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Abstract

To investigate the effect of sheep dung on soil carbon (C) sequestration, a 152 days incubation experiment was conducted
with soils from two different Inner Mongolian grasslands, i.e. a Leymus chinensis dominated grassland representing the
climax community (2.1% organic matter content) and a heavily degraded Artemisia frigida dominated community (1.3%
organic matter content). Dung was collected from sheep either fed on L. chinensis (C3 plant with d13C = 226.8%; dung
d13C = 226.2%) or Cleistogenes squarrosa (C4 plant with d13C = 214.6%; dung d13C = 215.7%). Fresh C3 and C4 sheep dung
was mixed with the two grassland soils and incubated under controlled conditions for analysis of 13C-CO2 emissions. Soil
samples were taken at days 17, 43, 86, 127 and 152 after sheep dung addition to detect the d13C signal in soil and dung
components. Analysis revealed that 16.9% and 16.6% of the sheep dung C had decomposed, of which 3.5% and 2.8% was
sequestrated in the soils of L. chinensis and A. frigida grasslands, respectively, while the remaining decomposed sheep dung
was emitted as CO2. The cumulative amounts of C respired from dung treated soils during 152 days were 7–8 times higher
than in the un-amended controls. In both grassland soils, ca. 60% of the evolved CO2 originated from the decomposing
sheep dung and 40% from the native soil C. Priming effects of soil C decomposition were observed in both soils, i.e. 1.4 g
and 1.6 g additional soil C kg21 dry soil had been emitted as CO2 for the L. chinensis and A. frigida soils, respectively. Hence,
the net C losses from L. chinensis and A. frigida soils were 0.6 g and 0.9 g C kg21 soil, which was 2.6% and 7.0% of the total C
in L. chinensis and A. frigida grasslands soils, respectively. Our results suggest that grazing of degraded Inner Mongolian
pastures may cause a net soil C loss due to the positive priming effect, thereby accelerating soil deterioration.
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Introduction

The availability of soil organic carbon (C) for microbial

decomposition is crucial for many processes within the C cycle,

and assessment of soil dynamics is of great concern in terms of

climate change and soil fertility [1]. Animal dung returned to soil

can constitute important source of C, and maintain long-term soil

fertility in grassland ecosystems [2–4]. However, dung application

can also potentially increase soil respiration [5–8]. Studies have

shown that the addition of easily degradable C to soil may

stimulate microbial activity to such an extent that the turnover of

soil organic matter (SOM) is accelerated temporarily, an effect that

is frequently called the priming effect (PE) [3,9–12]. When a

positive PE occurs, the addition of material such as animal slurry

to soils may not result in a net C sequestration, but rather a net C

loss [9]. The intensity, direction, and extent of PE depends on

several parameters, including the amount and quality of added C,

soil microbial activity and community structure [13–15], soil pH

[16] and aggregate size [17].

Distinct signatures in 13C content between native soil C and

‘new’ introduced labile C compounds added in the form of animal

slurry or manure enables quantification of the interaction in C

turnover between different C pools [3,18–20]. By this means,

researchers have shown that incorporated slurry-C was lost twice

as fast as the native soil C in two soils with different C contents.

Slurry incorporation induced a PE, which was most pronounced in

the soil with the highest C content [18]. Following the application

of slurries with different particle sizes to a grassland soil, significant

increases of soil CO2 effluxes (by 2–8 times) were observed in all

slurry fractions and the highest was found in the smaller slurry

particles [3]. In a study with additions of different substrate quality

combinations and C-13 characteristics, Kuzyakov & Bol (2004)

have identified three distinct C sources for soil CO2 emissions and

observed that addition of labile C (sugar) lead to changes in SOM
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[21]. The 13C natural abundance trace technique has also been

applied in the two-phase model of CO2 emission after dairy or pig

slurry application, the first phase (0–48 h) dominated by the

incorporation of labile slurry C from the liquid phase, while

beyond 48 h slurry-derived C was mainly from less mobile

particulate C [12,18,22–23]. However, whereas previous studies

mainly focused on the decomposition of cattle dung or slurry

[3,5,6,24] or pig slurry [25], less information is available

concerning decomposition of sheep faeces C [26].

