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The Epstein–Barr virus (EBV) is the first herpesvirus identified to be associated with 
human cancers known to infect the majority of the world population. EBV-associated 
malignancies are associated with a latent form of infection, and several of the EBV-
encoded latent proteins are known to mediate cellular transformation. These include six 
nuclear antigens and three latent membrane proteins (LMPs). In lymphoid and epithelial 
tumors, viral latent gene expressions have distinct pattern. In both primary and metastatic 
tumors, the constant expression of latent membrane protein 2A (LMP2A) at the RNA 
level suggests that this protein is the key player in the EBV-associated tumorigenesis. 
While LMP2A contributing to the malignant transformation possibly by cooperating with 
the aberrant host genome. This can be done in part by dysregulating signaling pathways 
at multiple points, notably in the cell cycle and apoptotic pathways. Recent studies also 
have confirmed that LMP1 and LMP2 contribute to carcinoma progression and that this 
may reflect the combined effects of these proteins on activation of multiple signaling 
pathways. This review article aims to investigate the aforementioned EBV-encoded 
proteins that reveal established roles in tumor formation, with a greater emphasis on the 
oncogenic LMPs (LMP1 and LMP2A) and their roles in dysregulating signaling pathways. 
It also aims to provide a quick look on the six members of the EBV nuclear antigens and 
their roles in dysregulating apoptosis.

Keywords: Burkitt’s lymphoma, nasopharyngeal carcinoma, B-cells lymphoma, Hodgkin’s lymphoma, non-
Hodgkin’s lymphoma, oncoproteins, oncogenes

iNTRODUCTiON

It is currently known that viral infections are responsible for 15–20% of all human cancers (1). 
These oncogenic viruses have many complicated strategies that disrupt biological pathways in the 
infected host cells. The genetic material of these viruses undergoes several processes: replicating 
in harmony with the cell division of the infected host, escaping from immune surveillance, and 
inhibiting apoptosis (2). In addition, it increases the activities of telomerase enzyme resulting in 
immortality of the infected host cells (3, 4). Moreover, virus infected cells have an altered cell-to-
cell adhesion properties facilitating further proliferation, transmission, and spreading of the virus 
particles to other areas of the body (5).

One of the best-studied example of these viruses are the herpesviruses which are prevalent in 
the animal kingdom. They are large double-stranded DNA viruses with a genome size of 100–200 
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TABle 1 | Epstein–Barr virus (EBV) gene expression and viral latency.

Stage of 
eBv latency

eBv genes 
transcribed

Types of cells infected and tumors

Type 0 EBERs Memory B cells

Type I EBERs, EBNA1, BARTs Burkitt’s lymphoma

Type II EBERs, EBNA1, BARTs, 
LMP1, LMP2

Nasopharyngeal carcinoma, gastric 
cancer, Hodgkin’s lymphoma, NK/T 
lymphoma

Type III EBERs, EBNA1, EBNA-
LP, EBNA2, EBNA3A–C, 
BARTs, LMP1, LMP2

Lymphoblastoid cell (infectious 
mononucleosis), post-transplant 
lymphoproliferative disease, patients 
with immunosuppression

BART, BamHI A rightward transcript; EBER, EBV-encoded small RNA; EBNA, EBV 
nuclear antigen; EBNA-LP, EBV nuclear antigen leader protein; LMP, latent membrane 
protein.
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kilobases (6). In humans, eight herpesviruses have been identi-
fied: herpes simplex virus 1 and 2 (HSV-1 and HSV-2) or human 
herpesvirus (HHV-1) and (HHV-2); varicella-zoster virus 
(VZV or HHV-3); Epstein–Barr virus (EBV or HHV-4); human 
cytomegalovirus (HCMV or HHV-5); human herpesviruses 6 
and 7 (HHV-6 and HHV-7); and Kaposi’s sarcoma-associated 
herpesvirus (KSHV or HHV-8) (6).

