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Quantitative features are generated from a tumor phenotype by various data characterization, feature-extrac-
tion approaches and have been used successfully as a biomarker. These features give us information about
a nodule, for example, nodule size, pixel intensity, histogram-based information, and texture information
from wavelets or a convolution kernel. Semantic features, on the other hand, can be generated by an experi-
enced radiologist and consist of the common characteristics of a tumor, for example, location of a tumor,
fissure, or pleural wall attachment, presence of fibrosis or emphysema, concave cut on nodule surface. These
features have been derived for lung nodules by our group. Semantic features have also shown promise in
predicting malignancy. Deep features from images are generally extracted from the last layers before the
classification layer of a convolutional neural network (CNN). By training with the use of different types of
images, the CNN learns to recognize various patterns and textures. But when we extract deep features,
there is no specific naming approach for them, other than denoting them by the feature column number (po-
sition of a neuron in a hidden layer). In this study, we tried to relate and explain deep features with respect
to traditional quantitative features and semantic features. We discovered that 26 deep features from the
Vgg-S neural network and 12 deep features from our trained CNN could be explained by semantic or tradi-
tional quantitative features. From this, we concluded that those deep features can have a recognizable defi-
nition via semantic or quantitative features.

INTRODUCTION
Lung cancer is one of the most common causes of malignancy
worldwide, with a 5-year survival rate of 18% (1). The American
Cancer Society estimates 14% of new cancer cases will be
lung cancer cases for 2018, making it the second most detected
cancer in the United States. They also estimate 154,050 deaths
from lung cancer, which is the most in the United States in 2018
(2). As lung cancer typically remains undetected during the
initial stages, �75% of patients with lung cancers are first
diagnosed at the advanced stages (III/IV) (3). As a result, early
detection and diagnosis is a high priority.

Low-dose computed tomography (LDCT) is a noninvasive
and widely used imaging technique for detecting lung nodules.
By analyzing CT scans, radiologists can generate specific fea-
tures from one’s lung nodule, which could provide guidance for
detection and diagnosis. These distinctive features are named

semantic features. They can be categorized into the following
different groups: shape (eg, lobulation), location (eg, lobe loca-
tion), margin (eg, spiculation), external (eg, peripheral emphy-
sema). With CT scans, cavitation is discovered in 22% of primary
lung cancers and often the cavities in benign nodules mimic the
cavities of malignant nodules, which makes precise diagnosis
difficult (4). In another study (5), it was found that the risk of
lung cancer can be increased 3- to 4-fold owing to emphysema
among heavy smokers. Nodule size also influences cancer diag-
nosis and treatment (6). Hence, semantic features can be used in
creating a predictor of lung cancer.

Using CT scans, quantitative information from a lung nod-
ule can be generated and analyzed using statistics, machine
learning, or high-dimensional data analysis. This approach is
termed radiomics (7). These quantitative features can be catego-
rized into the following different groups: texture (eg, Law’s
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texture features, wavelet features), size (eg, longest diameter,
volume), location (eg, attached to the pleural wall, distance from
the boundary). These traditional quantitative features can be
used to create a biomarker for tumor prognosis, analysis, and
prediction (8-10).

Deep learning is an emerging approach mainly applied in
recognition-, prediction-, and classification-related tasks. Prop-
agating data through multiple hidden layers will eventually help
a neural network to learn and build a representation of data,
which can be used further for prediction or classification. For
image data, a convolutional neural network (CNN) typically uses
several convolutional kernels to extract different textures and
edges before propagating the extracted information through
multiple hidden layers. For lung nodule analysis, CNNs have
been used effectively in recent years (11). In the medical imag-
ing field, data are currently scarce; so, as an alternative to
building a new model, transfer learning has been used (12).

Convolution layers of CNNs, after learning, contain repre-
sentations of edge gradients and textures, and when propagated
through fully connected layers, various high-level features are
posited to have been learned by the network. From fully con-
nected layers, deep features (the outputs of units in the layer) are
extracted and denoted by the number of the feature from the
learning tool (the position of a neuron in a hidden layer row
vector).

