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Simple Summary: The aim of this article is to review the complex interactions of bacteria with
Kaposi’s sarcoma-associated herpesvirus (KSHV) infection and KSHV-induced cancers. KSHV is
causally associated with multiple cancers including Kaposi’s sarcoma (KS) and primary effusion
lymphoma. Among patients coinfected by HIV and KSHV, patients with KS have a distinct oral
microbiome compared to patients without KS. Moreover, KSHV patients have increased levels of
salivary bacterial pathogen-associated molecular patterns compared to KSHV-negative patients.
KSHV-associated bacterial species can increase KSHV replication and dissemination, and enhance
cell proliferation of KSHV-transformed cells. The analysis of bacterial biomarkers associated with
KSHV may help improve our understanding of the mechanisms driving KSHV-induced oncogenesis
and identify novel targets for improving therapies of KSHV-related cancers.

Abstract: The objective of this article is to review the current status of the bacteria-virus interplay
in Kaposi’s sarcoma-associated herpesvirus (KSHV) infection and KSHV-driven cancers. KSHV is
the etiological agent of several cancers, including Kaposi’s sarcoma (KS) and primary effusion
lymphoma. Due to immunosuppression, patients with KSHV are at an increased risk for bacterial
infections. Moreover, among patients coinfected by HIV and KSHV, patients with KS have distinct oral
microbiota compared to non-KS patients. Bacterial biomarkers associated with KSHV-driven cancers
can provide insights in discerning the mechanisms of KSHV-induced oncogenesis. For example,
pathogen-associated molecular patterns and bacterial products of certain bacterial species can regulate
the expression of KSHV lytic and latent genes, thereby affecting viral replication and dissemination.
In addition, infection with distinct opportunistic bacterial species have been associated with increased
cell proliferation and tumorigenesis in KSHV-induced cancers through activation of pro-survival and
-mitogenic cell signaling pathways. By elucidating the various mechanisms in which bacteria affect
KSHV-associated pathogenesis, we will be able to pinpoint therapeutic targets for KSHV infection
and KSHV-related cancers.
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1. Introduction

The utilization of bacterial markers to determine cancer pathology has progressed
tremendously in recent years. Advances in technology have empowered researchers
to more thoroughly elucidate complex interactions between the microbiome and cancer.
Microbiome analyses using next generation sequencing report that the colonization of
pathogenic bacterial species is increased in cancer patients and exacerbates cancer patho-
genesis [1]. Pathogenic bacteria such as Fusobacterium nucleatum and Helicobacter pylori
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have been extensively studied for their carcinogenic effects, as they can produce toxins and
effector proteins that induce host cell damage and alter cell signaling pathways involved
in cell survival and proliferation [2]. Contrarily, many studies have shown that certain
bacteria such as probiotics have anti-inflammatory effects that may aid in cancer preven-
tion [3]. Moreover, recent studies have shown that bacteria can interact with cancer-causing
viruses to promote viral replication and the progression of viral cancers [4]. The analysis
of bacteria-virus interactions is paramount to microbiome-cancer studies, as up to 15%
of cancers have a viral etiology [5]. This review will specifically focus on the effects of
bacteria on infection of Kaposi’s sarcoma-associated herpesvirus (KSHV) and its associated
cancers, which develop most frequently in immunosuppressed individuals. To thoroughly
comprehend the interactions between bacteria and KSHV-induced cancers, it is neces-
sary to begin with a brief overview of the general interactions between the microbiome,
immune response, and cancer.

2. Bacterial Infection and the Innate Immune Response: Effects on Cancer Pathology

The human immune system responds to bacterial infection by producing inflammation.
Bacteria possess pathogen-associated molecular patterns (PAMPs) that are recognized by
pattern recognition receptors (PRRs) expressed by both non-immune and immune cells [6,7].
Activation of PRRs causes a downstream cascade of signal transduction pathways, result-
ing in enhanced expression of inflammatory cytokines [6]. Inflammatory cytokines amplify
inflammation by signaling additional immune cells to migrate towards the infection [6].
Immune cells, in addition to producing more cytokines, respond to infection by generat-
ing antibacterial substances including reactive oxygen species (ROS) or reactive nitrogen
species (RNS), which can cause apoptosis in infected cells [8]. Bacterial infection can also ac-
tivate the complement system, resulting in induction of inflammatory mediators, increased
angiogenesis, and migration of immune cells to the infection [9]. Although inflammation is
necessary for controlling infection, unregulated or continuous inflammation can initiate
and/or increase carcinogenesis [10].