Epstein–Barr virus is a HHV that causes many human 
B cell lymphomas, including Burkitt lymphoma (BL), Hodgkin 
lymphoma (HL), diffuse large B cell lymphoma, and lymphopro-
liferative disease in immunocompromised hosts (7, 8). Tumors 
infected with EBV are largely composed of latently infected 
cells. In this stage, the virus is still in the nuclear episome form 
and is replicated by the DNA polymerase of the host cell (9). 
EBV-positive human lymphomas have many distinctive forms 
of viral latency, which differ in the number of genes expressed, 
of which only type III EBV latency converts primary B  cells 
into long-term lymphoblastoid cell lines (LCLs) in  vitro (9). 
However, this form of latency is the most immunogenic form 
and usually restricted to tumors of immunosuppressed patients. 
Latency III represents the most extensive form of latent infection 
and a variety of non-coding RNAs, as well as 10 EBV-encoded 
proteins are expressed in this stage. These are latent membrane 
proteins (LMP1, LMP2A, and LMP2B), EBV nuclear antigens 
(EBNA-1, EBNA-2, EBNAs-3A, -3B, -3C, and EBNA-LP), and 
the viral BCL-2 homolog, BHRF1. In addition, two non-coding 
RNAs (EBER1 and EBER2) and two families of microRNAs 
encoded within the BamHI A rightward transcripts (BARTs) 
and the BHRF1 locus (BHRF1 miRNAs), respectively (Table 1) 
(10–13). These products of EBV genes are expressed at different 
time points after EBV infection of B cells and leading finally to 
growth transformation Figure 1 (14).

Both post-transplant lymphoproliferative disorder cells 
and LCLs produce all six Epstein–Barr virus nuclear antigens 
(EBNA) and three LMPs (15). These proteins are necessary 
for transforming B  cells, as mutated viruses that lack EBNA1, 
EBNA2, EBNA-LP, or LMP1 show a huge reduction in their abil-
ity to transform B cells (16–20). However, whether these proteins 
are sufficient for B cell transformation remains unclear. Beside 
these proteins, EBV genome encodes many non-coding RNAs, 

including the Epstein–Barr encoded RNAs (EBERs), as well as 25 
miRNAs and one small nucleolar RNA (21–25). miRNAs impair 
the translation and reduce the stability of mRNAs—that contain 
complementary sequences—by direct binding to them.

Recent reverse genetic analysis helped in identification that 
only five EBV oncoproteins and viral miRNAs are crucial for 
conversion of primary B-cells into continuously proliferat-
ing LCLs (26, 27). Recently it has been shown a cooperation 
functions between LMP1 and LMP2 toward contribution to 
progression of carcinomas reflected by their combined effects 
on activation of multiple signaling pathways (Figure 2) (28, 29).

In this review, we thought to shed lights on the EBV–LMPs 
(LMP1 and LMP2A) and Epstein–Barr Nuclear Antigens (EBNA-
1, EBNA-2, EBNAs-3A, -3B, -3C, and EBNA-LP) due to their 
established roles in EBV persistence and latency. Moreover, we 
focused on their roles in different signal transduction pathways 
activation, which are critical for lymphoblastoid B-cell transfor-
mation, growth and survival, and therefore a potential therapeutic 
targets.

eBv-lATeNT MeMBRANe PROTeiNS

lMP1
The Epstein–Barr virus latent membrane protein 1 is expressed 
in many types of cancers, include gastric cancer, Burkitt’s 
lymphoma, and HL (28). It is also expressed in AIDS and post-
transplant lymphomas (30). This protein has profound effects 
on cellular signaling pathways and growth. It modulates several 
processes, include migration, differentiation, and tumorigen-
esis (31, 32). Studies employs genetic deletion of recombinant  
viruses have shown that LMP1 is required as one of the LMPs 
for EBV-induced B-cell immortalization in  vitro (29, 33). 
Significantly, LMP1 has an oncogenic function in non-lymphoid 
cells and it induces growth transformation in certain immor-
talized rodent fibroblast cells (34). In vitro studies have shown 
that heterologous expression of LMP1 lead to the loss of anchor-
age dependence, increased invasive capacity and inhibition  
of terminal differentiation in cancer cell lines (31).

Latent membrane protein 1 is an integral membrane protein 
with a molecular weight of 66 kDa. It consists of a short amino 
acid cytoplasmic N-terminus (amino acids 1–23), six transmem-
brane spanning regions (amino acids 24–186), and a large 200 
amino acid cytoplasmic C-terminal tail (amino acid 187–386). 
The LMP1 transmembrane domains mediate homotypic aggre-
gation, lipid raft association, and ligand-independent signaling 
from two cytoplasmic tail domains known as transformation 
effect site 1 (TES1) and TES2, or C-terminal activation region 1 
(CTAR1) and CTAR2 (19, 35) C-terminal region contains three 
distinct functional domains: C-terminal activating regions 1, 2, 
and 3 (CTAR1, CTAR2, and CTAR3).

