study
were included. Sulci were 17.3% wider, on average, in old age (OA) compared to MA
participants, with the largest difference in the left superior frontal sulcus. Differences in
sulcal width were generally higher in males than females. Differences in the width of
the superior frontal and central sulci were significantly associated with differences in
the volume of adjacent local gyri, while age-related differences in the width of lateral
and superior temporal sulci were associated with differences in whole brain cortical
volume. These findings suggest that sulcal characteristics provide unique information
about changes in local and global brain structure in aging.
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INTRODUCTION

Biological aging is associated with brain atrophy at both the micro and macroscopic scales (Esiri,
2007). At the microscopic level, neuronal death, shrinkage of dendritic trees and neuropil, as well as
decrease in spine numbers are involved (Murphy et al., 1996; Kolb and Whishaw, 1998; Anderton,
2002). At the macroscopic level, neuroimaging studies show that volumetric decreases occur across
the whole brain with some regions more affected than others (DeCarli et al., 2005; Fotenos et al.,
2005).

Volumetric studies have been very effective in using magnetic resonance imaging (MRI) data to
characterize localized patterns of cerebral atrophy across the lifespan. However, they also have some
important limitations. Specifically, as MRI intensity contrast between gray matter (GM) and white
matter (WM) decreases with age, estimates of cerebral atrophy tend to underestimate the actual
rate of shrinkage (Kochunov et al., 2005; Lemaitre et al., 2012). Moreover, volumetric measures are
not very sensitive to complicated brain surface folding and thus may introduce regional bias and
decrease statistical power (Lemaitre et al., 2012).

Alternative measurements—which do not suffer from these limitations—could be useful
to complement existing volumetric measures. Recently, the measure of sulcal morphology has
become a more accessible approach to investigate neuroanatomical variability (Mangin et al.,
2004b). Since sulcal measures are not dependent on the accurate identification of GM and
WM borders, and are more sensitive to complex folding of the cerebral surface, they may be

Abbreviations: AgeC, age within group; AgeG, age group (middle age or old age); GM, gray matter; ICV, intracranial
volume; MA, middle age; OA, old age; PATH, Personality and Total Health Through Life; ROI, region of interest;
WM, white matter.
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more sensitive to detecting age-related change in cerebral
structure (Lamont et al., 2014).

With aging, sulci become wider and shallower (Rettmann
et al., 2006; Liu et al., 2013a). Sulcal changes are the product
of shrinkage in the gyri adjacent to them as well as more distal
changes which may affect the brain’s global shape with many
regional consequences. These global forces are driven by the
combined changes in cortical GM and WM, as well as in other
subcortical structures (Im et al., 2008; Kochunov et al., 2008;
Liu et al., 2013b). However, a number of questions remain
unanswered. First, little is known about the magnitude and
localization of sulcal changes in middle-age (MA). Second, it is
unclear whether sulcal changes are driven by atrophy of adjacent
local structures or by change in global tissue volumes. Third,
it is not clear whether sulcal width or depth is more strongly
associated with brain structural differences.

The aim of this study is to address these questions
by: (1) investigating how sulcal morphology differs between
middle adulthood and old-age (OA); (2) determining whether
the volume of local brain structures or the whole brain
are more strongly associated with sulcal characteristics; and
(3) investigating whether sulcal width or depth is more strongly
associated with local brain volumetric differences. It was
predicted that: (a) sulci in MA would be narrower and deeper
than in OA; (b) local structural characteristics would be more
strongly associated with sulcal morphology in most sulci than
global volumetric measures; and (c) sulcal width would be more
strongly associated with local brain volumetric differences than
sulcal depth.

MATERIALS AND METHODS

Participants
Participants were selected from the Personality and Total Health
Through Life (PATH) project (Anstey et al., 2012). PATH
participants were residents of the Australian Capital Territory
and neighboring Queanbeyan, Australia, and were randomly
recruited through the electoral roll (Anstey et al., 2012).
Enrolment to vote is compulsory for Australian citizens, making
this cohort representative of the population. All participants
provided written informed consent and this study was carried out
in accordance with the recommendations of the 2007 National
Statement on Ethical Conduct in Human Research, the National
Health Research Council (NHMRC). The protocol was approved
by the Australian National University Ethics Committee and all
participants provided written informed consent.

