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INTRODUCTION 
 

The female reproductive axis is the first to fail while 

growing old and is associated with changes in ovarian 

function in most mammalian species [1, 2]. With regards 

to that, fertility could be an important issue to explain the 

fundamental processes of aging [3]. Oocytes may undergo 

two types of aging. On one hand, an oocyte can be 

exposed to an aged ovarian microenvironment before 

being ovulated, known as ‘reproductive or maternal 

aging’. On the other hand, there is ‘postovulatory aging’, 

meaning either a prolonged stay in the oviduct or in vitro 

aging before fertilization. However, the molecular 

mechanisms underlying these aging processes are still 

poorly understood [4]. Reproductive aging in women and 

other mammals is associated with a progressive decline of 

ovarian function characterized by a decrease in the 

quantity and quality of oocytes with advancing age [1]. In 

recent decades it has been observed that women in most 

industrialized societies postpone their first pregnancy [5]. 

Consequently, the average age of women when they first 

attempt childbearing has increased [1, 6]. In relation to an 

increasing number of women delaying childbirth, 

enormous efforts are being made to diagnose and 

counteract age-associated infertility. It is well known that 

fertility in women begins to decline significantly by  

their mid-30s and pregnancies in advanced age women 

lead to higher rates of miscarriage and/or an aneuploid 
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ABSTRACT 
 

Maternal aging-associated reduction of oocyte viability is a common feature in mammals, but more research is 
needed to counteract this process. In women, the first aging phenotype appears with a decline in reproductive 
function, and the follicle number gradually decreases from menarche to menopause. Cows can be used as a model 
of early human embryonic development and reproductive aging because both species share a very high degree of 
similarity during follicle selection, cleavage, and blastocyst formation. Recently, it has been proposed that the main 
driver of aging is the mammalian target of rapamycin (mTOR) signaling rather than reactive oxygen species. Based 
on these observations, the study aimed to investigate for the first time the possible role of rapamycin on oocyte 
maturation, embryonic development, and telomere length in the bovine species, as a target for future strategies 
for female infertility caused by advanced maternal age. The 1nm rapamycin in vitro treatment showed the best 
results for maturation rates (95.21±4.18%) of oocytes and was considered for further experiments. In conclusion, 
rapamycin influenced maturation rates of oocytes in a concentration-dependent manner. Our results also suggest a 
possible link between mTOR, telomere maintenance, and bovine blastocyst formation. 
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offspring [7]. It is generally accepted that chromosomal 

abnormalities, spindle defects, mitochondrial dysfunction, 

telomere shortening, and a decrease in the levels of 

maturation-promoting factor (MPF) are directly 

implicated in age-related decline of fertility and 

embryonic development [6, 8–13].  

 

Telomeres are TTAGGG repeats that cap chromosome 

ends, prevent end-to-end fusions, and shorten with each 

cell division in most cells until they become critically 

short and promote cell cycle arrest, apoptosis, and 

genomic instability [14–17]. Telomeres shorten with 

age through two mechanisms: replicative senescence in 

dividing cells and via the effects of reactive oxygen 

species (ROS) in non-dividing cells such as oocytes 

[18]. Recently, it has been proposed that the main  

driver of aging is the target of rapamycin (TOR) 

signaling rather than ROS. Inhibition of TOR, either 

pharmacologically with rapamycin or genetically, 

extends the life span of yeast and C. elegans [19–24].  

 

The objective of this project was to study for the first 

time, the effects of appropriate concentrations of 

rapamycin on oocyte maturation until the metaphase II 

(MII) stage, the developmental capacity of bovine 

oocytes, and their telomere length in order to better 

understand the link between aging, telomeres, and 

mTOR signaling. These findings can be applied to 

bovine and human in vitro fertilization (IVF) 

procedures, it may also aid in overcoming oocyte aging. 

 

RESULTS 
 

Influence of different rapamycin concentrations on 

oocyte maturation 

 

The use of 1nM rapamycin during IVM increased in a 

most potent, even though not significant, way the 

maturation rate (95.21±4.18% in metaphase II) of bovine 

oocytes compared to the control groups. We, therefore, 

decided to use this concentration for further replicates to 

investigate if there any effects on early embryonic 

development (Table 1). Overall a dose-dependent effect  

of rapamycin could be detected. The concentration 

100nM of rapamycin supplementation diminished the 

maturation rates (82.37±4.88% in metaphase II), and  

this was of statistical difference when compared to the 

1nM Rapamycin supplementation (p=0.0326). Both 

concentrations, 0.1nM and 10nm, did not differ drastically 

from the control groups. 