Inner Mongolia’s grasslands in Northern China are represen-

tative of large areas of the Eurasian steppe belt [27]. Sheep is the

primary livestock in Inner Mongolia’s grassland and large amount

of sheep dung is applied as fertilizer except for cooking energy

[28]. More than 70% of the natural Inner Mongolian grassland

area is extensively degenerated as a consequence of increases in

livestock numbers and the change of farming systems during the

last three decades [28]. Knowledge regarding the importance of

sheep dung excretion for soil C cycling in this ecosystem remains

sparse. Addition of artificial sheep excreta to Inner Mongolian

steppe in autumn did not impact soil microbial biomass C, but

microbial activity significantly increased [29–30]. None of these

studies, however, have achieved detailed information about the

fates of sheep dung derived C in the Inner Mongolian grassland

soils, and to what extent heavy grazing by sheep, and thus

deposition of dung C, will affect the overall soil C balance through

increased sequestration or losses due to priming.

We hypothesized that sheep dung additions to Inner Mongolian

grassland soils i) cause a positive priming effect on soil C turnover,

and ii) lead to differentiated net C loss in soils with contrasting

SOM content. The effects of interaction between soil type and

sheep dung addition on soil respiration and soil C sequestration

were investigated using the 13C natural abundance technique

through a five-month incubation experiment.

The objectives of the study were (1) to assess the input of sheep

dung-derived C to the soil C-pool; (2) to examine the extent of

SOM priming due to application of dung C; and (3) to quantify the

net C pool changes in soils subject to intensive sheep dung

application.

Materials and Methods

Ethics Statement
There was no activities involved the endangered or protected

species in this study, and Sheep (vertebrates) were involved in this

study, so the permission to use sheep in this study was granted

from local authority (Dr. Yongfei Bai, Director of Inner Mongolia

Grassland Research Station) before we took the soil sample in the

field.

Field site details
Soil incubated in the study was taken from the Inner Mongolia

Grassland Ecosystem Research Station, Chinese Ecosystem

Research Network (IMGERS, 116u429E, 43u389N). This region

is part of the temperate semiarid steppe belt of Eurasia. The mean

annual temperature is slightly above zero (0.8uC) with a January

mean of 221uC (absolute minimum 242uC) and a July mean of

19uC (absolute maximum 39uC). Mean annual precipitation is

330.3 mm but fluctuates greatly among years, and most rainfall

events occur in July and August (both means for years 1982–2007;

IMGERS weather data). The annual frost-free period generally

lasts 90–110 days [31].

Field sampling, dung collection and preparation
The soil was collected from two grassland sites. One site was

characterized by Leymus chinensis vegetation (C3 plant), which is a

dominant species of the climax grassland community in the Inner

Mongolian steppe [32]. Under moderate grazing, L. chinensis

vegetation is replaced by Cleistogenes squarrosa (C4 plant), which in

turn is replaced finally by Artemisia frigida (C3 plant) vegetation

under heavy grazing [33–34]. About 87% of plants in this

geographical region possess a C3 photosynthetic pathway [33],

and consequently the 13C isotopic signature in soil organic carbon

reflects a C3 dominated community (Table 1). Further details on

the site conditions are given by Chen & Wang [32].

Soils were collected from 0–10 cm depth in the two grasslands.

Five 10610 m2 plots situated 2 m apart were sampled randomly

using a 6 cm diameter auger to achieve ca. 10 kg of soil from each

plot. Soil was composited into one bulk sample, vegetation and

coarse roots were removed by hand, and the soil was sieved to pass

a 2 mm mesh and stored at ,5uC under field moist conditions

until it was used.

Sheep dung was collected from twenty Mongolian sheep (two-

year old), housed in metabolic cages with the approval of the

Chinese Experimental Animal Committee of the Chinese Acad-

emy of Sciences and the owner of sheep. Dung collection did not

influence sheep feeding but limited their activities freely in

successive ten days by the metabolic cages. The sheep were

divided randomly into two groups (ten for each group), and one

group was fed on L. chinensis, while another group was fed on C.

squarrosa. After 5 days trial to allow for equilibration of the 13C

content in the digestive tract, dung was collected twice per day in

plastic bags which were attached to the tails of the sheep. Dung

samples were collected during the following five consecutive days.