C-terminal activating region 1 and 2 (CTAR1 and CTAR2) 
are two activating regions located within the C-terminus of 
LMP1. CTAR1 (amino acids 186–231) is located proximal to the 
membrane and it is essential in primary B cells transformation 
by EBV. CTAR2 is located at the end of C-terminus (amino 
acids 351–386) and it is important for the long-term growth 
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FigURe 1 | Epstein–Barr virus (EBV)-associated malignancies patterns of gene expression. Latency III EBV gene expression: found in in vitro transformed  
B cells into lymphoblastoid cell lines (LCLs); Latency I EBV gene expression: found in the majority (85%) of EBV-positive Burkitt lymphomas (BLs); Wp-restricted 
Latency: found in a minority (15%) of EBV-positive BLs (Wp-BL); and Latency II EBV gene expression: found in EBV-positive Hodgkin lymphoma (HL) as well as  
the EBV-associated epithelial malignancies, nasopharyngeal carcinoma (NPC), and gastric carcinoma (GC). Latent proteins [Epstein–Barr virus nuclear antigen 
(EBNA)1, EBNA2, EBNA3A, EBNA3B, EBNA3C, EBNA-LP, BHRF1, latent membrane protein (LMP)1 and LMP2A/B] are shown in blue. Non-coding RNAs 
[Epstein–Barr encoded RNAs (EBERs), miR-BHRF1s, and miR-BamHI A rightward transcripts (BARTs)] are shown in red, and selected latent promoters  
(Cp, Wp, and Qp) are shown in green. Connecting lines denote splicing patterns, while blocks indicate exons. In Wp-BL, EBNA-LP is truncated due to a  
genomic deletion and is therefore denoted as t-EBNA-LP (14).

FigURe 2 | Latent membrane proteins (LMPs) (1 and 2A) downstream signal transduction pathways (28).
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FigURe 3 | Molecular interactions and signaling pathways engaged by LMP1 in the carcinogenesis of nasopharyngeal carcinomas (NPCs). LMP1 C-terminal 
activation region 1 (CTAR1) regulates NIK/IKKs activation and then phosphorylates IκBα, thus activating NF-κB through TNFR-associated factor (TRAF)1, TRAF2, 
and TRAF3; while CTAR2 activates NF-κB through tumor necrosis factor receptor-associated death domain (TRADD) and TRAF2. Active NF-κB induces the cell 
immortalization via the upregulation of the telomerase activity through the translocation of hTERT protein bound to NF-κB, blocks the cell apoptosis via the 
upregulation of the survivin activity, and promotes the cell proliferation via regulating survivin, CyclinD1, CyclinE and EGFR signaling, etc. Also, LMP1 can increase 
the serine phosphorylation level of Annexin A2 by activating the PKC signaling pathway, which can promote the cell proliferation. LMP1 CTAR2 triggers AP-1 
signaling cascade by activating ERK, P38, and the c-Jun N-terminal kinases (JNKs), members of the stress-activated group of MAP kinases, via the binding with 
TRADD/TRAF2 complex. Active AP-1 upregulates the expression of MMP9 and mediates invasion and metastasis of NPC cells. LMP1 CTAR3 between CTAR1  
and CTAR2 triggers the Janus kinase (JAK3)/signal transducers and activators of transcription (STAT) signaling pathway, which can enhance VEGF transcription  
and expression, thereby promoting invasion and metastasis of NPC cells (42).
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of EBV-positive primary B cells (36, 37). LMP1 activates many 
signaling pathways, include nuclear factor kB (NF-kB), c-Jun 
N-terminal kinase (JNK)–AP-1, p38/mitogen-activated protein 
kinase (MAPK), and Janus kinase (JAK)–signal transducers and 
activators of transcription (STAT) (Figure 3) (38–42).

The first important indication of the role of LMP1 in abnor-
mal cell signaling was the activation of the NF-kB transcription 
factor (Figure 4) (43). NF-kB can be activated independently by 
both CTAR1 and CTAR2 (38). LMP1 mutant deletion studies 
confirmed that CTAR2 interacts with the tumor necrosis factor 
receptor-associated death domain (TRADD) protein and this 
interaction accounts for most (70–80%) of the LMP1-mediated 
NF-kB activation (44). TRADD normally mediates NF-kB 
activation and signaling from aggregated tumor necrosis factor 
receptor I (TNFR-I). LMP1 interaction with TRADD is medi-
ated by the last eight amino acids of LMP1. However, these 
amino acids do not define the entire activation site (44). CTAR1 
define the remaining (20–30%) of NF-kB activation by LMP1, 
specifically the P204xQ206xT208 motif which interacts with a 
number of the TNFR-associated factors (TRAFs) (45–47). The 
cytoplasmic tails of other TNFR members, including CD30 and 
CD40 are also contains the PxQxT TRAF binding motif.