A number of studies have annotated the pathways linking PRR activation and cancer
cell proliferation [11]. Bacterial PAMPs can activate transmembrane and cytosolic PRRs [6].
Transmembrane receptors include C-type lectins receptors and toll-like receptors (TLRs)
that recognize extracellular and endosomal-derived PAMPs [12,13]. Cytosolic receptors
include nucleotide-binding domain leucine-rich repeat containing receptors (NLRs) and
RIG-I like receptors (RLRs) that recognize intracellular infections and damage-associated
molecular patterns (DAMPs) [6]. Activation of these PRRs causes induction of inflamma-
tory pathways including the NF-κB pathway and mitogen activated protein kinase (MAPK)
pathways which increase expression of cytokines such as IL-10, TNF-α, IL-1β, and IL-6 [6].
The oldest of PRRs are the TLRs, which recognize bacterial structure components. For exam-
ples, lipopolysaccharides (LPS) are detected by TLR4, lipoproteins are detected by TLR1/2
or TLR2/6 heterodimers, and flagellin is detected by TLR5 [6]. Studies have demonstrated
that bacterial ligands including LPS, peptidoglycans, and flagellin promote cell prolifer-
ation and/or invasiveness in several cancer cell lines [14–18]. Moreover, some studies
suggest that increased levels of circulating bacterial PAMPs are correlated with a higher
cancer risk [19–21].

However, contradictory studies show decreased cell proliferation in cells stimulated
with bacterial PAMPs [22–24]. Moreover, bacteria and their PAMPS have been studied as
potential therapies for decreasing tumors [25,26]. These contradictory effects are likely
due to the multiple responses of cells to TLR activation or differences within the tumor
environment (such as compositions of immune cells) [22,27–29]. Elucidating the factors that
direct the downstream signaling of TLRs toward pro-survival versus apoptotic pathways
will be especially important for determining how to best utilize bacteria for cancer therapy.

Due to the substantial evidence of bacterial impact on cancer pathology, it is essential
to delineate the intricate interactions of the bacterial microbiome with cancer. The micro-
biome consists of the microbial community, which maintains intricate interactions. Their
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effects on the habitat are complex [30]. The human body is home to a multitude of dif-
ferent types of microbiomes, each with a distinct composition of microbial species [31].
The intestines and oral cavities harbor the greatest number and diversity of species [31].
Cancerous tumors and lesions also have distinct microbiomes, consisting of intracellular
bacterial species highly specific to the particular tumor type [32]. The species’ composition
and bacterial interactions dictate the types of bacterial metabolites, biofilm, and quorum
signaling molecules produced within the microbiome [30]. In addition to being parts of the
bacterial structures, bacterial products have a significant effect on immune response [33].
The bacterial microbiome can vary greatly based on many genetic and environmental
factors, including the host’s diet, location, weight, and ethnicity [34]. Based on the current
literature, microbial effects on cancer can be broadly classified into three major categories:
(1) dysregulation of host immunity induced by bacterial PAMPs, (2) direct interactions
between bacterial products and cancer cells, (3) indirect mechanisms involving bacte-
rial products, and (4) for viral cancers, direct interactions between bacteria and bacterial
products, and viruses.

3. KSHV and KSHV-Associated Cancers

This review focuses on the effects of bacteria on KSHV infection and KSHV-associated
cancers. KSHV is the etiological agent of Kaposi’s sarcoma (KS) and primary effusion
lymphoma (PEL) [35]. Although KSHV infection has higher prevalence in the homosex-
ual population, infection rates vary in the general population according to geographic
regions [36]. Its infection rate is the highest in some African regions (reaching 70%), me-
dian in Eastern European and Mediterranean regions (in the range of 20–30%), and lowest
in North America and most other European and Asian countries (in the range of 4–12%) [37].
Importantly, most individuals with KSHV infection do not develop any KSHV-associated
cancers, implying that additional co-factors are necessary for KSHV-infected subjects to
develop cancer [38].