 

Influence of rapamycin on early embryonic 

development 
 

In this set of experiments, we intended to see if 1nM 

rapamycin supplementation used during IVM, has an 

effect on early embryonic development until the 

blastocyst stage. A total of 695 good quality COCs 

(IETS classes I-III) underwent IVM, following IVF and 

IVC both of which were performed without rapamycin 

supplementation. Although there was no statistical 

significance, the use of 1nM rapamycin during IVM 

slightly increased the blastocyst yield on day 7; 

25.11±1.17% blastocyst after in vitro treatment in 

comparison to 21.5±3.14% and 20.64±2.68% in the 

control groups (Figure 1).  

 

Influence of rapamycin on telomere length 

 

Due to the possible link of the mTOR pathway to 

telomeres, we investigated the effect of 1nM rapamycin 

supplementation on the relative telomere length of 

metaphase chromosomes in bovine oocytes. Although 

rapamycin supplementation increased the telomere 

length of metaphase chromosomes of oocytes, there was 

no statistical significance when compared to the control 

groups (Figure 2). Additionally, we examined the 

number of telomeric spots to estimate a possible link 

between the rapamycin treatment and telomere 

aberration. As shown in Figure 2C, 2D the number of 

telomere spots (129.35 ±54.65) and the telomere spot 

area expressed in pixels (82.52±34.78) tended to be 

higher but were not significantly increased compared to 

the control (104.02±59.57 telomere spots, 35.25±14.62 

pxls telomere spot area) and vehicle control groups 

(87.97±13.48 telomere spots, 47.86±17.42 pxls 

telomere spot area). 

 

DISCUSSION 
 

To date, the knowledge of mechanisms on how to delay 

aging in oocytes is limited, and the pathway of oocyte 

rescue during aging is poorly described. To investigate 

for the first time how rapamycin, the mammalian  

TOR inhibitor and potentially lifespan extender, can 

influence the quality and telomere length of bovine 

metaphase II oocytes, the present study focused on the 

effects of rapamycin during the maturation of oocytes. 

We chose the bovine species as a model for the human 

species because of a high degree of similarity in 

reproductive physiology between both the species. 

Therefore, cumulus-oocyte-complexes were matured in 
vitro with supplementation of increasing concentrations 

of rapamycin (0, 0.1, 1, 10, or 100 nM) for 24 h. Since 

the maturation process is crucial for further biological 

processes, such as fertilization and early development, 

and since telomeres are an import hallmark of aging, 

our study mainly focused on these two topics. Our 

results demonstrate that maturation rates were highest in 

the 1nM rapamycin-treated group compared to the 

control and other treatment groups, whereas in the 

100nM rapamycin-treated group fewer oocytes reached 
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Table 1. Maturation rates after different rapamycin test concentrations. 

Treatment group 
COCs in culture  

total number 

Maturation rate 

Total number %±SEM 

0.01nM Rapamycin 34 30 87.74±6.74 

1nM Rapamycin 38 36 95.21±4.18 

10nm Rapamycin  31 28 90.24±1.17 

100nm Rapamycin 28 23 82.37±4.88 

Control 33 30 90.85±0,83 

DMSO/vehicle Control 32 28 87.58±5.01 

Maturation rates are shown as total numbers and as percentages (±SEM) of the total number of COCs in culture. Statistical 
significance (p ±0.05) between the values is indicated by the asterisk. 
 

