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Magnetic Tunnel Junction Mimics 
Stochastic Cortical Spiking Neurons
Abhronil Sengupta, Priyadarshini Panda*, Parami Wijesinghe*, Yusung Kim & Kaushik Roy

Brain-inspired computing architectures attempt to mimic the computations performed in the neurons 
and the synapses in the human brain in order to achieve its efficiency in learning and cognitive tasks. In 
this work, we demonstrate the mapping of the probabilistic spiking nature of pyramidal neurons in the 
cortex to the stochastic switching behavior of a Magnetic Tunnel Junction in presence of thermal noise. 
We present results to illustrate the efficiency of neuromorphic systems based on such probabilistic 
neurons for pattern recognition tasks in presence of lateral inhibition and homeostasis. Such stochastic 
MTJ neurons can also potentially provide a direct mapping to the probabilistic computing elements in 
Belief Networks for performing regenerative tasks.

The human brain is the most powerful and yet energy efficient computing system known to humans. As an 
attempt to mimic the human brain, and thereby emulate its efficiency in cognitive and perception tasks, com-
puting models have been developed that try to mimic the functionalities involved in the neurons and synapses 
in the human brain. Although a complete understanding of the brain has still remained elusive, recent advances 
in neuroscience have brought forward important behavioral characteristics and phenomena underlying neu-
ronal and synaptic operations. Neuromorphic computing refers to the emulation of such underlying neuroscience 
mechanisms by an equivalent hardware implementation.

A neural network consists of neurons interconnected by synaptic junctions, which encode the importance or 
“weight” of the information transmitted by the neurons. Different abstract computing models have been devel-
oped to emulate the information processing that occurs in the biological neuron. The computing model offering 
the highest degree of bio-fidelity is that of the spiking neuron, which is characterized by a membrane potential 
that integrates incoming spikes and leaks in the absence of spikes. The neuron generates an output spike when the 
membrane potential crosses a specific threshold. Past research on hardware implementation of spiking neurons 
have mainly focused on deterministic neural models, like the Hodgkin-Huxley1 and Leaky-Integrate-Fire1 mod-
els. However, emulation of such neural characteristics require area-expensive CMOS implementations involving 
more than 20 transistors2,3 and a direct mapping of spiking neuronal characteristics to a single nanoelectronic 
device is still missing. Further, such deterministic neuron models have little correspondence to the probabilistic 
firing nature of biological neurons and are unable to account for the fact that neural computation in the brain is 
significantly prone to noise arising from the synapses, dendrites or the neuron itself4,5.

Recently, theoretical studies have been performed to demonstrate that Bayesian computation can be per-
formed in networks inspired from cortical microcircuits of pyramidal “stochastic” neurons5. Such neurons, 
observed in the cortex, spike stochastically and the probability of firing at a particular time is a non-linear func-
tion of the instantaneous magnitude of the resultant post-synaptic current input to the neuron5–8. In this paper, 
we demonstrate a nano-magnetic device that can mimic such cortical “stochastic” spiking neurons.