Latent membrane protein 1 also activates JNK cascade 
(known as stress-activated protein kinase) (48). This pathway 
ends with the activation of the AP-1. LMP1 transient transfec-
tion studies suggest that CTAR2 is the only domain that induces 
the expression of the transcription factor AP-1 (49). Stimulation 
of CD40, TNFR-I, and TNFR-II with an appropriate ligand 

results in JNK activation which is mediated via a TRAF2-
dependent pathway. Although both NF-kB and JNK pathways 
looks similar, LMP1-mediated activation of NF-kB and JNK 
pathways can be dissociated. Eliopoulos et al. showed that usage 
of a constitutively active mutated IkappaBα to inhibit the NF-kB 
pathway did not impair JNK signaling, whereas expression of 
a negative stress-enhanced kinase (c-Jun N-terminal kinase 
kinase) blocked the JNK signaling mediated by LMP1 but not 
NF-kB signaling (50).

Janus kinase 3 activation is mediated by a proline rich sequence  
within the 33 bp repeat of C-terminus of LMP1 and a surround-
ing sequence between CTAR1 and CTAR2 (40). This proline 
rich sequence has been tentatively referred to as CTAR3. The 
expression of the genes encoding LMP1 and JAK3 in 293 cells 
leads to enhanced JAK3 tyrosine phosphorylation and leads 
finally to the activation of STAT transcription (STAT1 and 
STAT3). LMP1-mediated activation of JAK/STAT pathway has 
a rapid kinetics giving rise to the fact that this pathway may 
precedes both NF-kB and JNK activation and might predisposes 
the cell to these later signals (51).

Latent membrane protein 1 also activates P38/MAPK path-
way and the corresponding transcription factor ATF2. Studies 
employed C-terminal mutants of LMP1 have shown that CTAR1 
and CTAR2 regions are important in activating p38 pathway 
(40). Specific inhibitors of NF-kB and P38/MAPK pathways 
were used to determine the relation between these two pathways. 
When an inhibitor of NF-kB activation was used, the activation 
of p38 was not impaired. Also, the use of an inhibitor of p38 
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FigURe 4 | LMP1-mediated activation of nuclear factor kB pathway (43).
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did not affect the binding activity of NF-kB. These results sug-
gested that LMP1 activates p38/MAPK and NF-kB pathways in 
an independent way. However, using non-functional mutant of 
TRAF2 to inactivate TRAF2 blocked both pathways suggesting 
that the two pathways diverge downstream of TRAF2 (40). 
LMP1 aggregation within the plasma membrane is a prerequisite 
for signaling irrespective of the LMP1-mediated signaling path-
ways. This aggregation is a transmembrane domains intrinsic 
property (44). LMP1 differs from TNFR family in that LMP1 
serves as a constitutively activated receptor; therefore, requires 
no extracellular ligand binding. Chimeric molecules-based 
experiments using extracellular and transmembrane domains of 
CD2, CD4, or the nerve growth factor receptor with the cyto-
plasmic C-terminus of LMP1, proved that LMP1 signaling only 
occurred when chimera aggregation occurred via either ligand 
binding or antibody induced aggregation (44, 52). On the other 
hand, when the CD40 cytoplasmic tail linked to the N-terminal 
and transmembrane tails of LMP1, it became constitutively 
activated (53, 54).

Latent membrane protein 1 has the ability to transform 
MDCK cells by promoting an epithelial to mesenchymal 
transition (EMT) (54). In this cell line, the transcriptional 
repressor Twist is responsible for this phenomenon (55). LMP1 

has been also shown to induce EMT in other epithelial cell 
lines, including breast (56), lung (57), and nasopharyngeal 
(54, 58–60). Horikawa et al. showed that overexpression of the 
transcriptional repressor snail is linked to LMP1 expression in 
NPC biopsies (55). This study showed also that EMT is induced 
by expression of LMP1 in a Snail-dependent mechanism. In a 
recent study conducted by Zuo et al. in NPC, they found that 
cadherin 6 is activated by LMP1 to mediate EMT and metastasis 
by switching from E-cadherin to K-cadherin (cadherin 6) (61). 
Morris et al. showed that LMP1 is able to induce EMT via its 
CTAR1 domain in MDCK cells (62). They used pharmacologi-
cal inhibitors to inhibit ERK–MAPK, SFK, phosphotidylinositol 
3-kinase (PI3-K), and TGFβ. They found that ERK–MAPK, SFK 
and PI3-K, but not TGFβ have critical roles in LMP1-mediated 
EMT. Ligation of β1 integrins with its cognate ligand, fibronec-
tin was mandatory for ERK–MAPK and FAK phosphorylation 
by LMP1 (62).