As a gammaherpesvirus, KSHV causes life-long persistent infection [39]. The KSHV
latency phase is characterized by the expression of limited viral latent genes that helps
the virus escape from the host’s immune detection [40]. The lytic phase consists of highly
orchestrated expression of viral lytic genes that lead to viral DNA replication and virion
release [40]. Lytic replication is essential for both transmission and dissemination of the
virus [40]. The majority of viral genes are lytic and are silenced during latency through mul-
tiple epigenetic modifications of the viral genome including DNA methylation, and histone
deacetylation and repressive histone methylation [40]. Physiological factors that acti-
vate KSHV lytic replication include immunosuppression, hypoxia, inflammation, and co-
pathogenic infections [4].

Since not all individuals infected with KSHV develop malignancies, it is especially
important to understand the roles co-factors play in the development and severity of
KSHV-induced cancers. KSHV most commonly causes cancers in immunocompromised
individuals, especially those with HIV infection [35]. Patients with HIV have decreased
CD4+ T cell counts, which plays a crucial role in controlling KSHV lytic replication and
KS tumors [41,42]. HIV proteins TAT (trans-activator of transcription), Nef, and Vpr can
directly interact with and regulate the functions of KSHV proteins in addition to altering
host immune regulation, leading to promotion of KSHV infection [43–48]. Studies have
shown that low CD4+ T cell count may increase the risk of developing KS and PEL, further
indicating the significance of immunosuppression on KSHV-induced pathologies [4].

Suppressed immunity associated with HIV increases the risk of opportunistic infec-
tions [4]. Several studies show that microbiomes of immunosuppressed patients have
a lower overall diversity of bacterial species and increased colonization of pathogenic
species compared to healthy individuals [49,50]. Oral bacterial infection, in particular,
is highly relevant in KS patients, as periodontal disease is present in higher frequency in
KS patients than healthy individuals [4]. Gruffaz et al. used next generation sequencing
to analyze the microbiota in saliva samples of KS patients with either oral KS, no oral KS
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but oral cell-associated KSHV, or neither oral KS nor oral cell-associated KSHV DNA [51].
Oral KS patients had the most phylogenetically distant composition of bacteria compared
with the two other groups [51]. Figure 1 depicts the observed increases and decreases of
oral microbiota in the oral KS group compared with the HIV/KSHV-coinfected patients
without oral KS or oral KSHV [51]. Oral KS patients had higher levels of the phyla Firmi-
cutes and Actinobacteria and decreased levels of the phyla Bacteroidetes and Proteobacterium.
Moreover, oral KS patient samples had higher levels of common oral pathogens including
bacteria in the genera Corynebacterium and Shuttleworthia [51]. These results strongly imply
that oral microbiota interaction with HIV/KSHV coinfection may play an important role
in influencing the development of oral KS. Other studies have also detected a positive
correlation between herpesvirus and periodontal pathogens, including Porphyromonas.
gingivalis and Fusobacterium nucleatum [52]. Moreover, many studies have reported that
common oral pathogens produce metabolites that reactivate KSHV and Epstein–Barr virus
(EBV), another oncogenic gammaherpesvirus, resulting in enhanced viral infectivity and
promotion of lytic replication of the virus [53–55].
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microbiota in HIV/KSHV-coinfected oral KS patients compared with HIV/KSHV-coinfected patients
without oral KS or oral KSHV. Figure was modified from Figure 5 in the open access article by
Gruffaz et al. [51].

4. Impact of Bacteria on KSHV Lytic Replication

Butyrate, a common metabolic end product of certain bacterial species, has been
shown to reactivate herpesviruses including KSHV [55]. Butyrate inhibits the activities of
histone deacetylases (HDACs) and promotes hyperacetylation, leading to increased viral
gene expression [56]. Multiple studies have shown that the medium of butyrate-producing
oral pathogens can result in KSHV reactivation [53,55]. A study by Morris et al. ex-
plored the role of microbial infection in KSHV reactivation by treating PEL cell line BCBL1
cells with spent medium from oral disease pathogens including P. gingivalis, F. nucleatum,
Prevotella intermedia, and Streptococcus mutans [55]. Authors detected increased viral lytic
gene expression in cells treated with mediums from the potent butyrate-producing bacteria,
namely the P. gingivalis and F. nucleatum medium. The study also examined the mechanism
of bacterial-induced reactivation and reported that activation of viral lytic genes by the bac-
terial mediums occurred through the p38 MAPK pathway as this pathway has been shown
to be both essential and sufficient for KSHV lytic replication during primary infection and
reactivation [55,57–60].