Magnetic Tunnel Junction as a spiking neuron
Let us first illustrate the device structure and principle of operation of a Magnetic Tunnel Junction (MTJ)9–11. The 
MTJ consists of two ferromagnetic layers separated by a tunneling oxide barrier (MgO). The magnetization direc-
tion of one of the layers (denoted by pinned layer, PL, in Fig. 1), mP, is magnetically hardened so that it serves as 
the reference layer. The magnetization of the free layer (FL), m, can be manipulated by an input charge current. 
The MTJ is characterized by two stable resistance states, namely the low-resistance parallel (P) configuration  
(m and mP are parallel) and the high-resistance anti-parallel (AP) configuration (m and mP are anti-parallel). 
Charge current from the pinned layer to the free layer causes the MTJ to switch to the AP state and vice versa by 
overcoming the energy barrier, EB (see Fig. 1). Considering the initial state of the MTJ to be the P state, such a 
behavior can be mapped to a neural firing when the MTJ switches to the AP state.
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The magnetization dynamics of the FL in a nanoscale monodomain magnet at T =  0 K can be described by 
solving Landau-Lifshitz-Gilbert equation with additional term to account for the spin momentum torque accord-
ing to Slonczewski12,
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 is the gyromagnetic ratio for electron, α is 
Gilbert’s damping ratio, Heff is the effective magnetic field including the shape anisotropy field for elliptic disks 
calculated using ref. 13, =
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and μB is Bohr magneton), and Is is the input spin current generated by charge current flow through the pinned 
layer. Equation 1 can be reformulated by simple algebraic manipulations as,
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Figure 1. A Magnetic Tunnel Junction (MTJ) consists of two magnetic layers sandwiching a spacer layer. 
While the magnetization direction of the reference layer is pinned, the magnetization of the free layer can be 
manipulated by an input charge current. The MTJ is characterized by two stable resistance states, namely the 
parallel (P) and anti-parallel (AP) configuration. The barrier height (EB) causes the P and AP states of the MTJ 
to be thermally stable.
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Let us consider an MTJ with in-plane magnetic anisotropy (IMA). The in-plane component of magnetization, 
m, of the nanomagnet can be considered equivalent to the membrane potential of a biological neuron. The first 
two terms in the RHS of the above equation constitute the “leak” term in the magnetization (membrane potential) 
dynamics while the last term relates to the integration of input pulses applied to the MTJ. The MTJ “fires” when 
the magnetization switches to the opposite stable state. Figure 2 illustrates the leak and integration components 
of the neuron dynamics for an MTJ elliptic disk due to the application of three successive pulses. The magnetiza-
tion starts increasing due to integration of the pulses. However, it is insufficient to “switch” the MTJ and the 
magnetization starts leaking once the applied pulse is removed. The firing or “spiking” of the neuron (which 
occurs when the membrane potential crosses the threshold) is equivalent to the switching of the MTJ, i.e. magnet-
ization reversal of the in-plane component from − 1 to + 1. Once the neuron “spikes”, it has to be reset back to the 
initial state. Hence, the operation of the neuron MTJ can be resolved into two cycles, namely a “write” phase fol-
lowed by a “read” phase. During the “write” phase, the MTJ neuron receives the resultant input synaptic current 
at a particular time step while the “read” phase is utilized to determine whether the neuron has switched during 
the “write” phase and is reset back to the P state in case the MTJ switched to the AP state. This reset phase is anal-
ogous to the “refractory” period observed in biological neurons1 where the neuron is not able to generate a “spike” 
for some time duration after generating a “spike” (corresponding to the time delay involved in resetting back the 
MTJ to the P state).

At non-zero temperature, the magnetization dynamics of the MTJ is characterized by thermal noise, which 
can be accounted for by an additional thermal field14, = α
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distribution with zero mean and unit standard deviation, KB is Boltzmann constant, T is the temperature and δt is 
the simulation time step. In presence of thermal noise, the switching behavior of the MTJ due to the flow of a 
charge current through the pinned layer, during the “write” cycle, is stochastic in nature and the probability of 
switching increases with increase in the magnitude of input current. Hence, such a device offers a direct mapping 
to the functionality of “stochastic” neurons observed in the cortex5–8, where the neuron “spikes” (switches its 
state) probabilistically depending on its resultant synaptic input. The variation of spiking probability with input 
synaptic current is usually described by a non-linear dependence5–8, similar to the MTJ switching characteristics 
shown in Fig. 3. The switching characteristics of the MTJ neuron in response to the input synaptic current can be 
varied by changing the energy barrier (or equivalently the free layer thickness) and the duration of the synaptic 
current as illustrated in Fig. 3.