The dung was kept frozen (220uC) until used. The difference of

the C3 and C4 sheep dung are given in Table 2. There was no

significant different of C, N content and C/N ratios for C3 and C4

sheep dung.

Experimental setup
The incubation experiment was conducted over a 5-month

period. Before the start of incubation, soil was mixed thoroughly

and the soil moisture was adjusted with demineralized water to

40% of water-holding capacity (WHC). The sheep dung was

thawed and homogenized by hand before being mixed into the

soil. The incubation experiment included six treatments, i.e. the

full combination of the two soils and three applications of sheep

dung (C3, C4 and no addition). Dung was added as 60 g fresh

weight portions mixed thoroughly with 1 kg of soil (air-dried

equivalent). The soil-dung mixtures were transferred to 2 l Kilner

jars in triplicate that were gently tapped on the lab bench to

compress the soil. Two sets of jars were prepared, one for gas

sampling and one for soil sampling. To minimize water losses from

the soils, jars were covered with perforated Parafilm that was only

removed 30 min before gas sampling events. The jars were

incubated at 2061uC in a controlled temperature cabinet

throughout the 152 days of the experiment. Water content was

held constant by regular watering to weight.

Headspace sampling for analysis of CO2 flux and d13 of
CO2

Samples for CO2 efflux and d13C isotopic analysis were

collected 16 times on days 1, 2, 4, 6, 9, 14, 19, 24, 41, 55, 71,

83, 100, 121, 137 and 152 after sheep dung amendment. The

Kilner jars were sealed gas tight by lids equipped with a rubber

septum to allow headspace gas to be sampled by syringe and

Priming of Soil following Sheep Dung Addition
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needle. At each gas sampling event, the headspace was sealed for

30 min and four 10-ml headspace samples were collected every

10 min. The sampling involved a three-step procedure. First, the

headspace gas was mixed with a 20-ml sampling syringe several

times. Second, a 10-ml gas sample was extracted from the

headspace and 5 ml used to pressurize an evacuated 2-ml crimp-

sealed vial for the 13C isotopic analysis of CO2. The residual 5 ml

gas sample was analyzed immediately for CO2 concentration by

gas chromatography using a HP 6890 GC equipped with a

Chromosorb 101 column (30uC), He carrier gas and Thermal

Conductivity Detection. Gas fluxes were calculated from the

change in CO2 concentration inside the Kilner jars over the

30 min enclosure period. The relationship between CO2 concen-

trations vs. time was significantly linear (R2 = 0.93). Flux rates were

thus calculated from the slope of the linear regression lines and

expressed as mg C kg21 soil (DM) day21.

The 13C of CO2 stored in the 2-ml pressurized vials was

determined within 1 week. We used a PreCon (Thermo Scientific,

Bremen, Germany) trace gas preparation-concentration unit

coupled in continuous flow mode to a Delta PLUS isotope ratio

mass spectrometer (IRMS, Thermo Scientific). As laboratory

standard we used commercial CO2 which had been calibrated

against certified 13CO2 standards (Messer Griesheim, Krefeld,

Germany). Samples of the certified standards were also included in

each batch of analysis. Results relating to 13C characteristics are

reported as % vs. VPDB [35].

Soil sampling and analyses
Soil samples were collected from the jars at days 17, 43, 86, 127

and 152 after dung addition using a 2 cm diameter polyethylene

pipe (15 cm long). The subsamples were mixed and the visible

small sheep dung was sought out. The larger sheep dung particles

were carefully removed by tweezers and the smaller fractions of

sheep residues in the soil was absorbed by electrostatic effect,

which produced by a polyethylene bottle rubbing against a piece

of fabric [36].

Soil samples were weighed in Ag-foil capsules, arranged on a

microtiter plate, wetted with water to approximately field capacity,

and placed in a desiccator containing a beaker with concentrated

(12M) HCl. The carbonates are released as CO2 by the acid

treatment in 6 to 8 h. The soil samples are then dried at 60uC
prior to isotope determination [37]. The soil was then finely

ground by a ball mill, and a ca. 30 mg subsample was weighed

into a tin combustion cup for determination of total carbon and
13C:12C ratio following flash combustion on an elemental analyzer

(EA 1110, CE Instruments, Milan, Italy) coupled in continuous

flow mode to the IRMS.