In a recent study conducted by Liu et  al. (63), they have 
showed that the γ-herpesvirus EBV blocks necroptosis in 
EBV-infected human nasopharyngeal epithelial cells and naso-
pharyngeal carcinoma (NPC) cells. In this study, LMP1 inhibit 
necroptosis independently from RIP homotypic interaction  
motif (RHIM) signaling competition as it lacks RHIM domain. 
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FigURe 5 | Epstein–Barr virus (EBV)–LMP1 regulates T/S/Z-induced 
necroptosis. EBV–LMP1 (−) cells stimulated with T/S/Z undergo necroptosis 
through RIPK1–RIPK3 signaling. However, EBV–LMP1 (+) cells can survive 
under this stimulation. On the one hand, LMP1 interacts directly with both 
RIPK1 and RIPK3 through its C-terminal activation region. On the one hand, 
LMP1 promotes K63-linked polyubiquitination of RIPK1 and suppresses the 
protein expression while inhibiting K63-linked polyubiquitination of RIPK3. 
These effects contribute to the activation of NF-κB and disruption of 
necrosome formation, collectively switching cell fate from death to  
survival (63).
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CTAR of LMP1 interacts directly with both RIPK1&3. Impor-
tantly, LMP1 has the ability to modulate the post-translational 
modification of the two receptor-interacting proteins. In addi-
tion, LMP1 induces a switch from cell death by necroptosis to 
survival through promotion of K63-polyubiquitinated RIPK1, 
suppression of RIPK1 protein expression, and inhibition of 
K63-polyubiquitinated RIPK3. The authors have introduced an 
evidence on the ability of LMP1 to interrupt the initiation process 
of necroptosis before necrosome formation and hence suppres-
sion of necroptosis by EBV (Figure 5) (63).

latent Membrane Protein 2A (lMP2A)
Latent membrane protein 2A role in malignancy remains 
an enigma. In NPC, LMP2A expressed at both the RNA and 
the protein levels (64). Also, LMP2-specific antibodies were 
detected in sera of NPC patients (65). Moreover, LMP2A 
expression is consistently detected in Hodgkin’s lymphoma 
and NPC tissues (66, 67). Based on these findings, LMP2A may 
plays specific roles in malignancy (68). Despite earlier genetic 
studies stated that both LMP2A and LMP2B are not essential 
for the transformation of B cells in vitro (69, 70). Another study 
showed that LMP2A transforming feature presents only in the 
immortalized epithelial cell line, but not in normal epidermal 
cells (71). It also presented that LMP2A expression-associated 
transformation properties manifests only in certain cellular 
contexts and generally are subtler (72). LMP2A—according 
to another study—is also important for growth transforma-
tion of germinal center B cells. These B cells have deleterious 
somatic hypermutations in their immunoglobulin genes and 
therefore, they do not express genuine B cell receptor (BCR). 
The study suggested that LMP2A has strong antiapoptotic and/
or transforming features. In certain B cells, they function as an 
indispensable BCR mimics as in Hodgkin’s lymphoma (73). In 
the following sections, various signaling pathways and involve-
ment in viral latency and malignant transformation induced by 
LMP2 is covered (Figure 6).

BCR Blockade and Ubiquitin-Mediated Pathway
Latent membrane protein 2A expression interferes with BCR 
signaling and function. According to previous studies, LMP2A 
low expression did not inhibit Ig rearrangement or BCR expres-
sion. It also did not inhibit the differentiation of normal B cells 
into follicular and marginal zone B  cells. On the contrary, the 
high expression of LMP2A inhibited BCR expression and 
caused B-1 differentiation in bone marrow and other peripheral 
lymphoid organs (74–76). LMP2A negatively regulates signaling 
of BCR in two ways: excluding BCR from lipid rafts and target-
ing the Src family members of the Lyn and Syk protein tyrosine 
kinases marking them for degradation by ubiquitin pathway (77, 
78). The BCR signal transduction blockade is achieved by either 
sequestering PTK away from BCR or PTK degradation by ubiq-
uitin (79–81). In B-cell signaling, Itchy (Nedd4 ubiquitin ligase) 
downregulates LMP2A activity. In epithelial cells, β-catenin is 
activated and stabilized by LMP2A through PI3-K and Akt acti-
vation, which suppresses glycogen synthase kinase-3β (GSK-3β) 
(82). GSK-3β is in turn tightly regulated by Wnt signaling (83). 

Further studies are needed to determine the precise mechanisms 
by which LMP2A alters these signaling pathways during viral 
latency and malignant transformation.

MAPK Pathway
Mitogen-activated protein kinase family consists of three path-
ways, namely ERK/MAPK, JNK/MAPK, and p38/MAPK.