Recent experiments have shown that such an MTJ structure with in-plane magnetic anisotropy (IMA) can 
also be switched by a charge current flowing through a heavy-metal (HM) underlayer due to the injection of spins 
(whose polarization is transverse to the direction of both spin and charge current) at the FL-HM interface 
(assuming spin-Hall effect to be the dominant underlying physical phenomenon: Fig. 4(a))15–19. We will refer to 
FL switching by such a HM underlayer for the rest of this text due to the possibilities of having decoupled “write” 
and “read” current paths which helps in interfacing such MTJ “stochastic” neurons with a synaptic resistive cross-
bar array (discussed later in the text). It is worth noting here that the mechanism of MTJ switching by spin-Hall 
effect and mapping to a neuron functionality is exactly similar as discussed before. The only difference is that the 
spin current is generated by the HM underlayer instead of the pinned layer of the MTJ. The generated spin cur-
rent, θ=I Is SH

W
t Q

MTJ

HM
 (IQ is the charge current flowing through the HM, θSH is spin-Hall angle16, dimensions WMTJ 

and tHM are shown in Fig. 4(a)). Hence, the device also offers energy-efficient “write” since spin polarization is not 
limited by polarization of the pinned layer and > 100% spin injection efficiency can be achieved16. The device 
simulation parameters were obtained from experimental measurements16 and have been shown in Table 1. 
Figure 4(b,c) illustrates the principle of operation of the “Neuron” MTJ with access transistors to decouple the 
“write” and “read” current paths.

Figure 2. (a) The membrane potential of a biological neuron integrates input spikes and leaks when there is no 
input. It spikes when the membrane potential crosses the threshold. (b) MTJ neuron dynamics due to the 
application of three input pulses. The in-plane magnetization starts integrating due to the pulses and then starts 
leaking once the pulse is removed. The MTJ structure was an elliptic disk of volume × × × .π nm100 40 1 5

4
3 

with saturation magnetization of Ms =  1000 KA/m and damping factor, α =  0.0122.
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Spiking Neural Network based on MTJ neurons
The behavior of a network of such stochastic MTJ neurons were studied in a standard digit recognition problem 
based on the MNIST dataset20 as shown in Fig. 5(a). Such network connections have been observed in pyramidal 
neurons in the cortex5,8. The neurons receive input Poisson spike trains whose frequency is proportional to the 
pixel intensity. 100 images of digits “0” and “1” were used for the recognition purpose and the network was sim-
ulated for a number of time steps, TS, for each image. It is worth noting here that each time step refers to the 
duration of the “write” phase of the neuron MTJ discussed before. Whenever a neuron spikes, a common inhibi-
tory signal prohibits the neurons from spiking for a period, τinh. Hence, during learning, lateral inhibition pre-
vents the non-spiking neurons from spiking for a particular duration, thereby causing the spiking neurons to start 

Figure 3. Switching probability of the MTJ in response to an input synaptic current at T = 300 K (assuming 
~50% polarization of spin current generated by the MTJ pinned layer). Such a switching behavior is a direct 
mapping to the stochastic spiking nature of cortical neurons. (a) The switching probability characteristics 
shifts to the right with increase in the barrier height. The data have been plotted for EB =  (10, 20, 30) KBT 
corresponding to FL thickness values, tFL =  (0.8, 1.2, 1.5) nm, for pulse width, tPW =  1 ns (duration of the “write” 
cycle). (b) The probability characteristics undergo more dispersion with decrease in the pulse width. The data 
have been plotted for tPW =  (0.2, 0.5, 1) ns corresponding to EB =  20 KBT.