Calculations
In this study, we assumed that the C3 and C4 sheep dung

materials go through the same transformation and transport

processes, so we can differentiate the carbon source both in soil

and CO2 efflux based on the different isotope value.

We calculated the percentage of dung-derived C in relation to

the total soil C according to equation (1):

D~
d4S{d3S

d4d{d3d
|100 ð1Þ

where d4S and d3S are the d13C isotope values of soils amended

with C4 or C3 dung at the time of sampling, and d4d and d3d are

the d 13C isotope values of the original C4 and C3 dung prior to

amendment [18,38]. The difference in d13C between the C3 and

C4 dung in our incubation was 10.5% (Table 2).

Table 1. Physical and chemical characteristics of the two grassland soils used in the incubation study.

Soil L. chinensis soil A. frigida soil

Dominant vegetation Leymus chinensis, Stipa grandis Artemisia frigida, Cleistogenes squarrosa

Soil type Dark chestnut Light chestnut

Soil texture Silty loam Sandy

Soil organic matter (SOM) (%) 2.160.06 1.360.05

Soil total N content (g kg21) 1.960.1 1.360.1

Soil microbial biomass C (mg/kg21) 390613 251617

pH (water: soil = 2.5:1) 6.360.02 6.660.04

d13 value (% vs VPDB) 222.260.1 222.460.8

Numbers are mean 6 SE of n = 5 replicate bulk soil samples.
doi:10.1371/journal.pone.0078578.t001

Table 2. Characteristics of sheep dung used in the incubation study. Dung was collected from sheep either fed on L. chinensis (C3

dung) or C. squarrosa (C4 dung).

Dung type Dry matter Organic C Total N C/N Dry matter Total C d13 value

(% w:w) (% of DM) (Per 60 g fresh material) a (% vs VPDB)

C3 dung 86.160.4 43.960.3b 1.460.08 31.360.1 51.760.4 22.760.15 226.260.04

C4 dung 85.160.6 44.460.2 1.2960.03 34.460.1 51.160.2 22.760.18 215.760.06

aThe content based on 60g fresh dung portions as applied in the experiment.
bNumbers are mean 6 SE of n = 3 replicates.
doi:10.1371/journal.pone.0078578.t002
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The fractions of dung-derived C incorporated in the soil at the

sampling time in relation to the total dung C applied was

calculated with equation (2):

P~
D|SDW|SC|100

DC
ð2Þ

where SDW is soil dry weight, SC is the content of soil organic

carbon and DC is the amount of dung C added into soil at the

beginning of the incubation.

The difference in d13C values between the respired CO2 from

the C4 and C3 dung treatments was used to quantify the

proportions of dung versus soil-derived CO2-C respired from the

soil. The dung-derived CO2 was calculated with equation (3):

R~
d4AS{d3AS

d4d{d3d
|100|CO2C4 ð3Þ

where d4AS-d3AS is the difference in d13C values of CO2 emitted

from C4 dung and C3 dung treatments, and CO2C4 is the flux of

CO2 in the C4 dung treatment. The approach assumes that any

fractionation in 13C vs. 12C during respiration of sheep dung C

and soil C is similar for the C3 and C4 dung.

Statistical analyses
Repeated Measures Define Factors of General Linear Model

(SPSS 13.0, SPSS Inc. Chicago, Illinois, USA) was used to assess

the impacts of treatment, sampling day, soil type and their

interactions on the d13C values of soils and CO2 emission, the

CO2 respired efflux, dung-derived carbon, soil-derived carbon and

the primed carbon effect. The sampling day was treated as within-

subject variables, and soil type and the treatment were used as a

between-subject variable. For each observation of CO2 emission,

cumulative CO2 emission, d13C of CO2 emission, dung-derived

carbon and soil-derived carbon, the significance of differences

between treatments was assessed by two-way ANOVA and Least

Significance Difference (LSD).