Two pretrained CNNs were used in the work described in
this paper for extracting the following deep features: the Vgg-S
network (13), which was trained on the ImageNet data set (14) of
color camera images and our designed CNN (15), which was
trained on lung nodule images. There were 23 traditional quan-
titative features [RIDER subset features (16)] used in this study
along with 20 semantic features, which were generated by an
experienced radiologist from Tianjin Medical University Cancer
Institute and Hospital, China. This study is an extension of our
previous study (17), which analyzes the similarity between deep
features and semantic features. In this current study, we also
focused on traditional quantitative features, that is, analyzed the
similarity of deep feature(s) to traditional quantitative features.
The analysis was conducted by replacing �1 deep features with
traditional quantitative or semantic feature(s). The goal was
to show that equivalent classification performance can be
achieved. That means those deep features contained information
similar to that of the semantic or traditional quantitative fea-

tures. We can equate those deep features with the name of the
corresponding semantic or traditional quantitative feature.

We found that location-based semantic features are difficult
to replace, but size-, shape-, and texture-based semantic fea-
tures can be replaced by deep feature(s). Therefore, shape and
texture quantitative features can be used to explain deep fea-
ture(s). By “explain,” we mean the features can replace deep
features and a classifier will achieve the same accuracy. We
successfully explained 26 deep features from the Vgg-S network
out of 4096 features and 12 deep features from our trained CNN
by semantic and traditional quantitative features. This provides
a semantic meaning for the deep features.

METHODOLOGY
Data Set
A subset of cases from the LDCT-arm of the NLST (National Lung
Screening Trial) data set was chosen for this study. The NLST
study was conducted over 3 years: 1 baseline scan (T0) and 2
following scans (T1 and T2) in 2 subsequent years with an
interval of �1 year (18) between scans. For this study, a subset
of nodule-positive and screen-detected lung cancer (SDLC) cases
(years later) from the baseline (T0) scans were chosen, and the
patient data were deidentified under an IRB-approved process.
These subsets of cases were further divided into the following 2
categories: cohort 1 and cohort 2. Cohort 1 consisted of cases
with a baseline scan (T0), which had a follow-up scan after 1
year (T1), wherein some of the nodules became cancerous.
Whereas, cohort 2 consisted of nodules that became cancerous
after 2 years (T2 scan) from the baseline scan (T0). Selection of
cohorts is shown in Figure 1. Only Cohort 2 (SDLC, 85; positive
control cases, 152) was chosen for our study. Between the SDLC
and control-positive cases, there is no statistically significant
difference with respect to sex, race age, ethnicity, and smoking
(19). Nodule segmentation was performed using the Definiens
software suite (20). From our initial set of cases, 52 cases were
excluded owing to �1 of the following reasons: multiple ma-
lignant nodules, inability to identify the nodule, or unknown
location of the tumor. So, finally, 185 cases (SDLC, 58; control-
positive cases, 127) were selected for our study.

Semantic Features
Semantic features were described from the CT scan of a lung
tumor, by an experienced radiologist. They can be used further

Figure 1. Selection of cohort 1 and cohort 2.
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for diagnosis. An experienced radiologist (Y.L.) with 7 years of
experience from Tianjin Medical University Cancer Institute and
Hospital, China, described 20 semantic features (21-24) on a
subset of cases that intersected Cohort 2. Semantic features can
be categorized into the following groups: shape, size, location,
margin, external attenuation, and associated findings. These
features have been derived with respect to lung nodules by our
group. Table 1 shows a detailed description of our semantic
features.

Traditional Quantitative Features
Definiens software (20), along with help from a radiologist, was
used to segment lung nodules. Then 23 Rider stable features (16)
were extracted using Definiens software. Table 2 shows a de-
tailed description of the “traditional” quantitative features.