Yu et al. further explored the effects of medium from F. nucleatum and P. gingivalis
on KSHV reactivation [53]. Their study reported increased expression of viral lytic gene
expression in BCBL1 cells treated with medium from P. gingivalis and F. nucleatum. More-
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over, treatment of BCBL1 cells with different doses of pure individual short chain fatty
acids (SCFAs) detected in the mediums of P. gingivalis and F. nucleatum except acetic acid
resulted in increased expression of lytic gene RTA (ORF50) [53]. Treatment with butyric
acid resulted in the greatest effect, whereas an additive effect was observed when SCFAs
were combined [53]. Interestingly, by analyzing levels of SCFAs in saliva, Yu and colleagues
found higher concentrations of salivary SCFAs from P. gingivalis and F. nucleatum in patients
with periodontal diseases compared to healthy controls [53]. Yu et al. explored the mecha-
nism of KSHV reactivation by bacteria, reporting that BCBL1 cells, KSHV-infected human
normal epithelial cells (HOECs), and KSHV-infected human telomerase-immortalized
human umbilical vein endothelial cells (TIVE-KSHV) treated with P. gingivalis and F. nuclea-
tum had significantly reduced expression of class 1/2 HDACs. In contrast, no effect was
seen with Escherichia coli medium [53]. These findings provide evidence that SCFAs from
periodontal pathogens might reactivate KSHV in the oral cavity and therefore influence
the development and progression of KSHV-induced cancers.

Besides SCFA production, additional bacterial effects have been linked to KSHV
reactivation, including inflammation related to cytokines and ROS [42]. Figure 2 depicts
bacteria-related factors that have been shown to reactivate KSHV. Ye et al. observed
that both exogeneous and endogenous hydrogen peroxide (H2O2) increased KSHV lytic
gene expression in HUVEC and PEL cell lines [61]. Although, at higher concentrations,
H2O2 causes apoptosis and senescence in primary cells, at lower concentrations, H2O2
can activate multiple redox signaling pathways such as the MAPK pathways [61]. Ye et al.
reported that H2O2 induction of KSHV reactivation depended on ERK1/2, JNK, and p38
pathways [61]. As H2O2 can be produced directly by bacteria and indirectly by bacterial
stimulation of immune cells, it may be of interest to more thoroughly assess the impact of
bacterial infection in causing KSHV reactivation through this mechanism [62].
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Dai et al. reported that both bacterial PAMPs from S. aureus and P. gingivalis influenced
KSHV entry into cells and subsequent expression of viral genes in primary human gingival
fibroblasts (HDF) and periodontal ligament fibroblasts (PDLF) [63]. Dai et al. further
explored if ROS was related to LTA/LPS facilitation of KSHV replication in oral cells [63,64].
They indeed found that LTA/LPS treatment significantly increased intracellular ROS
production and NADPH oxidase activity in HGF and PDLF [63]. These results imply that
bacteria might be the inducer of ROS production, and regulate KSHV lytic replication.
Furthermore, LTA from S. aureus induced MAPK-ERK phosphorylation and LPS from
P. gingivalis increased NF-κB phosphorylation in HGF [63]. It has previously been reported
that once KSHV enters the cell, both the NF-κB and MAPK signaling pathways are required
for successful establishment of latent infection [65,66]. However, in PDLF cells, both LTA-
and LPS-induced NF-κB P65 had little effect on the MAPK pathways [63]. It is therefore
apparent that the mechanism of PAMP-induced viral entry requires further investigation.
The study did not look at the effects of TLR activation, which may be relevant as LTA and
LPS are prominent ligands for TLR2 and TLR4, respectively. However, these results show
that the microbiome in the oral cavity provide an amenable setting for KSHV infection and
promote virus dissemination.
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Dai et al. also examined the effects of S. aureus on KSHV reactivation [67]. S. aureus
is a common, gram-negative intracellular pathogen that can colonize in the oral cavity
of patients with periodontitis [68]. In both human gingival and periodontal ligament
fibroblasts treated with the S. aureus medium, there were increased expression of KSHV
lytic genes including RTA, vGPCR (ORF74), ORF-K8.1, and ORF57 [67]. Treatment with
the S. aureus medium also induced release of infectious virion particles from both the
gingival fibroblasts and PDLF. However, no significant effects from the medium of other
gram-positive bacteria tested, such as Bacillus subtilis were observed, suggesting specific
effect of the bacterial species. HIV+/KSHV+ patients also had higher levels of salivary
LTA, a bacterial ligand for TLR2. However, the LTA ELISA kit used to analyze LTA levels
did not distinguish LTA levels among different bacterial species. It would therefore be
of interest to examine the effects of LTA from different gram-positive species on KSHV
reactivation [67].