The MAPK signaling pathways are involved in different fun-
damental events such as proliferation, differentiation, apoptosis, 
and migration under normal conditions (84, 85). Abnormal 
regulation of these pathways leads to carcinogenesis. LMP2A 
activates MAPK signaling in various EBV-infected cell lines 
according to several evidences in vitro (86–88). For example, one 
study on lymphoblastoid B-cell lines and BL cell lines suggested 
that LMP2A activates ERK/MAPK (88). Another study employed 
LMP2A transgenic mice stated that the continuous activation of 
ERK/MAPK and PI3-K/Akt pathways leads to proliferation and 
survival (89). c-Jun is a crucial downstream effector of the JNK/
MAPK pathway. It is induced as an early factor under mitogen 
stimulation and it is playing a crucial rule in cell growth (90, 91). 
Moreover, it is a potent inhibitor of differentiation. In organic raft 
cultures, LMP2A is able to transform and inhibit keratinocytes 
differentiation (92–94). These observations link LMP2A to JNK/
MAPK. According to microarray studies, alterations of gene 
transcription of several MAPK-related molecules are induced by 
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FigURe 6 | A schematic diagram showing the signaling pathways engaged by the LMP2A gene. The N terminal domain of LMP2A prevents B cell receptor 
(BCR) signaling by recruiting Nedd4-like ubiquitin-protein ligases and B-cell signaling molecules, leading to the degradation of LMP2A and its associated 
molecules in a ubiquitin-dependent manner. LMP2A also provides a survival signal to BCR-negative B-cells through the activation of the Ras/phosphotidylinositol 
3-kinase (PI3-K)/Akt pathway. Activating this pathway induces the transcription of anti-apototic genes, the expression of which is controlled by NF-κ B. Notch 
signaling regulates various cellular processes including cell survival and proliferation. In LMP2A-expressing splenic B cells, Notch activation is reported. Notch 
signaling is closely related to the pathogenesis of Hodgkin lymphoma (HL). LMP2A perturbs the turnover of β-catenin and other proteins that are involved in Wnt 
signaling. β-catenin is stabilized and activated by LMP2A through PI3-K/Akt activation, which inhibits glycogen synthase kinase-3β (GSK-3β). The association of 
LMP2A with mitogen-activated protein kinase (MAPK) was implicated in the development of B-cell malignancy while the activation of MAPK was not observed in 
LMP2A-expressing epithelial cells. The multiple cysteine motifs within the C-terminal of LMP2A are required for LMP2A palmitoylation. Studies of the proposed 
palmitoylation are required for LMP2A-mediated survival signal and function as they regulate the protein interaction or localization required for LMP2A-mediated 
cell survival.
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LMP2A, including upregulation of Ras, its homolog Ras GTPase-
activating protein-binding protein 1, MAPK2K1, MAPK2K2, 
and the suppression of Ras suppressor protein (88). Activated 
Ras cooperates with c-Jun for effective transformation (95, 96). 
The exact mechanism and molecular interaction of LMP2A in 
MAPK signaling remains unclear. In addition, our picture of the 
involvement of LMP2A in MAPK signaling derived from in vitro 
studies on different cell lines but there are no sufficient in vivo 
studies to support the connection between LMP2A and MAPK 
signaling.

The PI3-K/AKT Pathway
Phosphotidylinositol 3-kinase/Akt signaling pathway has an 
important role in transformation, antiapoptotic properties, adhe-
sion, and invasion (97–101). Numerous studies have suggested 
that LMP2A activates PI3-K/Akt signaling which leads to cell 
growth enhancements and antiapoptotic effects in B-cells, lym-
phoma, gastric carcinoma (GC), and epithelial cells (73, 102, 103). 

When LY294002 is used as an inhibitor of PI3-K, it resulted in the 
inhibition of colony formation induced by LMP2A in soft agar. 
This phenomenon indicates that activation of PI3-K is critical 
for anchorage-independent growth of epithelial cells (104, 105). 
Treatment of B-cells derived from LMP2A transgenic mice with 
specific inhibitors of Ras, PI3-K, and Akt made these cells very 
sensitive to apoptosis. These results suggest that LMP2A activates 
Ras followed by the PI3-K/Akt pathways, ending in B-cell survival 
(104). In cell lines of human Burkett’s lymphoma and GC, usage 
of PI-3K inhibitors blocked the LMP2A-dependent apoptotic 
effects. This demonstrates that the LMP2A anti apoptotic effects 
depend on the PI3-k signaling pathway (105).