 
 

Figure 1. Influence of 1nM Rapamycin supplementation on early embryonic development. The results are presented as cleavage 
rates and blastocyst rates in % (total number of metaphase II oocyte/total number of embryonic stage). (A) shows the results for proper 
cleaved embryos on day 4 in the three experimental groups. (B) shows the results for the blastocyst rate on day 7 in the three experimental 
groups. (C) shows the results for the blastocyst rate on day 8 in the three experimental groups. (D) shows the results for the blastocyst rate 
on day 9 in the three experimental groups. A total of 695 good quality COCs (representative COCs shown in (E) [scale bar: 100 μm] and (F) 
[scale bar: 50 μm]) were used for the in vitro maturation, fertilization, and culture until day 9, and the "n" above each bar represents the 
number of detected good quality early cleavage stage embryos, (control= control without supplementation, CDM=vehicle control with DMSO 
supplementation, 1nMRap= 1nM Rapamycin supplementation). 
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the metaphase II stage (Table 1), indicating that 

rapamycin has a dose-dependent effect. When 

rapamycin was used at a concentration of 100nM for 12 

h, an inhibitory effect on the translation of specific 

transcripts associated with meiotic progression was 

observed [25]. In the study where a 1nM rapamycin 

treatment was chosen for the IVM in porcine oocytes, 

there were no significant differences observed with 

regards to the nuclear maturation when compared to the 

untreated control groups [26]. In that study [26], the 

1nM rapamycin supplementation during IVM was used 

to induce autophagy in porcine COCs. No improvement 

of oocyte maturation and embryonic development was 

observed, whereas Song and coworkers [27] described 

an increase in nuclear and cytoplasmic maturation after 

the induction of autophagy in porcine COCs. The latest 

mentioned results are consistent with our findings in 

bovine oocytes that an in vitro treatment with 

rapamycin tends to improve the rate of metaphase II 

oocytes. In another study, where a rapamycin treatment 

was used during porcine oocyte IVM, an increase in the 

frequency of normal meiotic spindles was observed in 

the treated group in comparison to untreated control 

oocytes [26]. Furthermore, in the same study rapamycin 

led to an increase in the rearrangement of abnormal 

spindles in aged oocytes. Based on our findings and the 

data provided by other researchers, we hypothesize that 

rapamycin positively influences the maturation of 

oocytes by reaching the second metaphase stage and 

improves embryonic developmental competence. Since 

in our experiments rapamycin showed negative effects 

on maturation rates when concentrations higher than 

10nM were used (Table 1), we decided to use only the 

1nM concentration group to follow up the early 

embryonic development until the blastocyst stage to 

investigate the effects of this exposure during IVM. 

Although the results are not statistically significant, in 

our study we could observe a higher blastocyst rate 

(25.1%) on day 7 in the rapamycin-treated group 

compared to the two control groups (21.5% and 20.6%). 

Similar results were obtained in the porcine species, 

namely, an enhancement of the developmental capacity 

and quality of blastocysts in the rapamycin-treated 

group when compared to the controls [26]. 

Interestingly, in the same study, the relative mRNA 

abundance of NANOG and SOX2 was higher in 

blastocysts from the rapamycin-treated oocytes 

compared to blastocysts from untreated control oocytes. 

Another study from Lee and coworkers [29] reported 

that murine blastocysts showed morphological defects 

after treatment with rapamycin, however, the 

concentration of rapamycin was 250 times higher than

 

 
 

Figure 2. Telomere visualization and evaluation after Q-FISH in metaphase spreads of bovine oocytes. Telomeres were detected 
by Q-FISH on MII oocytes using a probe targeting telomeric repeats (red) and DNA stained with DAPI (blue). (A) Oocyte Metaphase II spread, 
scale bar: 5 μm. (B) Mean fluorescence intensity of telomeric spots in all experimental groups. (C) shows the results for the mean number of 
telomeric spots in the three experimental groups. (D) shows the results for the mean telomeric spot area expressed in Pixels (pxls) in the 
three experimental groups. (control= control without supplementation, CDM=vehicle control with DMSO supplementation, 1nMRap= 1nM 
Rapamycin supplementation). 
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in our study. Furthermore, in the same study, it was 

demonstrated that rapamycin treatment significantly 

decreased apoptosis in blastocysts. In a previous study, 

the same authors reported that autophagy modulators 3-

methyladenine and rapamycin could affect the interplay 

between autophagy and apoptosis in murine embryos 

[29]. Their results indicate that supplementation of the 

in vitro media with autophagy modulators led to an 

increase of apoptosis, disrupted mitochondrial 

morphology, and reduced mitochondrial numbers. 