The present study focuses on the MA (44–48 years) and the
OA participants (64–68 years) at the second assessment of the
PATH study, as MRI scans were first available at this wave
for the MA sample. The selection process is summarized in
Figure 1. Briefly, of participants initially included in PATH (40 s:
n = 2530; 60 s: n = 2551) a sub-sample had anMRI scan at second
assessment (40 s: n = 431; 60 s: n = 422). Of those, participants
were excluded if they had a stroke, epilepsy, or Parkinson’s
disease (40 s: n = 7; 60 s: n = 26; see Figure 1). The final sample
includes 403 MA participants and 390 OA participants.

MRI Acquisition
All participants were imaged with a 1.5-T Phillips Gyroscan
ACS-NT scanner (Phillips Medical Systems, Best, Netherlands).
T1-weighted 3-D structural images were acquired in coronal
orientation using a fast-field echo sequence with the following
parameters: repetition time/echo time = 28.005/2.64 ms;
flip angle = 30◦; matrix size = 256 × 256; field of
view = 260 × 260 mm; slice thickness = 2.0 mm and
mid-slice to mid-slice distance = 1.0 mm, providing
over-contiguous coronal slices and an in-plane spatial resolution
of 1.016 × 1.016 × 2 mm.

MRI Analyses
All participants’MRI scans were first processed using FreeSurfer1

(Fischl, 2012). FreeSurfer software enables the automatic
parcellation of the volumes of the cortical surface using
T1-weighted images (Dale et al., 1999). Briefly, this involved:
(1) non-uniformity correction; (2) image registration; (3) skull
stripping; (4) GM/WM segmentation; (5) surface corrections;
and (6) parcellation of gyri (Dale et al., 1999; Desikan et al.,
2006).

The three-dimensional cortical surface produced
in Freesurfer was imported into BrainVISA for sulcal
measurements2 (Shokouhi et al., 2011). A model of cortical
sulci was automatically produced for each participant with the
standard pipeline. Briefly, this included: (1) cortical surface
extraction; (2) segmentation of gyral and sulcal regions;
(3) computing a sulcal depth map; and (4) construction of a
skeleton representing the shape or ‘‘hull’’ of identified sulci.
Based on these steps, BrainVISA generates an integrated map
combining all measurable sulci with labels extracted from a brain
atlas (i.e., labels identified in FreeSurfer; Kochunov et al., 2012)
and computes a measure of sulcal depth and width. Average
sulcal width is defined as the average span of the intra-sulcal
space along the normal projections to the sulcal mesh, i.e., the
mean value of distances between two adjacent gyri along a
sulcus. Average sulcal depth refers to the mean distance from
the cortical surface of adjoining gyri to the deepest point in the
sulcus.

Regions of Interest (ROIs)
Sulcal ROIs
Five sulci in each hemisphere were chosen for analysis including
(Figure 2): (A) superior frontal sulcus, (B) central sulcus,
(C) lateral sulcus, (D) superior temporal sulcus, and (E) intra-
parietal sulcus. These were chosen because they are present in
all individuals; they are large and relatively easy to identify with
precision (Liu et al., 2010); and they are located in or adjoining
each cerebral lobe, and thus may better reflect the volumetric
changes occurring in these regions.

GM and WM ROIs
GM andWM volumetric estimates were produced for 34 regions
in each hemisphere (Liu et al., 2013b). The regions adjacent

1http://freesurfer.net/
2http://brainvisa.info/
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FIGURE 1 | Sample inclusion (left: 40+ cohort; right: 60+ cohort).

to the five selected sulci were chosen as local factors (LF)
to index local impact on sulcal changes. They included: pre-
central, post-central, superior frontal, middle frontal, superior
temporal, middle temporal, superior parietal and inferior
parietal (Figure 2). In addition, total cortical GM and WM
volumes were selected as global factors (GF). Total cortical
GM was chosen rather than whole brain GM, because the
latter includes subcortical and cerebellar GM which are
thought to have less impact on sulcal morphology (Liu et al.,
2013b).