Mechanistically, Dai et al. found that S. aureus medium reduced the expression
of KSHV microRNAs (miRNAs) compared with cells treated with control and fresh
medium [67]. KSHV miRNAs play an important role in maintaining viral latency [67].
Furthermore, S. aureus medium downregulated expression of cyclin D1 and other host pro-
teins responsible for processing cellular miRNAs, including Dicer, and Argonaut 1 and 2.
These results suggested that the S. aureus medium might induce KSHV reactivation through
the cyclin D1-Dicer-viral miRNAs axis in KSHV-infected oral cell lines [67]. The study also
analyzed the effect of S. aureus and KSHV coinfection since S. aureus is an intracellular
pathogen that can invade and survive in many cells including fibroblasts and endothe-
lial cells. The authors concluded that coinfection in the same single cells induced KSHV
reactivation. Moreover, a bacterial analysis of saliva samples in HIV+ patients showed
72% S. aureus compared to 37% in HIV-subjects [67]. This study is clinically relevant
since methicillin-resistant S. aureus (MRSA) infection is a common complication in HIV
patients [69]. Due to the ubiquitous nature of S. aureus, it may be worthwhile to investigate
the effects of S. aureus in additional sites other than the saliva in HIV/KSHV-coinfected
patients. Moreover, this study examined the conditioned medium of S. aureus which might
contain many bacterial products besides LTA. It may be important to study the effects of
purified LTA on KSHV-infected cells.

In a separate study, Dai et al. analyzed saliva samples for the presence of P. gingi-
valis and KSHV infection in HIV+ patients, and found that 11.3% were positive for both
P. gingivalis (a periodontitis-associated bacterium) and KSHV [54,70]. There were also
increased salivary LPS levels in KSHV-coinfected patients compared to patients without
KSHV infection [54]. Mechanistically, Dai et al. found the P. gingivalis medium and LPS
increased the expression of KSHV lytic genes in latently infected primary human oral
fibroblasts through TLR4 [54]. However, authors suggested that additional bacterial prod-
ucts in the medium besides LPS might induce viral lytic gene expression, as blocking TLR4
expression did not completely abrogate the effect of P. gingivalis [54]. Likewise, P. gingivalis
medium and LPS activated the MAPK pathways in KSHV-infected oral cells by inducing
phosphorylation of p38 and JNK. However, treatment with p38 or JNK inhibitors did not
completely hinder viral lytic reactivation, implying other pathways may be involved [54].
Interestingly, no significant effects were observed using medium or LPS from E. coli [54].
The differences in species-specific effects of LPS on KSHV reactivation is worth looking
into. It is possible that the differences may be due to different LPS structures between the
bacteria. The structure of the O-antigen as well as acylation patterns of the LPS structure
may cause differences in receptor activation [71].

5. Impact of Bacteria on KSHV-Induced Cell Proliferation and
Cellular Transformation

While lytic activation of KSHV is necessary for disseminating the infection, latency is
essential for establishing persistent KSHV infection [40]. Upon KSHV infection, most cells
remain in the latent state [72]. During latency, the virus expresses minimal proteins to
evade the host immune response [40]. Epigenetic modifications of the viral genome and
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its associated histones play a crucial role in silencing viral lytic genes during latency [73].
Despite silenced expression of viral lytic proteins during latency, latent proteins are ex-
pressed resulting in cell proliferation by activating cell signaling pathways such as the
STAT3 pathway, which is constitutively active in KSHV-infected cells [74,75]. Furthermore,
during latency, KSHV utilizes the complement pathway to increase cell survival [76]. As the
complement system has a central role in the defense against pathogens, it is particularly
relevant to assess the bacterial effects on KSHV latently-infected cells in addition to lytic
reactivation [9].

Gruffaz et al. analyzed the expression of TLRs in rat primary embryonic metanephric
mesenchymal precursor (MM) cells and KSHV-transformed MM (KMM) cells [77]. Multi-
ple TLRs were upregulated in KMM cells compared to MM cells [77]. Notably, TLR4 was
upregulated by over 40 times in KMM cells compared to MM cells [77]. Authors also
observed that TLR4 was upregulated in KSHV-infected spindle tumor cells in human KS
lesions and KSHV-infected TIME cells [77]. Mechanistically, Gruffaz et al. reported that
KSHV-upregulated expression of TLR4 was mediated by multiple viral miRNAs, and that
activation of the TLR4 pathway in KSHV-infected cells results in chronic induction of
cytokines IL6, IL1β, and IL18 [77]. The study also demonstrated that IL6 mediated consti-
tutive activation of the STAT3 pathway [77]. These results emphasized the essentiality of
TLR4 pathway in KSHV-induced cellular transformation and tumorigenesis, underscoring
the impact of bacterial infection in exacerbating KSHV-induced pathology.