These results suggest that rapamycin could play a role 

as an anti-apoptotic agent and might support the 

interplay between autophagy and apoptosis during early 

embryonic development. Based on our results and the 

provided data from the literature, we hypothesize that 

rapamycin is a potent compound that seems to increase 

the in vitro oocyte culture outcomes and does not 

decrease the early embryonic development in bovine 

species. Furthermore, one should take into account that 

our study until today is the only one carried out in 

bovine species.  

 

Another main interest of our study, which has not yet 

been described before in bovine oocytes, was to 

examine whether a rapamycin treatment influences 

telomere length maintenance. The mammalian target 

of rapamycin (mTOR) is an evolutionarily conserved 

Ser/Thr protein kinase that controls different cellular 

events, for instance, cell cycle progression, cell size, 

transcription, dynamics of the cytoskeleton, and 

autophagy [30–32]. Previous studies provided strong 

evidence that the inhibition of the TOR pathway 

extends lifespan in yeast, worms, and flies [33–35]; 

another study demonstrated that rapamycin extends 

lifespan in genetically heterogeneous mice [36, 37]. It 

has been reported that rapamycin-treated porcine 

oocytes significantly decreased mTOR protein 

synthesis and mRNA expression, which indicates that 

rapamycin is involved in the inhibition of mTOR [26]. 

In our study, based on the results of the Q-FISH 

(Figure 1C), we could not detect any statistical 

differences in telomere length between the rapamycin 

treatment and the control groups, although in a 

previous study rapamycin was reported to affect the 

level of hTERT mRNA in mammals [38]. In our 

results, we could see a tendency of an increased 

number of telomeric spots in the rapamycin-treated 

group, which could give a hint for a possible link to 

telomeric aberrations such as multi telomeric signals 

[22, 39]. In the work of Unger and co-workers [40], 

where the influence of rapamycin on the telomere 

length in different yeast strains was tested, data 

provided the hypothesis that the TOR complex 1 

(TORC1), which coordinates the response to nutrient 

starvation and is sensitive to rapamycin [41], plays a 

crucial role in the control of telomere length. In 

addition to its role in telomere length maintenance and 

protection, the TORC1 affects the Ku heterodimer 

which relocates to sites of double-strand breaks to 

promote their repair by non-homologous end joining 

(NHEJ) [42]. Moreover, the Ku heterodimer is 

important for the telomere length maintenance and is 

involved in telomere protection and localization as 

well as in telomerase recruitment. That could be the 

mechanism by which rapamycin possibly affects 

telomere length [43–45]. In conclusion, we can 

summarize that we were the first group to use 

rapamycin in bovine oocyte in vitro maturation, and 

although the results did not show a significant 

difference, but there was a tendency that rapamycin is 

beneficial with regards to embryo development at an 

appropriate dose. Further investigations are needed to 

investigate the influence of rapamycin on telomere 

length. 

 

MATERIALS AND METHODS 
 

Media 

 

Unless stated otherwise, all chemicals were purchased 

from Sigma Aldrich Quıímica (Madrid, Spain). 

 

Oocyte collection and in vitro oocyte maturation 

(IVM) 
 

Bovine cumulus–oocyte complexes (COCs) were 

recovered and matured in vitro as previously described 

by Lopera-Vasquez [46]. Briefly, immature COCs were 

obtained by aspirating follicles (2–8 mm) from the 

ovaries of heifers collected at the slaughterhouse. Classes 

I-III COCs (Figure 1E, 1F) were matured for 22 h in 

groups of approximately 50 COCs per well in four-well 

dishes (NUNC, Roskilde, Denmark) in 500 μL of in vitro 

maturation medium “IVM” (TCM 199 (M4530) 

supplemented with 10% (v/v) fetal calf serum (FCS) and 

10 ng/mL epidermal growth factor (E4127). In a 

preliminary experiment, we aimed to detect a possible 

dose-dependent effect of rapamycin, where four 

increasing concentrations were assessed: 0.1nM, 1nM, 

10nM, and 100nM. The IVM standard media as well as 

media supplemented with the vehicle “0.0001x of DMSO” 

were used as controls. The final-used concentration of 

rapamycin for IVM was determined according to the 

results of the highest maturation rate obtained after 24h, 

in comparison to the control groups. In the subsequent 

experiment, the following groups of IVM were 

performed: (1) Control: COCs matured in IVM media (2) 