Deep Features from Vgg-S Network
Nowadays CNNs are used effectively for image classification
and prediction (11, 13). A CNN has many layers of convolution
kernels along with multiple hidden layers, which makes the
network architecture deeper, and features extracted from such a
network are called “deep features.” In the medical imaging field,
there is typically not enough original data available to train a
CNN. As a result, transfer learning (12) is an alternative option.
Applying previously learned knowledge from 1 domain to a new
task domain is called transfer learning. To extract deep features
from a CT scan, the 2-dimensional slice, which has the largest
nodule area, was chosen for every case. We extracted only the
nodule region by incorporating the largest rectangular box
around the nodule. Bicubic interpolation was used to resize the
nodule images to 224 � 224, which was the required input size
of the Vgg-S network. Figure 2 shows a lung image with nodule

Table 1. Description of Semantic Features

Characteristic Definition Scoring

Location

1. Lobe Location Lobe location of the nodule Left lower lobe (5), left upper lobe (4), right
lower lobe (3), right middle lobe (2), right
upper lobe (1)

Size

2. Long-Axis Diameter Longest diameter of the nodule NA

3. Short-Axis Diameter Longest perpendicular diameter of nodule in the same
section

NA

Shape

4. Contour Roundness of the nodule 1, round; 2, oval; 3, irregular

5. Lobulation Wavy nodule’s surface 1, none; 2, yes

6. Concavity Concave cut on nodule surface 1, none; 2, slight concavity; 3, deep concavity

Margin

7. Border Definition Edge appearance of the nodule 1, well defined; 2, slight poorly; 3, poorly
defined

8. Spiculation Lines radiating from the margins of tumor 1, none; 2 yes

Attenuation

9. Texture Solid, non-solid, part solid 1, non-solid; 2, part solid; 3, solid

10. Cavitation Presence of air in the tumor at the time of diagnosis 0, no; 1, yes

External

11. Fissure Attachment Nodule attaches to the fissure 0, no; 1, yes

12. Pleural Attachment Nodules attaches to the pleura 0, no; 1, yes

13. Vascular Convergence Convergence of vessels to nodule 0, no significant convergence; 1, significant

14. Pleural Retraction Retraction of the pleura towards nodule 0, absence of pleural retraction; 1, present

15. Peripheral Emphysema Peripheral emphysema caused by nodule 1, absence of emphysema; 2, slight present;
3 severely present

16. Peripheral Fibrosis Peripheral fibrosis caused by nodule 1, absence of fibrosis; 2, slight present;
3 severely present

17. Vessel Attachment Nodule attachment to blood vessel 0, no; 1, yes

Associated Findings

18. Nodules in Primary Lobe Any nodules suspected to be malignant or intermediate 0, no; 1, yes

19. Nodules in Nonprimary Lobe Any nodules suspected to be malignant or intermediate 0, no; 1, yes

20. Lymphadenopathy Lymph nodes with short- axis diameter greater than 1 cm 0, no; 1, yes
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and the extracted nodule region. The Vgg-S network was trained
using natural camera images, which were 3-channel (R, G, B),
but the nodule images were grayscale (no color component and
voxel intensities of the CT images were converted to 0-255). So,
the same grayscale nodule image was used 3 times to mimic an
image with 3 color channels and then normalization was per-
formed using the appropriate color channel image. The deep
features were generated from the last fully connected layer after
applying the ReLU activation function. The size of the feature
vector was 4096.

Deep Features from Our Trained CNN
We also experimented by extracting deep features from our
designed CNN network (15). Augmented nodule images of Co-
hort 1 were used to train our CNN architecture. Each nodule
image was augmented first by being flipped horizontally and
vertically and then all images were rotated by 15°. Keras (25)
with a Tensorflow (26) backend was used to train our CNN. We
used the same 2-dimensional slice from a nodule for training the
CNN and for transfer learning using the Vgg-S network. The
input image size for the CNN architecture was 100 � 100 pixels.

The augmented data set was divided into the following 2 parts:
70% of the data for training and the remaining 30% for valida-
tion. The CNN was trained for 100 epochs with 0.0001 learning
rate with RMSprop (27) optimization and binary cross-entropy
as loss function. A batch size of 16 was chosen for training and
validation. L2 regularization (28) along with dropout (29) was
used to reduce overfitting of our small and shallow CNN net-
work. Our designed CNN is described in detail in Table 3. The
deep features were extracted from the last layer before the

Figure 2. (Left) lung image with nodule inside
outlined in blue (nodule pixel size �0.74 mm),
with box used for extracted nodule in red, (Right)
extracted nodule.