Figure 4. (a) Input charge current flowing in the + y direction through a heavy-metal (HM) with high-spin 
orbit coupling causes accumulation of + x directed spins at the interface of the HM and a ferromagnet  
free layer (FL) lying at the top. The FL with in-plane uniaxial anisotropy (IMA) can be switched by the 
current flowing through the HM. Schematic of the three-terminal device proposed as a stochastic neuron 
with decoupled “read” and “write” current paths. The input synaptic current flows between terminals T2 and 
T3 while the read current flows through T1 and T3. (b) The stochastic neuron (“Neuron” MTJ) is interfaced 
with access transistors to decouple the “write” and “read” current paths. During the “write” cycle (VWRITE 
activated), the incoming synaptic current, ISYN, in presence of thermal noise, probabilistically switches the 
neuron depending on its magnitude. During the subsequent “read” cycle (VREAD activated), a small current IREAD 
flows through the two MTJs in series. The “Reference” MTJ’s magnetization is fixed to the AP state causing the 
inverter to generate a spike (VSPIKE) in case the neuron switches from the P to the AP state. In case the neuron 
spiked, the neuron is reset to the P state using a reset current IRESET. The peripheral circuit for resetting the 
neuron involves a similar access transistor connecting the device to a “reset” voltage, whose gate is driven by the 
output of a latch that stores the value of the spike signal, VSPIKE, at the end of the“read” cycle. (c) Two complete 
periods are shown to explain the operation in detail.
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responding selectively to specific input patterns. However, in order to prevent single neurons from dominating 
the spiking pattern, homeostasis21,22 is performed by scaling the input current to the MTJ neuron by a variable 
which increases as learning progresses. Interested readers are referred to ref. 21 for a detailed description of pat-
tern recognition performed in such spiking networks enabled by lateral inhibition and homeostasis. Such a net-
work arrangement can be mapped to a crossbar network interfaced with such MTJ neurons as shown in Fig. 5(b) 
where programmable resistive synapses encode the synaptic weight at each cross-point. Phase-change devices23, 
Ag-Si memristors24 or spintronic synapses25 have been proposed in literature to implement such synaptic func-
tionality in a crossbar architecture. The synapses were modeled with 4-bit discretization and a maximum to 
minimum resistance ratio of 20. An input spike triggers a voltage across the corresponding row for a duration of 
τ0 time steps (analogous to post-synaptic potential observed in biology). The neuron, therefore, receives an input 
current which is proportional to the weighted sum of the post-synaptic voltages (since HM resistance is much 
lower than the synaptic resistances at each cross-point) and spikes in a stochastic manner. A behavioral model of 
the neuron was developed by running stochastic LLG simulations to capture its probabilistic spiking behavior. 
Non-Equilibrium Green’s function based transport simulation framework26 was used to model the MTJ resist-
ance. Unsupervised learning was performed using Spike-Timing Dependent Plasticity (STDP)21,22. The STDP 
weight  update  equat ions  were,  η∆ =

τ+
−∆

+( )w w exp t  ( for  Δ  t  >   0)  and η∆ = −
τ−
∆

−( )w w exp t   
(for Δ t <  0), where Δ t is the spike timing difference. The neurons learn representative models of the digits after a 
few epochs (Fig. 5(c)). After learning, each neuron gets trained to respond to a specific digit (Fig. 5(d)). Such 
learning functionalities can be exploited to develop pattern recognition systems where the input image class is 
detected from the spiking patterns of the neurons in the network. The network simulation parameters have been 
outlined in Table 2.

Figure 6 illustrates the manner in which the entire switching probability characteristics of the MTJ (from the 
deterministic to the stochastic regime) is exploited to realize learning functionality. The figure represents the 

Parameters Value

Free layer area × ×π nm100 404
2

Free layer thickness 0.8, 1.2, 1.5 nm

Heavy-metal thickness, tHM 2 nm

Saturation Magnetization, MS 1000 KA/m16

Spin-Hall Angle, θSH 0.316

Gilbert Damping Factor, α 0.012216

Energy Barrier, EB 10, 20, 30 KBT

MgO Thickness, tMgO 2 nm

MTJ Resistance in P (AP) state, RP (RAP) 1.21 (2.5) MΩ

Resistivity of HM, ρHM 200 μΩ.cm16

Pulse width, tPW 0.2, 0.5, 1 ns

Temperature, T 300 K

Supply Voltage, VDD 1 V

Table 1.  Device Simulation Parameters.