Markazi et al. further investigated the effects of TLR4 by stimulating MM/KMM
and BJAB/KSHV-infected BJAB cells (EBV-negative B-cell lymphoma cells) with Pseu-
domonas aeruginosa [78]. P. aeruginosa is a gram-negative opportunistic pathogen that can
infect immunosuppressed individuals [79]. P. aeruginosa infection resulted in increased
proliferation in KSHV-infected BJAB and KMM cells but had no significant effects in
the KSHV uninfected control cells [78]. As KMM cells have previously been shown to
form colonies in soft agar [80], Markazi et al. demonstrated that P. aeruginosa stimula-
tion increased cell proliferation and efficiency of colony formation in soft agar of KMM
cells but had no significant effect on the untransformed MM cells [78]. Mechanistically,
the study showed that P. aeruginosa increased inflammatory cytokines and activation of p38,
ERK1/2, and JNK MAPK pathways in KMM cells through LPS and flagellin ligands [78].
These results imply that opportunistic infection is likely an important target in mitigating
KS pathology. Furthermore, this study shows that it is necessary to assess individual
bacterial PAMPs on the activation of cell signaling pathways in order to more effectively
elucidate molecules involved in inflammation and identify the potential therapeutic targets
for KSHV-induced cancers. In this study, LPS and flagellin ligands were assessed for their
effects on inducing inflammation in KSHV-infected cells. However, bacteria possess many
other PAMPs (lipoproteins, LTA, peptidoglycans, etc.) and secrete by-products (H2O2,
SCFAs, quorum signaling molecules, etc.) that may induce proliferation in KSHV-latently
infected cells, and therefore may be worth further investigation.

6. Conclusions and Future Perspectives

The collection of studies reviewed herein has demonstrated that bacteria can affect
KSHV-induced cancers by numerous mechanisms, including through bacterial PAMPS
and bacterial-secreted byproducts. Indeed, microbiome analyses reveal increased levels of
pathogenic bacteria and secreted PAMPs in immunosuppressed HIV/KSHV-coinfected
patients [51,54,67]. Bacteria can reactivate KSHV through both direct and indirect methods.
Bacterial species such as F. nucleatum and P. gingivalis produce SCFAs which suppress
HDAC activity, resulting in increased hyperacetylation and subsequent expression of lytic
gene expression [53,55,56]. Bacteria can also induce inflammation through PAMPs which
may reactivate KSHV indirectly through increased ROS production [63,64,67]. KSHV reac-
tivation leads to the spread and dissemination of the virus [40]. Moreover, recent studies
have demonstrated that inflammation induced by bacterial LPS and flagellin PAMPs may
enhance cell proliferation and KSHV-induced cellular transformation in the latently infected



Cancers 2021, 13, 4269 8 of 12

cells [77,78]. Analyzing the effects of bacteria on latently infected cells is especially relevant
since the majority of KSHV-infected cells within KS tumors are in the latent state [72].
By elucidating the various mechanisms of bacteria-induced effects on KSHV-infected cells,
researchers gain important insights into the cell signaling pathways involved in KSHV
replication and dissemination as well as increased survival and proliferation of tumor cells.

Since interactions among bacterial species and the host are complex, it is crucial to
more thoroughly investigate the microbial signature of HIV/KSHV-coinfected patients
to enhance our understanding of bacterial biomarkers and the underlying mechanisms
that contribute to KSHV pathology. Many studies have reported that immunosuppression
and inflammation drive KSHV pathology, both of which are applicable to bacterial infec-
tion [4]. Interestingly, there is a paucity of data assessing the effects of KSHV infection on
microbiome dysregulation. However, since KSHV encodes multiple proteins (e.g., K3, K5,
LANA, and RTA) that interfere with the host immune response, it can be speculated that
KSHV might alter the host microbiome by deregulating immune response [81].