Table 3. Our Designed CNN architecture

Layers Parameter
Total

Parameters

Left branch

Input Image 100 � 100

Max Pool 1 10 � 10

Dropout 0.1

Right branch

Input Image 100 � 100

Conv 1 64 � 5 � 5, pad 0, stride 1

Leaky ReLU alpha � 0.01

Max Pool 2a 3 � 3, pad 0, stride 3 39,553

Conv 2 64 � 2 � 2, pad 0, stride 1

Leaky ReLU alpha � 0.01

Max Pool 2b 3 � 3, pad 0, stride 3

Dropout 0.1

Concatenate Left Branch
� Right Branch

Conv 3 � ReLU 64 � 2 � 2, pad 0, stride 1

Max Pool 3 2 � 2, pad 0, stride 2

L2 regularizer 0.01

Dropout 0.1

Fully Connected 1 1 sigmoid

Table 2. Description of Rider Stable
Traditional Quantitative Features

Characteristic Features

Size

1. Long-axis diameter

2. Short-axis diameter

3. Long-axis diameter � short-axis
diameter

4. Volume (cm)

5. Volume (pixel)

6. Number of pixels

7. Length/width

Pixel Intensity
Histogram

8. Mean (HU)

9. Stand deviation (HU)

Tumor Location

10. 8a_3D_ is attached to pleural
wall

11. 8b_3D Relative border to lung

12. 8c_3D_Relative border to
pleural wall

13. 9e_3D_Standard deviation_
COG to border

14. 9g_3D_max_Dist_COG to
border

Tumor Shape
(Roundness)

15. 9b-3D circularity

16. 5a_3D- MacSpic

17. Asymmetry

18. Roundness

Run-length and
Co-occurrence 19. Avg_RLN

Law’s Texture Feature

20. E5 E5 L5 layer 1

21. E5 E5 R5 layer 1

22. E5 W5 L5 layer 1

23. L5 W5 L5 layer 1
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classification layer. The size of the feature vector was 1024.
After applying the ReLU activation function, some features will
be all zeros because ReLU truncates the negative feature values
to zero. We removed such features, and as a result, the final
number of feature vectors from Vgg-S pretrained CNN and our
trained CNN became 3844 and 560, respectively.

Experiments and Results
This section describes the procedure of representing deep fea-
ture(s) using semantic or traditional quantitative features.

Wrapper feature selection (30) was applied on traditional
quantitative or semantic features of Cohort 2 to select the best
subset of features with maximum accuracy. Backward feature
selection using the best first strategy and random forests clas-
sifier (31) with 200 trees was applied using the wrapper ap-
proach. Tenfold cross-validation was used for selecting the best
subset of features. We analyzed quantitative features and se-
mantic features separately. A subset of 9 quantitative features
was chosen and it enabled a maximum accuracy of 84.32%
(AUC 0.87), whereas a subset of 13 semantic features were
selected, enabling a maximum accuracy of 83.78% (AUC 0.84).
Here, we aim to use semantic features or traditional quantitative
features to interpret/explain deep feature(s).

Explaining Deep Features With Respect to
Semantic Features
The chosen semantic features (13) were location, long-axis diam-
eter, short-axis diameter, lobulation, concavity, border definition,
spiculation, texture, cavitation, vascular convergence, vessel at-
tachment, perinodule fibrosis, and nodules in primary tumor lobe.

After selecting the best subset of semantic features, the
correlation coefficient (Pearson correlation coefficient) was cal-
culated for each semantic feature with the deep features, and the
5 most correlated features for each semantic feature were se-
lected. We then replaced each semantic feature with the corre-

lated deep feature(s) and checked whether the same classifica-
tion accuracy of 83.78% could be achieved.

Our purpose for the study was to determine if semantic
features could explain deep features. To do this, we replaced
each semantic feature by �1 deep features to see if the same
classification accuracy could be achieved. We replaced 1 seman-
tic feature at a time from the subset of 13 features and substi-
tuted that semantic feature by, at first, the most correlated deep
feature and, then 2 most correlated deep features and proceeded
similarly to add features until the 5 most correlated deep fea-
tures had been used as replacements. The accuracy was calcu-
lated using a random forests classifier with 200 trees using
10-fold cross-validation. Deep features from Vgg-S pretrained
CNN and our trained CNN were examined separately. Figure 3
shows the approach taken for the analysis.