1R: COCs matured in IVM media supplemented with 

1nM of rapamycin (3) Control DMSO (CD): COCs 

matured in IVM media supplemented with DMSO as 

previously. The culture conditions were 38.5°C, 5% CO2 

air, and maximum humidity. 
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In vitro fertilization (IVF) 
 

Frozen semen from a single Asturian Valley bull, 

previously tested for IVF (ASEAVA, Asturias, Spain), 

was thawed at 37°C in a water bath for 1 min and sperm 

was selected on a Bovipure gradient (Nidacon 

Laboratories AB, Gothenburg, Sweden) as previously 

described by Lopera-Vasquez and coworkers (2017). 

Sperm concentration was determined and adjusted to a 

final concentration of 1 × 106 sperm cells/ mL for IVF. 

Gametes were co-incubated for 18 h in 500 μL of 

fertilization medium (Tyrode’s medium with 25 mM 

bicarbonate, 22 mM Na-lactate, 1 mM Na-pyruvate and 

6 mg/mL fatty acid-free BSA) supplemented with 10 

μg/mL heparin sodium salt (Calbiochem) in groups of 

50 COCs per well in four-well dishes at 38.5°C in an 

atmosphere of 5% CO2 at maximum humidity. 

 

In vitro embryo culture  
 

At approximately 20 h after insemination, presumptive 

zygotes were denuded of cumulus cells by vortexing for 

3 min, randomly divided into groups of 25, and cultured 

in 25 μL droplets of synthetic oviductal fluid (SOF) 

supplemented with 4.2 mM sodium lactate (L4263), 

0.73 mM sodium pyruvate (P4562), 30 μL/mL BME 

amino acids (B6766), 10 μL/mL MEM non-essential 

amino acids (M7145), 1 μg/mL phenol red (P0290), and 

3 mg/mL bovine serum albumin (BSA; A9647). 

Droplets were placed under mineral oil at 38.5°C in an 

atmosphere of 5% CO2, 5% O2, and 90% N2.  

 

Assessment of metaphase II oocytes 
 

Oocytes were placed into a 5 μL droplet of 0.1% 

hyaluronidase solution on a pre-cleaned glass slide at 

room temperature until the zona pellucida had dissolved. 

Individual oocytes were then rinsed for 5–10 s in a 100 

μL droplet of hypotonic solution (1% sodium citrate and 

0.02 mg/ml human serum albumin) to induce swelling 

for clearer visualization of the nucleus. The droplet was 

allowed to evaporate completely and then two drops of 

fresh 3:1 methanol/acetic acid were added to fix the 

nuclei. Slides were air-dried at room temperature and 

stored at 4°C until performing the Q-FISH protocol. 

 

Quantitative fluorescence in situ hybridization in 

metaphase spreads of oocytes 

 

Telomere length analysis was performed on oocyte 

metaphase spreads, which were hybridized with a PNA-

telomeric probe and treated as described in Zijlmans et 

al. [47]. Images were captured on the confocal 

ultraspectral microscope Leica TCS-SP5-WLL. 

Analysis of images was performed using the Definiens 

Developer XD2 software. 

Statistical analysis 
 

The results for the maturation and developmental rates 

were analyzed by using the Chi-square test and the 

Kolmogorov-Smirnoff test. The data on telomere length 

was analyzed using t-test. 

 

Abbreviations  
 

BSA: Bovine Serum Albumin; COC: cumulus–oocyte 

complex; DMSO: dimethyl sulfoxide; GV: germinal 

vesicle; IETS: International Embryo Transfer Society; 

IVC: in vitro culture; IVF: in vitro fertilization; IVM: in 

vitro maturation; MII: Metaphase II; MPF: maturation-

promoting factor; mTOR: mammalian target of 

rapamycin; pxls: Pixels; ROS: reactive oxygen species; 

MII: Metaphase II; Q-FISH: Quantitative Fluorescence 

in Situ Hybridization; RAP: rapamycin; SOF: synthetic 

oviductal fluid; TCM: tissue culture medium. 
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