Results

Soil carbon derived from sheep dung
Independent of soil type, soil d13C did not differ (p.0.05)

between the control soil and the C3 dung amended soil throughout

the 152 days period (Table 3). In the C4 dung soils, d13C

significantly exceeded the C3 and control treatments from day 127

onwards in the L. chinensis soil, and from day 43 onwards in the A.

frigida soil. The temporal incorporation of C4 sheep dung increased

soil d13C values by 0.76% from day 17 to day 152 in the L.

chinensis soil, and by 0.46% in the A. frigida soil (Table 3).

An increasing amount of dung-derived C appeared in the soil C

fractions for both soil types, except for the L. chinensis soil at day 86.

After 152 days of incubation, about 3.8% and 4.9% of total

organic soil C was derived from the applied dung in the L. chinensis

and A. frigida soils, respectively. This was equivalent to 3.5% and

2.8% of the total applied sheep dung C (Table 3).

Daily and cumulative CO2 fluxes
The addition of sheep dung to the soil significantly increased

CO2 flux throughout the experiment in both soils when compared

with the control (P,0.05; Fig. 1 A, B). There was no difference in

CO2 emission between the C3 dung and C4 dung treatments for

the two soils, except on days 24 and days 100 in the L. chinensis soil,

where C3 dung amended soil emitted most CO2. The two control

soils used in the study showed almost uniform CO2 emission

patterns, maintaining a constant rate (average 3.2 mg C kg21 soil

day21) except for the initial increase in CO2 flux on days 1–3

which probably resulted from the soil wetting event. A two-phase

pattern of soil CO2 emission was found in the incubation study for

both soils. The first phase was observed during 0–55 days after

sheep dung amendment, during which CO2 fluxes decreased to

26% and 43% of the initial CO2 emission in L. chinensis and A.

frigida soil, respectively. Then a second peak of CO2 occurred after

55 days, decreasing again after ca. 100 days (L. chinensis soil) and

71 days (A. frigida soil) (Fig. 1 A, B). There was no interactive effect

between soil type and dung treatment during the incubation.

The cumulative CO2 losses from sheep dung amended soils

were ca. 7–8 times higher than in the control soils after 152 days

(P,0.01, Fig. 1 C, D). However, there was no difference in total

CO2 emission between the C3 and C4 sheep dung treatments

(P.0.05, Fig. 1 C, D).

Isotopic characteristics of emitted CO2

Slightly higher d13C values of CO2 were found in all the soils

included in the two control soils at the beginning of the

experiment. These increased towards a peak value at day 6, and

then decreased to a minimum asymptotic value in all treatments at

day 14 (Fig. 2). Generally, there was no difference in 13C-CO2

between the C3 dung treatment and control, except at days 55 and

121 for A. frigida soil (P.0.05). However, the d13C value of CO2

from the C4 dung treated soils was significantly higher than that in

the control soil in most occasions (P,0.05). For the C4 dung, C3

dung, and control treatments, respectively, average d13C of CO2

emissions during 152 days incubation were 214.6%, 220.7%,

and 224.3% for L. chinensis soil, and 215.2%, 220.5%, and

224.0% for A. frigida soil (Fig. 2).

CO2 emission sources and primed CO2 emission in dung
amended soil

The simple method of estimating the contribution of dung-

derived C in respired CO2 is only valid when the respiration rates

from the C3 and C4 dung treated soils are the same[38], as was the

case in the current study. Two peaks of dung-derived C were

observed in both soils (Fig. 3). As a proportion of the total CO2-C

respired from the dung treated L. chinensis soil, during the first

24 days of the experiment, the dung-derived C increased from

11.5% (day 2) to 90.9% (day 24), and from the dung treated A.

frigida soil increased from 17.9% (day 2) to 91.0% (day 24) (Fig. 3).

The cumulative amount of CO2-C respired from the C4 dung

treatment was 5.11 and 5.33 g C kg21 for L. chinensis soil and A.

frigida soil, respectively (Appendix S1). The amount of dung-

derived C recovered in respiration was nearly 1.5 times that from

soil-derived C in both soils, i.e. 59.7% and 58.9% of the evolved

CO2 originated from the decomposing dung in the L. chinensis soil

and A. frigida soil, respectively (Fig. 3).