While the majority of microbiome analyses in HIV/KSHV-coinfected patients used
saliva samples, it may be beneficial to assess the microbiome in additional sites, such as KS
lesions present on different organs (skin, lungs, intestines, lymph nodes, etc.) as microbial
species vary depending where they are located [31]. Moreover, while studies have reported
higher levels of bacterial PAMPs in immunosuppressed patients, including LPS, LTA,
and flagellin, the kits used to analyze these PAMPs do not distinguish between different
bacterial species [19,67]. There is evidence that the same types of PAMPs (i.e., LPS) from
different bacterial species can have varying effects on the immune responses [71]. Hence, it
might be important to delineate the distinct effects of specific bacterial species on KSHV-
induced cancers.

It has been demonstrated that the NF-κB, STAT3, and MAPK pathways play crucial
roles in KSHV reactivation and cell proliferation of KSHV latently infected cells [55,63,77,78].
It can be speculated that activation of MAPK pathways by bacteria can increase KSHV
infectivity and viral dissemination [57,59,60] while bacteria-induced inflammation can also
promote tumorigenesis through the STAT3 pathway [77]. However, as there are numerous
PRRs and downstream cascades associated with bacterial infection, it is highly likely that
additional pathways could be involved in promoting KS pathology. The effects of bacteria
on the immune response are highly intricate, and pathways including cytoplasmic bac-
terial immune sensors such as nod-like receptors or the cGAS-STING pathway have not
yet been explored in relation to bacterial effects on KSHV infection and KSHV-induced
cell proliferation [6,82]. Furthermore, although the studies presented in this review exam-
ine the activation of pro-survival pathways by bacterial PAMPs and metabolic products,
there are additional bacterial products that may activate similar pathways in KSHV-infected
cells. For example, several studies report that bacterial biofilms and quorum signaling
molecules can induce inflammatory immune responses; hence it may be worth investigat-
ing their effects on promoting KSHV-induced cancers [83–85]. Thorough understanding
of bacterial PAMPs and associated cell signaling pathways involved in KSHV pathogen-
esis is essential for discovering novel molecular targets for therapeutic intervention of
KSHV-induced cancers.

The utilization of KSHV-infected cells in cell culture experiments has been proven
invaluable for providing data on the effects of bacteria on KS pathology. The KSHV-
infected cells used in both the Gruffaz et al. and Markazi et al. studies were developed
by infecting primary rat embryonic metanephric mesenchymal precursor cells [77,78,80].
This resulted in complete cellular transformation characterized by immortalization, colony
formation in soft agar, and tumor induction in mice [80]. Although in vitro experiments
have revealed that bacteria can regulate cell proliferation and viral replication of KSHV-
infected cells, the effect of bacteria on promoting KSHV infection and the process of cellular
transformation have not yet been examined. Since KSHV-associated bacteria can activate
mitogenic pathways necessary for KSHV primary infection, it is plausible that bacteria
might promote cellular transformation as well [57,77,78].
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The collection of studies explored in this review focus predominantly on pathogenic
bacteria enhancing KSHV-induced cancer pathology. However, bacteria explored as anti-
cancer therapies have also been of interest for multiple cancer types [25,26]. Moreover,
abundant evidence demonstrates that certain bacterial species (e.g., probiotics) can mit-
igate cancer pathology [3]. Probiotics may enhance immunity against cancer through
multiple mechanisms including out competition of pathogenic bacteria, degradation of
carcinogens, and production of anti-inflammatory mediators [3]. Although Gruffaz et al.
reported increased levels of the Firmicutes phylum in KS patient, Firmicutes bacteria are
potent producers of SCFA such as butyrate, which can reactivate KSHV and other her-
pesviruses [51,56,86]. This feature of Firmicutes bacteria potentially complicates the use
of probiotic bacteria such as Lactobacillus as “anti-inflammatory” bacteria as they can be
potent producers of SCFAs [3]. Further inquiry into the effects of therapeutic bacteria on
KSHV-driven diseases may be critical in future studies.

Notwithstanding the potential of anti-tumor bacterial species, the studies explored in
this review strongly emphasize the negative effects of pathogenic, opportunistic infection
in patients with KSHV-induced cancers. As these cancers continue to be the most common
cancer types in immunosuppressed patients despite increased use of antiretroviral drugs,
it is evident that more efficient treatments are in demand [37]. Microbiome research in
relation to KSHV-induced cancers is undoubtedly a crucial step in pioneering enhanced
therapies for mitigating KSHV pathology.
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