Figure 5. (a) Stochastic spiking neural network used for digit recognition. Input spike trains are received by all 
the stochastic neurons (connections shown for only one neuron). The inhibitory neuron prevents the neurons 
from spiking in case an excitatory neuron spikes. (b) Corresponding implementation in a crossbar array 
fashion. Programmable resistive synapses are present at each cross-point. Input voltages are applied at each row 
and the neurons receive input synaptic current which is the weighted summation of the input voltages.  
(c) A network of 9 excitatory neurons were used for the recognition purpose. The synapse weights were 
randomly initialized. 784 input neurons (28 ×  28 images) are rate encoded by ensuring that the spike frequency 
is directly proportional to the pixel intensity. After learning the neurons respond selectively to each input image. 
(d) For testing the behavior of the network after learning has been accomplished, STDP and homeostasis were 
turned off. The neuron stochastically spikes the maximum for the class which it has learnt while the others 
remain mostly silent. A common lateral inhibitory signal during testing results in sparse spiking events.
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maximum switching probability of the MTJ in the network (representing the neuron with the highest spiking 
activity which attempts to learn an applied input pattern) averaged over a range of 5 learning epochs from the 
beginning of the learning process. Each epoch corresponds to the entire duration of spike-train applied as input 
for a particular image. As explained previously, initially the switching probability of the MTJ is sufficiently high 
in order to ensure that different neurons start learning different input patterns. However, as learning progresses, 
due to homeostasis, the spiking probability of the neurons reduce resulting in sparser neural and learning events. 
Readers are referred to ref. 5 for an extensive theoretical discussion on probabilistic Bayesian computation that 
can be performed using such stochastic spiking neurons in networks inspired from cortical connections. The effi-
ciency of the learning process can be observed from Fig. 5(d) where a slight variation in the orientation of digits 
belonging to the same class can be detected in the spiking activities of the neurons.

Let us now provide a brief discussion on the energy efficiency of the system. Each “write” and “reset” cycle for 
a particular time step in the simulation was taken to be 0.5 ns long and the barrier height of the neuron MTJ was 
chosen to be 20 KBT. The energy consumption of the neuron during the “write” cycle is a function of the input 
synaptic current. Since the entire switching probability characteristics is exploited during the learning process, 
the average energy consumption was determined for the input current (~71 μA) necessary to switch the MTJ 
with a probability of 0.5. The associated I2Rt “write” energy consumption was evaluated to be ~1 fJ per neuron per 
time-step. Circuit simulations of the “read” circuit, shown in Fig. 4(b), yielded an average energy consumption 
of ~1.6 fJ per neuron per time-step (including the resistive divider circuit and the inverter). Additionally the 
neuron can be reset by passing a high enough reset current through the HM in the opposite direction to ensure 
deterministic MTJ switching. Assuming a reset current of 150 μA, the I2Rt “reset” energy consumption is eval-
uated to be ~4.5 fJ. Note that “reset” energy consumption is only involved in the neuron in the case of a spiking 
event. Additionally, the energy consumption involved in clocking the “write” and “read” cycles per time-step 
would result in insignificant contribution to the total energy consumption per neuron since it can be achieved by 
a global control circuit for the entire network of neurons. In contrast, state-of-the-art designs of CMOS neurons 
result in energy consumption in the range of pJ per spike (267 pJ reported in ref. 27 and 41.3 pJ reported in ref. 28). 
The energy and area benefits offered by networks of such stochastically spiking MTJ neurons in comparison to 
conventional deterministic spiking neuron designs in CMOS technology is the main motivation behind this 
proposal.

Conclusions
To conclude, researchers have explored MTJs as synapses29–32 and for inter-neuron communication30 previously. 
Further, previous research on utilizing spintronic devices as neurons33,34 have been limited to emulating only 
thresholding operations of non-spiking neural computing models. On the other hand, spiking neurons offer a 
more biologically realistic perspective and are recently becoming popular computing models for implementing 
low-power, high accuracy recognition platforms in complex cognitive tasks35.