More CO2 emissions in C4 dung treated soil than control soil in

this study was ascribed to the priming process. The occurrence of

positive priming was observed in both soils, with a more

pronounced priming effect in A. frigida soil than in L. chinensis

soil (Fig. 4). Thus, compared with the control soils, an additional

1.34 g C (L. chinensis) and 1.55 g C (A. frigida) was emitted as CO2

after sheep dung was applied (Appendix S1 and Table 4).

Net carbon budget
Over the 152 days incubation period, 3.5% and 2.8% (i.e.

0.79 g C and 0.64 g C) of the amended sheep dung was recovered

in the L. chinensis soil and A. frigida soil carbon fractions,

respectively (Table 3 and Table 4), and 13.4% and 13.8% of the

Priming of Soil following Sheep Dung Addition
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amended sheep dung was emitted as CO2 in the L. chinensis soil

and A. frigida soil carbon fractions, respectively.

A priming effect was found in both soils during the incubation

period. Considering the apparent supply of dung C to the soil C

component, in comparison with the primed CO2 loss from dung

treated soil, the net soil C loss was nearly two times higher from

the low C A. frigida soil (0.91 g C kg21 soil) compared to the high C

L. chinensis soil (0.55 g C kg21 soil). As a result, 2.6% and 7.0% of

soil C was lost due to the application of sheep dung from the L.

chinensis and A. frigida soils, respectively (Table 4).

Table 3. The dynamics of d13C (Mean 6 SE) in control soils and in soil treated with C3 and C4 dung, and the percent of dung-
derived C incorporated in the soil in relation to soil C (D) and applied dung C (P).

Days after addition Control d13 C (% vs VPDB) C3 dung soil C4 dung soil D (% of soil C) P (% of applied dung C)

L. chinensis dominated soil

17 222.360.1 222.660.1 222.560.02 1.460.1 1.360.1

43 222.260.1 222.260.1 222.060.1 1.160.2 1.260.1

86 222.160.01 222.060.04 222.060.1 0.560.1 0.560.01

127 222.060.1a 222.160.1a 221.860.1b 3.460.2 3.260.2

152 222.260.1a 222.160.3a 221.760.1b 3.860.4 3.560.2

A. frigida dominated soil

17 222.360.03 222.260.1 222.260.03 0.0360.1 0.0260.00

43 222.560.1 222.460.1 222.360.04 1.060.1 0.660.01

86 222.561.5a 222.360.1a 222.160.1b 2.160.1 1.260.04

127 222.460.1a 222.360.1a 221.960.2b 4.060.3 2.360.1

152 222.260.03a 222.360.01a 221.860.02b 4.960.3 2.860.2

Data are shown for each sampling during the 152 days incubation.
Different superscript letters represent statistical significance at P,0.05 at the same sampling time among treatments.
doi:10.1371/journal.pone.0078578.t003

Figure 1. Temporal dynamics of CO2 fluxes (mg C kg–1 day–1) (A and B), and cumulative CO2-C loss (mg C kg–1 day–1) (C and D)
during 152 days of incubation of L. chinensis and A. frigida soils amended with C3 and C4 dung. Values are the mean (n = 3) ± SE
(bars).
doi:10.1371/journal.pone.0078578.g001
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Discussion

Dung-derived C in the soil
The d13C signatures differed by 10.5% between the C4 and C3

sheep dung in our study, which makes it possible to differentiate

the soil- and dung-derived C in bulk samples as well as in respired

CO2 based on the 13C natural abundance characteristics. Distinct

differences in d13C signatures between C4 and C3 dung treated (or

control) soils emerged 43 days after dung incorporation into L.

chinensis dominated soil, and 86 days in A. frigida dominated soil,

suggesting differentiated time lags in the apparent transformation

of dung C to the soil C component. However, the limited temporal

resolution of soil sampling impeded a detailed identification of the

exact temporal dynamics. In contrast, low but significant CO2

emissions derived from dung C was observed initially in the

incubations, which indicates that dung decomposition commenced

immediately, but a transfer to the soil C component was not

apparent until after several weeks of incubation.