Statistical Analyses
All statistical analyses were conducted using IBM SPSS
20.0. The associations between sulcal characteristics and age
were investigated with multiple linear regression analyses
controlling for sex, intracranial volume (ICV), education and
APOE ε4 genotype. The effect of age was investigated by
contrasting MA and OA and by testing the effect of age
within group (AgeC). For this purpose, two variables were
computed, one reflecting whether participants were in the
MA or OA group, and another reflecting age variance within
group (AgeC). For AgeC, the age of each participant was
centered on the mean of their group by subtracting the
rounded minimum age of their age group (45 and 65) from
their age.

To test whether LF or GF were more strongly associated
with sulcal characteristics, as well as to compare the sensitivity
of sulcal width and depth to local brain volumetric differences,
multiple regression analyses were used and differences in ∆R2

were tested between models. We applied Bonferroni corrections
and considered p < 0.01 as statistically significant given five sulci
were investigated.

RESULTS

Demographics
Demographics are shown in Table 1. MA participants did not
differ significantly on age (p = 0.180), sex (p = 0.708) and years
of education (p = 0.752) from the whole 40+ PATH cohort.
Likewise, OA participants did not differ significantly on age
(p = 0.473), sex (p = 0.077), and years of education (p = 0.912)
from the whole 60+ PATH cohort. MA and OA participants
differed significantly from each other on age, sex, years of
education, Goldberg depression score, smoking, diabetes and
hypertension (p < 0.05, see Table 1).

Age Differences in Sulcal Characteristics
Sulcal Width
The mean sulcal width of sulci investigated was 1.27 mm
(SD = 0.17 mm) in MA and 1.49 mm (SD = 0.20 mm) in OA
representing a 17.3% difference between age groups 20 years
apart (0.87%/year, p < 0.001; see Supplementary Table S1 for
details). In MA, the sulcal widths of all 10 sulci were significantly
narrower than in OA (Figure 3A). The left superior frontal sulcus
showed the largest sulcal difference (0.341 mm; 22.11%) and
the right intra-parietal sulcus the lowest (0.154 mm; 13.25%). In
general, an anterior to posterior topographical gradient in sulcal
width was observed such that sulcal widths became narrower
from the frontal lobe to the occipital lobe in both age groups.
No significant association between sulcal width and age (AgeC)
was detected within the 4-year age bands of the two age groups.
In addition, a lack of a significant age by age group interaction
(AgeC × AgeG) indicated that the rate of sulcal widening with
age did not differ between MA and OA (see Supplementary
Table S2).
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FIGURE 2 | The five sulci and adjoining gyri selected for investigation. Top: (A)
Superior frontal sulcus, (B) Central sulcus, (C) Lateral sulcus, (D) Superior
temporal sulcus, and (E) Intra-parietal sulcus. Bottom: Superior frontal sulcus:
superior frontal (A1), middle frontal (A2) + (A3). Central sulcus: pre-central
(B1), post-central (B2). Lateral sulcus: superior temporal (C). Superior
temporal sulcus: superior temporal (D1), middle temporal (D2). Intra-parietal
sulcus: superior parietal (E1), inferior parietal (E2).

Sulcal Depth
The mean depth of sulci investigated was 15.98 mm
(SD = 2.12 mm) in MA and 15.67 mm (SD = 2.07 mm) in
OA representing a 1.93% difference between age groups 20 years
apart (0.1%/year). The sulcal depths of the left and right intra-
parietal sulci were significantly deeper in MA than in OA
(p < 0.01; Figure 3B). The right intra-parietal sulcus showed

a larger sulcal difference (0.442 mm; 3.00%) between groups
than the left. No significant association between sulcal depth
and age (AgeC) was detected within age group. The age by
age group interaction (AgeC × AgeG) showed that, in the left
intra-parietal sulcus, there was a significant difference in the
rate of annual change in sulcal depth (MA: 0.086 mm/year; OA:
−0.097 mm/year; see Supplementary Table S3).

Sex Differences in Sulcal Characteristics
To determine whether sulcal characteristics differed between
males and females in MA and OA, sex by age group
interactions (Sex × AgeG) were tested. For sulcal width,
significant differences were observed in the left lateral sulcus
(males = 0.278 mm, females = 0.205 mm), left intra-parietal
sulcus (males = 0.251 mm, females = 0.171 mm), left
central sulcus (males = 0.333 mm, females = 0.250 mm),
left (males = 0.341 mm, females = 0.251 mm) and right
(males = 0.226 mm, females = 0.134 mm) superior frontal
sulci (Figure 4A). In general, the change in sulcal width was
significantly higher inmale than female. No significant difference
was detected in sulcal depth (Figure 4B; Supplementary
Tables S2, S3).