After replacing a feature with deep features extracted from
the Vgg-S pretrained CNN, we secured the same original classi-
fication accuracy of 83.78% for the following 8 semantic fea-
tures: long-axis diameter, lobulation, concavity, spiculation,
texture, cavitation, vascular convergence, and peripheral fibro-
sis. Using the deep features acquired from our trained CNN, we
achieved the same original classification accuracy of 83.78% for
the following 4 semantic features: long-axis diameter, concav-
ity, cavitation, nodules in primary tumor lobe. We found that 3
semantic features (long-axis diameter, concavity, cavitation)
could be used to explain both deep features from Vgg-S and our
trained CNN. Five semantic features could be used to explain
only deep features from Vgg-S, and only 1 semantic feature
could be used to explain deep features from our trained CNN.
The Vgg-S network was trained on camera images from at least
1000 classes of objects, but not lung nodule images. The large
training set helped the network to develop general features and
which in turn were explained by texture, spiculation, lobulation,
vascular convergence, and peripheral fibrosis. The replacement

Figure 3. Overview of the ap-
proach taken in this study.
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of the first 3 and the last feature appear to result from training
on lots of images of different types.

Table 4 shows the performance of each semantic feature
after removing 1 semantic feature at a time from the subset of 13
features. So, we only calculated classification performance of 12
features at a time using random forests classifier using 10-fold
cross-validation, to check whether by removing each feature,
there was a change in classification accuracy. In Table 4, we
show only the semantic features out of the chosen 13 feature
subsets that could be used to explain deep feature(s). Table 5
shows the explainable deep features and their equivalent se-
mantic feature(s). We also show the correlation value of each
deep feature with a semantic feature in Table 5.

After replacing semantic features with deep feature(s), similar
classification performance was obtained for 9 semantic features.
For example, 2 deep features (3353 and 526) from the Vgg-S
network could achieve the same classification performance of
83.78% if used in place of cavitation. The deep features 3353 and
526 had the correlation of 0.388 and 0.3551, respectively, with the
semantic feature cavitation. Whereas, the deep feature 395 from
our trained CNN, which had a correlation coefficient of 0.2748, was
explained by cavitation. Similarly, 2 deep features (3353 and 2135)
from the Vgg-S network and 1 deep feature (230) using the features
from our trained CNN were explained long-axis diameter by pro-
viding equivalent performance.

Explaining Deep Features Using Traditional
Quantitative Features
The 9 traditional quantitative features that enabled the best
accuracy were: Mean (HU), 8a-3D_is_attached to pleural wall,
8c-3D_Relative border to pleural wall, 9b-3D circularity, Asym-
metry, Roundness, Volume, E5W5L5, and L5W5L5. The Pearson
correlation coefficient was calculated for each traditional quan-
titative feature with the deep features and the top 5 correlated
deep features were selected to replace each traditional quanti-
tative feature. We replaced each traditional quantitative feature
by �1 deep features to try to achieve the same classification
accuracy of 84.32%. After replacing deep features extracted

from the Vgg-S pretrained CNN, we got the same original clas-
sification accuracy of 84.32% for the following 3 traditional
quantitative features: 9b-3D circularity, roundness, and L5W5L5
layer 1. Hence, they can be used to explain what the deep
features that replaced them have learned. Traditional quantita-
tive features consist of tumor size, tumor shape, Law’s texture
features, tumor location, etc. As we have seen earlier for seman-
tic features, deep features could be explained by shape-based
quantitative features.

In Table 4, we only show the 3 quantitative features that can
be replaced (used to explain) deep feature(s). Table 5 shows the
quantitative features, their equivalent deep feature(s), and cor-
relations.

DISCUSSION
We showed that some deep features can be explained by a
semantic feature or traditional quantitative feature. From a lung
nodule CT image, experienced radiologists generated semantic
features of different types of information regarding a lung
nodule, for example, size, shape, location of nodule, the bound-
ary of the nodule, attachment to the vessel, fibrosis information,
etc. These features were shown to provide useful information
toward the prognosis and diagnosis of lung cancer. From a
tumor phenotype, quantitative information can be extracted
using various data characterization approaches, and these fea-
tures are called traditional quantitative features.