Bol et al. [38] observed that after a 150 days field experiment,

12.6% of applied cattle dung C was retained in a grassland top soil

C component. Another field experiment in a temperate grassland

showed that a maximum of 60% of cow dung C was retained in

the soil after 56 days, declining to around 20% after 372 days

[39]. In our study, only 2.8–3.5% of sheep dung C appeared in the

soil C component after 152 days of incubation at 20uC. Probably

the relatively low dung water content (i.e. 14.5%) in our study

caused constrained decomposition compared with other studies

(e.g. 84% water content in the study by Bol et al. [38]. Slurry

generally decomposes faster than dung due to its liquid nature and

missing of various dissolved compounds [40]. The characteristics

of the dung, such as its C/N ratio, is also an important factor

which affected the decomposition of excreta. The C/N ratios in

our experiment (31.3 for C3 dung and 34.4 for C4 dung) were

much higher than the 0.7–10.9 for Bertora et al. [2], and high C/

N excreta might be prone to slow mineralization compared to low

C/N excreta [2,41–42].

CO2 fluxes
An apparent two-phase pattern of CO2 emission was observed

in the current study, which was attributed to the two-phase pattern

of sheep dung decomposed in both soil.

During the whole period of the incubation (152 days), in both

soils, ca 40% of the total CO2 was released from dung treated soil

itself, while 60% released from the decomposed dung (Fig. 3). The

two-stage decomposition patterns have also been observed in other

studies on dung decomposition, and it is proposed that in the first

stage CO2 emission is due to the decomposition of labile C from

soil and easily degradable dung fractions, while in the second

phase, the decomposers attack more recalcitrant material (3, 18,

37). The first phase of decomposition, as indicated by the

increased CO2 efflux, lasted for ca. 6 days, which is longer

compared with the 24–48 h duration observed in other studies,

suggesting that the labile fraction of sheep dung C is more

Figure 2. Temporal dynamics of d13C (% vs VPDB) signatures in CO2 emitted during 152 days following sheep dung addition to L.
chinensis and A. frigida soil (n = 3).
doi:10.1371/journal.pone.0078578.g002
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recalcitrant and less available compared to other excreta such as

wet cattle dung [24,29].

Isotope characteristics of emitted CO2

The d13C signal of emitted CO2 from both C4 incorporated

soils were significantly higher than the C3 and the control soil in

our experiment, which was likely due to the incorporation and the

microbial turnover of polymeric biologic cell wall materials from

C4 dung into C3 grassland soils of C4 dung C [3]. Similar

phenomena have been observed in other studies within the first

hours [25–26]. For the control soil, in general the d13C of emitted

CO2 is slightly higher than the d13C of soil undergoing

decomposition. For example, Fangueiro et al. [3] reported that

the d13C of CO2 emitted from untreated soil was on average 5.4%
higher than the value for the SOM undergoing decomposition.

Angers et al. [25] reported 5.0% higher d13C of emitted CO2 than

d13C in the soil itself. At the same time, slightly higher d13C of

emitted CO2 in the C4 dung treated soil (average 214.5%) than

the sheep dung itself (215.7%) was found in our incubation, the

interaction effect of sheep dung and soil and the isotope

Figure 3. The relative contribution of dung-derived CO2-C and soil-derived CO2-C during 152 days incubation calculated from the
d13 C signature of CO2 after sheep dung addition (n = 3).
doi:10.1371/journal.pone.0078578.g003

Table 4. Fates of soil and sheep dung carbon after 152 days incubation.

Soil type
Organic
C of soil

Fate of sheep
dung C

Soil CO2 emission
(g C kg dry soil21)

Net soil
C loss

Total soil
C loss

Recovered
in soil

Emitted as
CO2 Soil derived C Control Priming

L. chinensis 21.060.06 0.7960.01 3.0560.04 2.0660.01 0.7260.02 1.3460.03 0.5560.01a 2.660.2b

A. frı́gida 13.060.05 0.6460.01 3.1460.03 2.1960.01 0.6460.01 1.5560.01 0.9160.02 7.060.3

aNet soil C loss was given by the value of sheep dung C sequestrated in the soil during 152 days subtracted from the primed soil CO2.
bSoil C loss (%) is the percentage total CO2-C loss compared to soil total organic C content.
doi:10.1371/journal.pone.0078578.t004
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fractionation associated with the microbial turnover maybe was

the possible reason.