Laterality Differences in Sulcal Characteristics
The average sulcal width of all 10 sulci across both age groups
was 1.39 mm (SD 0.24) in the left hemisphere and 1.37 mm
(SD 0.18) in the right. The average sulcal depth of all 10 sulci
across both age groups was 15.80 mm (SD 2.19) in the left
hemisphere and 15.85 mm (SD 2.00) in the right. In order
to test whether the sulcal measures were different between the
two hemispheres across both age groups, left and right sulcal
characteristics were compared. For sulcal width, a significant
difference between the left and right hemispheres was observed in
the intra-parietal sulcus (the confidence intervals did not overlap,
see Supplementary Table S2). For sulcal depth, no significant
differences between the left and right hemispheres were found.

Association Between Sulcal
Characteristics and Local and Global
Factors
LF were more predictive of sulcal width in the superior frontal
sulcus, while GF were more predictive in the lateral sulcus

TABLE 1 | Demographic characteristics.

Characteristics MA (N = 403) OA (N = 390) t or χ2∗ p

Age, years (SD) 47.20 (1.37) 67.04 (1.42) −199.6 <0.001
Range 44–50 64–70 - -
Male, N (%) 186 (46.15) 220 (56.41) 8.149 0.004
Caucasian, N (%) 385 (95.53) 368 (94.36) 0.559 0.518
Education, years (SD) 15.12 (4.74) 14.16 (2.62) 4.035 <0.001
BMI, score (SD) 27.16 (4.80) 26.59 (4.24) 1.860 0.064
Goldberg depression score (SD) 2.25 (2.25) 2.20 (7.20) 3.735 <0.001
Smoking (ever), N (%) 193 (47.89) 168 (43.08) 1.752 0.199
Diabetes, N (%) 10 (2.48) 40 (10.26) 20.20 <0.001
Hypertension, N (%) 114 (28.29) 258 (66.15) 113.5 <0.001
MMSE, score (SD) - 29.53 (3.66) - -

∗Comparing MA and OA, t-test for continuous variables and Chi-squared test for categorical variables.
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FIGURE 3 | Differences in sulcal width (A) and depth (B) between middle-age
(MA) and old-age (OA). The median, 1st and 3rd quartile range of sulcal widths
and depths in MA and OA are shown. Whiskers show minimum and maximum
value. ∗ Indicates significant (p < 0.01) age group differences in sulcal
width/depth. Superior frontal sulcus (frontal); central sulcus (central), lateral
sulcus (lateral); superior temporal sulcus (temporal); intra-parietal sulcus
(parietal).

(Figure 5A). For sulcal depth, LF were generally more predictive
in most sulci (Figure 5B, Supplementary Tables S4–S6). LF and
GF were significantly correlated, with r ranging from 0.872 to
0.944.

Sensitivity of Sulcal Width and Depth to
Local Brain Volume Differences
To determine whether sulcal width or depth was more predictive
of local gyral volumes in the left (Figure 6A) or the right
(Figure 6B) hemispheres, the two measures were entered
together in regression analyses (Supplementary Table S7).
They revealed that sulcal width was generally more strongly
associated with local brain volume differences in the superior
frontal sulcus, lateral sulcus and superior temporal sulcus, while
sulcal depth was generally more strongly associated with local
brain volume in the central sulcus and intra-parietal sulcus
suggesting a ventro-anterior to dorso-posterior gradient. For
specific differences, sulcal width was significantly associated
with local gyral volume at right intra-parietal sulcus but not
left intra-parietal sulcus in either OA or MA. Sulcal depth was
significantly associated with local gyral volume at left lateral
sulcus in OA, at right temporal sulcus in MA and at left intra-
parietal sulcus in bothMA andOA and right intra-parietal sulcus
in MA.