Deep features are extracted from a CNN, generally from the
last layer before the final classification layer. For this study,
deep features were extracted from the last fully connected layer
of the following 2 pretrained CNNs: the Vgg-S network, which
was trained on the ImageNet data set, and our designed CNN,
which was trained on LDCT lung nodule images. The Vgg-S
architecture is a network with 5 convolution layers followed by
3 fully connected layers. Our designed CNN is a small and
shallow network with 3 convolution layers and 1 fully con-
nected layer. As the Vgg-S network was trained on a large set of
classes of camera images, various textures and other features

Table 4. Classification performance After Features Removal

Features Feature Names Accuracy

Semantic Features

Long-axis diameter 82.70 (0.82)

Lobulation 82.70 (0.83)

Concavity 83.24 (0.83)

Spiculation 83.24 (0.83)

Texture 82.70 (0.83)

Cavitation 82.70 (0.83)

Vascular convergence 83.24 (0.84)

Peripheral fibrosis 82.70 (0.83)

Nodules in primary lobe 81.62 (0.83)

Traditional Quantitative Features

9b-3D circularity 82.16 (0.86)

Roundness 82.70 (0.87)

L5W5L5 layer 1 82.70 (0.87)

These features were from our chosen subset of features, leaving 12 features for training/testing.

Explanation of Deep Features
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were extractable, which can be used effectively for tumor clas-
sification. Our trained CNN was trained with LDCT lung nodule
images and gave us better performance than transfer learning in
our previous study (15).

In this study, we attempted to explain deep features using
semantic or traditional quantitative features. A subset of fea-
tures was chosen from the semantic or traditional quantitative
features using a wrapper with a random forests classifier. For the
semantic features, the best subset had 13 features with an accu-
racy of 83.78% (AUC 0.84), whereas from traditional quantita-
tive features, the size of the best subset was 9 features with an
accuracy of 84.32% (AUC 0.87). The Pearson correlation coeffi-
cient was calculated with each of the chosen semantic features
or traditional quantitative features and the deep features. For
every semantic or traditional quantitative feature, the top 5 most
correlated deep features were chosen. Now, from our chosen
subset of semantic or traditional quantitative features, 1 feature
was removed, and it was substituted by the most correlated deep
feature and classification performance was calculated. With a
single substituted deep feature, if we can achieve the classifica-
tion performance then stop; otherwise, substitute that semantic
feature or traditional quantitative feature by the 2 most corre-
lated features and continue this process until the 5 most corre-
lated deep features have been used. In total, 26 deep features

from the Vgg-S network and 12 deep features from our trained
CNN were explained by 9 semantic features and 3 traditional
quantitative features. From this, we hypothesized that those
deep features can have a recognizable definition from semantic
or quantitative features. That is, those deep features can be given
some meaningful definition.

We also trained our CNN on cohort 2 (all 237 cases) and
then extracted deep features for only the subset of 185 cases for
which semantic features were available. The deep feature vector
size was 1024. We removed all zero features to get 699 features
from cohort 2. We then used these deep features to represent
semantic and quantitative features. We found that some addi-
tional semantic features could be used to explain deep features
from our CNN trained on cohort 1 (shown in Table 5) in addition
to the ones previously found useful. Lobulation, spiculation,
vascular convergence, perinodule fibrosis and border definition
could explain features from our new deep feature set (CNN
trained on cohort 2 data only). Among these semantic features,
“border definition” was found to explain 4 deep features (147,
160, 504, and 372) and it could not explain any deep features
from Vgg-S or our CNN (trained on cohort 1).

For this study, we extracted only the nodule region from a
CT slice. As the nodule region was extracted the information
regarding pleural wall attachment, fissure attachment, relative

Table 5. Semantic and Traditional Quantitative Features and Corresponding Deep Feature(s)