Soil priming effects after sheep dung addition
A priming effect (PE) is defined as a short-term change in the

turnover of soil organic matter caused by the addition of labile

organic C to the soil [43]. Here, we determined the priming effect

as the excess emissions of soil C derived CO2 in dung treated soil

compared to control soils. Primed CO2 emissions were observed

throughout the 152 days incubation in both grassland soils.

Specifically, 1.3 g and 1.6 g of excess soil C kg21 was emitted as

CO2 when dung was added to the L. chinensis soil and A. frigida soil,

respectively, corresponding to 6.2% and 11.9% of total soil C.

Such a priming effect is in the upper range of primed C losses of

2.3%–8.9% observed in previous studies [44–45].

Priming of soil C decomposition is believed to occur during

relatively short-term periods upon addition of labile substrates to

soils, and always occurs only in the early stage of substrate addition

after which it rapidly ceases [9,10,18,46]. The rapid decrease in

the priming effect was likely caused by the depletion of easily

decomposable substances added with more complex materials

[23]. However, primed soil C decomposition was apparent in our

study throughout the entire 152 days period, although with a

quantitative variation during the experiment, which may be

related to the high C/N ratio and slow decomposition rate

characteristics of sheep dung. The priming effect depends not only

on the decomposability of the various carbon pools in the

environment, but also on the state of the microorganisms [47–48],

and involves not only one mechanism but rather a succession of

processes partly connected with succession of microbial commu-

nities and functions [13]. Further research is needed to test the

fundamental processes and mechanisms involved in the priming

effect of soil organic matter decomposition due to grazing in Inner

Mongolian grasslands.

The loss of sheep dung C via CO2 was the same in the two

grassland soils in our experiment, which contrasts with results by

Bol et al. [18] who reported that more slurry-derived C was

respired from a C-rich soil compared to a C-poor soil during 0–

9 days after slurry incorporation. The authors of that study

attributed this to the more pronounced enhancement of basal soil

respiration in C-rich soil compared to the C-poor soil. Further-

more, after labile organic C addition, energy limitation in C-poor

soil may have ceased, which subsequently facilitated more

activation of soil microorganisms, and more enzymes were

produced that were capable of SOM degradation [17,43].

Conclusion and implications for grassland management
The addition of C4 sheep dung to a C3 grassland soil enabled us

to successfully trace the fate of dung-derived C in the soil and

calculate the soil organic C budget for two soils from the Inner

Mongolian steppe. Although sheep dung provided an additional

organic carbon source for the grassland soils, a large part was

emitted as CO2 to the atmosphere. After sheep dung addition, a

positive priming effect of soil C decomposition was observed in

both a high-C L. chinensis soil and a low-C A. frigida soil. Therefore,

the balance of soil organic carbon storage was negative when

sheep dung was mixed into the soil. This effect was more

pronounced for the degraded community of A. frigida soils, from

which more soil C was lost compared with the climax community

of L. chinensis soils. This finding is contrary to the conventional

conception of carbon storage in temperate grassland, which

predicts that the livestock excreta applied to grassland soils could

return essential nutrients for plant growth and increase fertility and

SOM contents.

The results suggest that intensive grazing management in the

temperate steppe should be avoided. In Inner Mongolian

grasslands, the succession from L. chinensis dominated communities

to A. frigida dominated communities will result in decreased plant

productivity and soil carbon inputs because of the decreased litter

and root nutrient return [34]. Bearing in mind that complex plant-

soil interactions which exist under field conditions have not been

considered in our study, and assuming that the present conclusion

can be extrapolated to field conditions, a further acceleration of

the decreasing soil C pool in degraded grasslands may occur.

Under actual grazing conditions, sheep dung may be mixed

merely within the very top grassland soils, suggesting that the

current calculations based on well-mixed soil and dung may

overestimate soil C losses. Future work is thus needed to examine

whether the priming effect of sheep dung amendments observed in

this study can be extended to field conditions.
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