Parameters Value

Probability of input spikes per time-step 0–0.064

Number of time-steps per image, TS 340

Post-synaptic voltage duration, τ0 501

Inhibitory signal duration, τinh 501

STDP time constants, τ+, τ− 4.5, 51

STDP learning rates, η+, η− 0.03, 0.01

Duration of each time-step 0.5 ns

Maximum synapse resistance in crossbar array 3.7 MΩ

HM resistance 400 Ω

Table 2.  Network Simulation Parameters. 1The units are in terms of time-step (i.e. 0.5 ns).

Figure 6. Variation of the MTJ switching probability during the learning process. While the switching 
probability is high during the initial learning process, it gradually converges to low values due to homeostasis.
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Stochasticity exhibited by phase change memory36 and spintronic devices32 have been exploited previously in 
neuromorphic applications to implement learning functionality in synapses. However, the utilization of device 
stochasticity in nanoelectronic neural computing has been a relatively unexplored area. To the best of our knowl-
edge, this is the first demonstration of mapping the stochastic leaky-integrate switching behavior of MTJs in 
presence of thermal noise to a probabilistic spiking neuron. An important point worth considering is whether 
other post-CMOS technologies36 exhibiting stochastic switching characteristics could be potentially operated as 
neurons as well. A few words regarding the architecture of the pattern recognition system (Fig. 5) are in order 
to outline the prospective opportunities offered by spintronic neurons. Neurons need to be interfaced with a 
crossbar array of resistive synapses for any pattern recognition system. Memristive devices are present at each 
cross-point to encode the synaptic weight. Input voltages are applied across each row and the current flowing 
through the memristors is weighted by its conductance and gets summed up along the column and passes as 
input to the neuron. However, this is true only when the input resistance of the neuron is sufficiently low since 
otherwise, the voltage drop across each memristor will be dependent on the voltage drop across the neuron 
which in turn, depends on the total amount of input synaptic current resulting in a coupled system. Low terminal 
voltage of MTJ neurons during “write” operation offers unique possibilities in this regard. Input synaptic current 
flows through the HM (with low resistance) and not through the oxide layer of the MTJ. Thus decoupled “read” 
and “write” current paths of the proposed neuron assist the neuron operation. In contrast, memristive devices 
are usually characterized by high threshold voltages (> 1 V) and high resistance values (KΩ-MΩ23,24,36). Hence, 
although intrinsic noise might be present in memristive devices, it will be potentially difficult to interface mem-
ristive synaptic crossbar arrays with memristive neurons.

Although the impact of thermal noise on MTJ switching behavior has limited its scalability in memory applica-
tions, such noise effects can be potentially exploited to build probabilistic neural computing platforms that can per-
form Bayesian computation similar to the brain. Past research on hardware implementation of spiking neurons has 
mainly focused on the emulation of deterministic spiking neural characteristics and require area and power expen-
sive CMOS implementations involving more than 20 transistors2,3. CMOS based stochastic neural models might 
be possible37 but involve significant silicon area and power consumption since they do not offer a direct mapping 
to the underlying neuroscience mechanisms. However, the ultra-low current induced noisy switching character-
istics of MTJs can efficiently mimic such stochastic spiking neural models and can potentially pave the way for 
neuromorphic systems that utilize noisy stochastic neurons as a computing element, such as Restricted Boltzmann 
Machines and Deep Belief Networks. We would like to conclude the paper by noting that the device stochasticity 
observed in such MTJ structures can be utilized to realize probabilistic learning functionality in single-bit syn-
apses32 which could be potentially interfaced with stochastic MTJ neurons resulting in an All-Spin neuromorphic 
architecture that leverages the underlying device stochasticity to perform neuromimetic computing.
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