TGF-β1 induces apoptosis by activating caspases (106–109). 
TGF-β1-induced caspase activity and apoptosis is inhibited  
by LMP2A through activation of PI3-K/Akt pathway via Akt 
phosphorylation at its serine residue (105, 110). This is sup-
ported by increased level of activated Ras and Bcl-XL expres-
sion resulted in suppression of B-cell apoptosis (73). Integrin 
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is the other pathway regulated by LMP2A-associated PI3-K/
Akt. Integrin-dependent PI3-K activation leads to invasive and 
adhesive phenotypes, and therefore the protection of apoptosis 
(101, 111). PI3-K/Akt pathway activation plays an important 
role in EBV-associated malignancies. It maintains EBV persis-
tence and latency but not cell transformation (102, 103). The 
aggressive tumorigenicity of epithelial cells is maintained due 
to the activation of Ras/PI3-K/Akt by LMP2A, alongside other 
genetic changes (103). The regulation of this pathway and its 
differential expression in different types of EBV-induced tumors 
have also yet to be discovered.

The NF-κB and STAT Pathway
Signal transducers and activators of transcription and NK-κB 
pathways constitutive activation occur in malignancies, com-
monly due to genetic or autocrine/paracrine alteration (74, 112). 
NF-kB activation in epithelial cells induces production of IL-6 
and activates STAT (74, 113) which results in cell growth and 
survival. Moreover, it mediates inflammatory responses through 
induction of cytokines and chemokines production. This results 
in the stimulation of anti-tumor activity via the recruitment and 
activation of immune cells (113). Altering the balance between 
the tumorigenesis and the anti-tumor immune response in 
NF-kB pathway results in tumor development (74).

In human carcinoma cell lines infected by EBV, LMP2A 
downregulates the STAT and NF-kB pathways in vitro. This fact 
was tested by using wild-type (wt) recombinant EBV (rEBV) 
and mutant rEBV, in which the LMP2A gene is deleted (rEBV-
2A) (114). The results showed that the transient expression of 
LMP2A in LMP2A-deficient carcinoma cells suppressed LMP1 
expression, IL-6 secretion, STAT, and NF-kB activities. On the 
contrary, the downregulation of LMP2A resulted in the induction 
of LMP1 (114).

Nuclear factor kB pathway regulates the production of IL-6 
(113). In rEBV HONE-1 cells, transfection of a recombinant 
adenovirus expressing mutant IkBα and the luciferase reporter 
showed that IL-6 promoter activity was noticeably decreased 
(114). These results suggested that LMP2A has an important 
role in modulating STAT pathways and in modulating LMP1 
expression indirectly through NF-kB activity in epithelial cells 
(114). Both STAT and NF-kB contributes to various cancer 
phenotypes in EBV-associated malignancies. For example, 
NF-kB suppression induces epidermal hyperplasia which ends 
in developing the undifferentiated tumor; NPC (115). Akt also 
positively regulates NF-kB which leads to an increased level 
of Bcl-xL in B-cells, ensuring an antiapoptotic effect and cell 
survival (116).

eBv NUCleAR ANTigeNS

epstein–Barr Nuclear Antigen 1
Epstein–Barr nuclear antigen 1 is essential for viral DNA rep-
lication and episome maintenance during cellular replication at 
latent stages in infected cells. Besides, it is the only protein that 
expressed in all EBV-associated tumors (105, 117–120). It has no 
enzymatic activity and it is not clear how it initiates and maintains 

EBV genome (117–119). It has been reported that EBNA1 is asso-
ciated with the survival of Burkitt’s lymphoma cells and response 
to DNA damage in NPC. A possible mechanism is modulating 
of ROS content through regulation of nicotinamide adenine 
dinucleotide phosphate oxidase enzymes (121–123). Additional 
studies have reported that EBNA1 contribute to gastric cancer 
development through loss of promyelocytic leukemia nuclear 
bodies (123, 124).

DNA replication and episome maintenance functions of 
EBNA1 are due to its ability to bind to certain elements of DNA 
within the EBV origin of plasmid replication (OriP). EBNA1 
requires the family of repeats (FR), which composed of 20 
tandems 30  bp repeats to make the metaphase chromosome 
tethering and transcriptional enhancer activities (117, 118,  
124, 125). Away ~1  kb from the FR is located the dyad of 
symmetry, which composed of four EBNA1 binding sites and 
enables EBNA1 to initiate DNA replication (117, 118, 124, 125). 
EBNA1 is able to interact with both elements simultaneously 
through a DNA looping mechanism (126–128). The binding of 
EBNA1 to OriP is critical for replication and maintenance of 
episome. EBNA-1 reportedly binds and regulates the promoters 
of many other cellular genes but the functional consequences 
and implications of these interactions for cell survival are not 
yet fully elucidated (128–132).