Features Feature Names Deep Features from Vgg-S With
Correlation Value

Deep Features from Our Trained CNN
With Correlation Value

Semantic
Features

Long-axis
diameter

3353 2135 230

0.4334 0.42 0.3055

Lobulation
3534 1372 2975 2111 NA

0.5742 0.5614 0.5611 0.5520

Concavity
3534 2975 1372 2111 3246 547 440

0.5 0.4839 0.4837 0.475 0.4612 0.1776 0.1514

Spiculation
2811 NA

0.4111

Texture
1201 3350 NA

�0.3119 0.2936

Cavitation
3353 526 395

0.3888 0.3551 0.2748

Vascular
convergence

1464 2115
NA

0.7052 0.701

Peripheral fibrosis
3305 3064 NA

0.2076 0.2043

Nodules in primary
lobe NA

425 57

0.1871 0.1836

Traditional
Quantitative
Features

Roundness
1395 2510 160 20

0.3 0.27 0.16 0.13

9b-3d circularity
1395 1757 3401 2777 160 20

0.24 �0.234 �0.2069 �0.2069 0.14 0.13

L5W5L5 layer 1
51 66 163 476 928 547 169 265 309

0.77 0.75 0.69 0.69 0.69 0.28 0.27 0.26 0.26
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border to the lung, or distance was lost. However, deep features
from our trained CNN were explained by only 1 location-based
semantic feature (nodules in primary lobe). For training the
CNN, we performed data augmentation by rotation and flipping,
which enabled the extracted deep features to achieve compara-
ble accuracy. The deep features capture the boundary and shape
information quite well because that information could be ob-
tained from the extracted nodule region, and thus, 2 traditional
quantitative features (9b-3D-circularity and roundness) and 3
semantic features (lobulation, concavity, and spiculation) were
able to explain deep features. Deep features are known to grasp
texture-based information as well. As a result, L5W5L5 Law’s
texture feature and cavitation were useful for explaining deep
features. We also found out that deep features 3353, 3534, 1372,
2975, and 2111 from the Vgg-S network were correlated with
and explained by �1 semantic features, and feature 1395 was
correlated with and explained by 2 traditional quantitative fea-
tures (roundness and 9b_3D_circularity). Deep features 160 and
20 from our trained CNN network were explained by 2 tradi-
tional quantitative features (roundness and 9b_3D_circularity).

In this work, the 5 most correlated features were used to
replace a semantic or radiomics feature. Our requirement was some
nonzero correlation. Now, with all the comparisons, there will
potentially be some spurious correlations. Hence, the Bonferroni
correction was used to look at the significance of correlations
between deep features and every semantic (or radiomics) feature.
As an example, cavitation could be replaced by 2 deep features
from the Vgg-S network. Fea 1 (3353) had an original P value �
4.8651e-08 and fea 2 (526) had an original P value � 7.0822e-07.
After the Bonferroni correction, the P value of fea 1 was 9.73e-08
and that of fea 2 was 1.4164e-06. Now both Bonferroni-corrected
P-values were less than the more rigorous significance level. How-
ever, when combined, they added more information to our model
and hence appear to be associated with cavitation.

After using the Bonferroni correction, we found some of the
features with the 5 highest correlation values did not have a

significant correlation with a semantic or radiomics feature.
Nonetheless, the weakly correlated features were able to explain
some CNN features. We interpret this to mean that insignificant,
but nonzero, correlations taken together can provide insight
into (some) deep features.

In total, 26 deep features from the Vgg-S network and 12
deep features from our trained CNN were explained by 9 seman-
tic features and three traditional quantitative features.

CONCLUSIONS
The recent success of CNNs in various classification-type tasks
leads to the question of what they have learned. Here, deep
features are explained with respect to semantic features and
traditional quantitative features.

In this study, we found explanations for 26 deep features
from the Vgg-S network out of 4096 features and 12 deep
features from our trained CNN by semantic and traditional
quantitative features. One can also look at this as providing
semantic information about deep features. Although there
has been some research (32-39) regarding semantic under-
standing of natural scenes using deep CNN features, to our
knowledge, this is the first work to explain deep features with
respect to traditional quantitative features and semantic fea-
tures extracted from a lung nodule. In the future, deep fea-
tures with semantic meaning can be included in biomarkers
for tumor prognosis and diagnosis of lung nodules from CT
scans, along with semantic features and traditional quanti-
tative features.

There were 2 limitations in our study, first, only 10-fold cross-
validation was used to evaluate the performance as we had a
limited set of expensive to obtain semantic information. The second
limitation of our study was using a single slice for every patient to
extract deep features, whereas semantic information was generated
from multiple slices. In the future with more semantic annotated
data, we will investigate deep features from a 3D CNN.
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