FIGURE 4 | Differences in sulcal width (A) and depth (B) between males and
females. The median, 1st and 3rd quartile range of sulcal widths and depths in
MA and OA are shown. Whiskers show minimum and maximum value.
∗ Indicates significant (p < 0.01) sex by age group differences in sulcal
width/depth. Superior frontal sulcus (frontal); central sulcus (central), lateral
sulcus (lateral); superior temporal sulcus (temporal); intra-parietal sulcus
(parietal).

DISCUSSION

This study produced fourmain findings. In this large population-
based cohort: (1) sulci were wider in older participants in all
five sulci investigated; (2) sulcal depth was significantly shallower
in older participants in the intra-parietal sulcus; (3) LF were
generally more predictive of sulcal morphology than GF; and
(4) sulcal width was generally more strongly associated with local
brain volumetric differences.

Age, Sex and Laterality
As predicted and generally consistent with the literature the
10 sulci investigated were wider in older participants (Kochunov
et al., 2005; Liu et al., 2010). However, for sulcal depth, unlike
previous findings, results showed that although depths of the
10 sulci were generally shallower in older participants, only the
intra-parietal sulcus was significantly shallower. The reason for
this discrepancy may have been due to cohort differences. In
Kochunov’s study, participants’ age spanned a very wide age
range of 20–82 years and therefore might have been more likely
to present larger sulcal differences.

The largest difference in sulcal width between the two age
groups (12.85%) was found in the left superior frontal sulcus.
This pattern has been previously reported (Kochunov et al., 2005)
and is consistent with anatomical studies of aging that show
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FIGURE 5 | Contribution of LF and GF to sulcal width (A) and depth (B). Local
factors (LF); global factors (GF). The R-squared changes (∆R2) indicate
changes of explanatory power between models with and without LF or GF
(proportion of variability of the sulcal measures explained by LF or GF).
∗ Indicates significant association (p < 0.01) between LF or GF and sulcal
width or depth. Error bar shows 95% confidence interval, which indicates
significant differences (95% confidence interval not overlapping) between LF
and GF in explaining sulcal width/depth.

accelerated GM atrophy in the superior frontal region (Wu et al.,
1996; Xu et al., 2000; Good et al., 2001; Raz and Rodrigue, 2006;
Smith et al., 2007; Fjell et al., 2009). It has been suggested that
frontal regions mature later during development (Gogtay et al.,
2004), and thus may be more vulnerable to aging (Fjell et al.,
2014). The reason for this effect has not been elucidated but
may be due to a difference in cortical architecture (Fjell et al.,
2014).Moreover, the age-related widening was found to generally
follow an anterior to posterior gradient. This is likely to be
related to the fact that the temporal and occipital lobes experience
smaller volumetric decline with age compared to the frontal and
parietal lobes (Resnick et al., 2003).

Analyses of sex differences showed significant effects, which
varied between age groups such that males had greater sulcal
width than females in OA (right lateral, left parietal, and left
central sulci as well as in the left and right superior frontal
sulci) but not in MA. The opposite effect was found for the
left lateral sulcus. Importantly, these differences were detected
after controlling for ICV and therefore cannot be attributed
to known differences in head size between sexes. A previous
study also found age-related sulcal difference in men and
women, such as different sulcal width in males than females
in the superior temporal (males: 0.83 mm/decade; females:
0.58 mm/decade), collateral (males: 0.82 mm/decade; females:
0.54 mm/decade), and cingulate sulci (males: 0.88 mm/decade;
females: 0.66 mm/decade; Kochunov et al., 2005). It is likely
that these differences are driven by a number of factors. In

FIGURE 6 | Sensitivity of sulcal width and depth to local brain volumetric
differences in the left (A) and right (B) hemispheres. MA, Middle age; OA, old
age. The R-squared changes (∆R2) indicate changes of explanatory power
between models with and without sulcal width or depth (proportion of
variability in the local gyral volumes explained by sulcal width or depth).
∗ Indicates significant association (p < 0.01) between local gyral volumes and
sulcal width or depth.

addition to clearly demonstrated variation in some physiological
and hormonal processes, men and women have different
exposure to demonstrated risk factors for neurodegeneration
(Cherbuin et al., 2015), vary in their genetic predisposition to
neurodegenerative conditions such as Alzheimer’s disease, and
make different lifestyle choices which relate to cerebral health
(e.g., smoking, diet, exercise, etc.). These differences are likely
to contribute to the documented faster cortical GM atrophy
in men (Curiati et al., 2009). Moreover, men have also been
found to have less cortical gyrification than women which may
also contribute to variation in sulcal widening (Luders et al.,
2004).