eBNA-2 and eBNA-lP
Following EBV infection of B cells, EBNA-2 and EBNA-LP are 
the first proteins to be expressed. EBNA2 expression is essential 
for B cell transformation (133). EBNA2 is a functional mimic of 
cellular Notch (133–135). Also, it has RBP-Jκ-mediated pleio-
tropic effects on chromatin organization and gene regulation  
which makes EBNA2 responsible for starting cell cycle (136–139).  
EBNA2 can directly bind and inhibit Nur77 (140, 141).  
Nur77 is an orphan nuclear receptor that binds and modulates 
the functions of several pro-survival BCL-2 family members 
(142). Moreover, expression of EBNA2 was shown to decrease 
the expression of BIK, the BCL-2 family death inducer (143).  
It was also shown that EBNA2 expression upregulates BFL-1/A1 
(pro-survival BCL-2 family protein) at mRNA level via binding 
to RBP-Jκ/CBF1 (144). Recently, EBNA2 also contributes to 
MYC activation through long-range interaction (145). MYC 
has an opposing function as it can both increase proliferation 
and sensitize cells to apoptosis (146). Another nuclear antigen 
essential in B cell transformation is EBNA-LP (18, 147–149). It 
acts as a transcriptional coactivator of EBNA2 (16) and has few 
survival functions attributed to it in the context of LCLs. It has 
been reported that EBNA-LP can bind to Fte-1/S3a, which con-
tributes to cell survival by interacting with PARP (150). However, 
another study found that in a yeast 2-hybrid system, EBNA-LP 
could interact with p14ARF and colocalized with p14ARF and p53 
transcripts in LCLs (151). Additionally, in COS-7 (the primate 
kidney cell line) EBNA-LP has also been reported to interact 
with BCL-2 in the presence of HAX-1 in pull down experiments 
using glutathione S-transferase fusion proteins (151). Therefore, 
EBNA-LP seems to have survival functions in transformation 
which merit further investigations.
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eBNA-3A, -3B, and -3C
The EBNA-3s (3A, 3B, and 3C) are a family of three large proteins, 
which function as regulators of virus and host cell transcription. 
They likely arose by gene duplication. These proteins, like EBNA-2 
don’t bind DNA directly, but interact with transcription factors, 
such as RBP-Jk (for which all four EBNAs compete) to transactivate 
or repress gene expression (152). They show structural similarity; 
despite they share less than 30% amino acid composition (153, 
154). In addition, they overlap in some of the loci and processes 
they regulate. Some studies have shown that only EBNA-3C is 
essential for B cell transformation, although when B cells infected 
with EBNA-3A-lacking viruses, they displayed growth impair-
ment and quickly undergo apoptosis (155–157). On the contrary, 
EBNA-3B is essential for the transformation of B  cells. In one 
study, LCLs generated with an EBNA-3B knockout (KO) virus 
showed high resistance to apoptosis compared to those produced 
with wt EBV (158, 159). Analysis of cells infected with EBNA-3 
KO or estrogen-inducible EBNA-3 proteins conditional viruses 
showed that EBNA-3A and -3C cooperate to downregulate-
through epigenetic silencing- the tumor suppressors p16INK4a 
and p14ARF (155, 156, 160–163) as well as downregulate the 
apoptosis inducing, BH3-only protein BIM. Moreover, EBNA-3C 
can interact with p53 as well as binding and stabilizing its regula-
tors, ING4, ING5, MDM2, and Gemin3 (164–167). The EBNA3 
proteins have the ability to regulate many genes up to 50 kb away 
from transcriptional start sites (TSS) (164, 168) despite EBNA-3A 
and -3C downregulate BIM and p14ARF at TSS through epige-
netic silencing (156, 160–163, 169, 170). The EBNA-3 proteins 

have been estimated to collectively bind to more than 7,000 sites 
on the cellular genome. Therefore, extensive studies are needed to 
unravel many other cell survival genes regulated by the EBNA3s.

CONClUSiON

Further studies both in vivo and in vitro are required to elucidate 
the molecular crosstalk between EBV transformed tumor cells 
and the tumor microenvironment. These studies are essential 
to define the precise mechanisms in EBV-induced oncogenesis, 
and to enable further insights into EBV-associated malignan-
cies. Moreover, more studies are needed to unravel the roles of 
these oncoproteins in dysregulating other forms of cell death 
like necroptosis which could serves as a potential alternative 
strategy of programmed cell death to apoptosis, hence a possible 
therapeutic target.
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