Significant sulcal width differences in the left and right
hemispheres were observed in the intra-parietal sulci and are
consistent with lateralization of attention processes and reported
structural asymmetries in the parietal cortex (Jeong and Xu,
2016). However, most sulci showed no significant differences in
laterality. This is surprising because laterality differences might
have been expected in the central sulcus due to handedness
(Mangin et al., 2004a), or in the medial frontal lobe and superior
temporal gyrus due to their implication in language processing
which is known to be lateralized to the left hemisphere in most
individuals (Foundas et al., 1994; Holland et al., 2007; Vannest
et al., 2009).
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Influence of Local and Global Factors on
Sulcal Characteristics
An important question to resolve in order to assess sulcal
characteristics as indexes of brain atrophy is whether they are
more reflective of regional brain changes proximal to a specific
gyrus or whether they integrate more global changes distributed
more diffusely across the whole brain. One issue is that local and
global brain volumes are highly correlated, resulting in overlap
in explanatory power. Nevertheless, results from this study have
identified significant difference in associations between LF/GF
and sulcal characteristics in some sulci. Our findings show that
LF were more predictive of sulcal width in the superior frontal
sulcus, while GF were more predictive of sulcal width in the
lateral sulcus. Further, LF were more strongly associated with
sulcal depth across all gyri investigated. These results are not
completely consistent with our working hypotheses and previous
studies which found that local GM was typically more strongly
associated with sulcal width than global GM (Liu et al., 2013b).
This discrepancy may be explained by the fact that Liu and
colleagues did not consider the contribution of WM. Since both
local GM andWMcontribute to sulcal variability (Im et al., 2008)
our findings might reflect different local and global influences of
WM on sulcal characteristics in different brain regions.

Although it has been suggested that sulcal changes adjoining
certain gyri may indicate loss in function supported by these gyri
(Rettmann et al., 2006), our findings suggest a more complex
story. Indeed, we found that sulcal width was more strongly
associated with the volumes of local brain regions adjoining the
superior frontal sulcus, but that global brain volume was more
strongly associated with the sulcal width of the lateral sulcus.
Moreover, local and global volumes contributed similarly to the
width of the central, temporal and parietal sulci. In contrast,
sulcal depth of all sulci was consistently more strongly associated
with the volumes of adjacent gyri than global volumes. Thus,
although we cannot investigate this question in the present study,
it would seem that age-related differences in sulcal width and
depth may be generally more reflective of functional changes
related to local gyri, although there may be a number of
exceptions in relation to the width of certain gyri.

Sulcal Width and Depth and Local Brain
Volumes
In addition to clarifying how LF or GF contribute to sulcal
morphology, an important outstanding question is whether
sulcal width or depth is more strongly associated with local
gyral structure, when both measures are considered together.
We found that the width of the superior frontal, lateral and
superior temporal sulci were more predictive of the adjoining
gyral volumes. In contrast, sulcal depth of the central and intra-
parietal sulci was more predictive of local volumes.

This study had a number of limitations but also several
strengths. The cross-sectional design used does not allow for
causal inferences and longitudinal investigations are needed to
confirm these findings. Moreover, the narrow-age cohort design
used within each age group and the large age difference between
age groups did not allow us to investigate whether age effects

are progressive between MA and OA or whether they follow
a non-linear trend. However, this design characteristic is also
a strength as it allows for more precise measures of sulcal
characteristics within the selected age ranges.

CONCLUSION

Sulci were on average 17.3% wider in OA compared to MA, with
the left superior frontal sulcus showing the largest difference
(22.11%). The left and right intra-parietal sulci were also
significantly shallower in OA than inMA. Importantly, we found
that the volume of gray and WM adjacent to the superior frontal
sulcus (LF) was highly predictive of the variability in width of this
sulcus, while whole brain gray and white matter volumes (GF)
were more predictive of sulcal width in the lateral sulcus. These
results suggest that sulcal characteristics can provide unique
information about changes in local and global brain structure in
aging.
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